三峡水库香溪河库湾倒灌异重流运动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库蓄水后,库区水位升高、水体流速减缓,库湾和支流污染物的滞留时间延长,水域环境条件发生了显著变化,引起了社会各界的广泛关注。越来越多的学者开始认识到水流变缓是三峡水库支流库湾发生富营养化的主要诱因。一方面水库蓄水使支流库湾流速变缓有利于水华发生;另一方面水库的水位调节以及水库干支流水体物理化学性质存在差异,水库干、支流水体处于频繁的交换状态,这种交换又会反过来进一步改变库湾水体的物理、化学特性,从而不断影响着支流库湾水华的发生。因此,研究清楚三峡水库蓄水后支流库湾水动力特性及其受水库干流影响的特点,是研究库湾水环境状况和解决其水体富营养化问题的基础。
     本文以三峡水库香溪河库湾为研究对象,利用现场监测数据分析库湾的水动力特性,并以此为基础建立倒灌异重流室内物理模型,模拟在三峡水库典型调度工况下的香溪河库湾倒灌异重流现象,来进一步揭示异重流的水动力学特性,为研究其它支流库湾水动力特性提供理论依据。主要工作及认识如下:
     1、基于2008年香溪河库湾现场监测数据,对水体流速、水温、密度、水位、温差、流量等因子进行分析,结果表明香溪河库湾在深度上长期具有复杂的分层异向流动特征,库湾底部始终存在流向河口的潜流,大多时候河口处水库干流水体以倒灌异重流的形式进入库湾,2月和3月为底部异重流,4-9月主要为中层异重流,汛后第一阶段蓄水主要为表层异重流,第二阶段蓄水为中层异重流,11、12月分别为底部和中层异重流。香溪河倒灌异重流形成的根本原因是水库干流与支流库湾水体温差和含沙量差引起密度差,其中温差是主导因素。
     2、以初始水位、入流量、温度差为基本变量,在室内进行了一系列底、中、表温差倒灌异重流实验,通过分析异重流头部移动速度、厚度、交界面高度、潜入点速度等因子的变化过程,得到如下认识:
     (1)异重流头部移动速度沿程呈线性递减;同一断面处,异重流头部速度随入流量、初始水位及温差的增加而增大。
     (2)异重流运行过程中,底、表层异重流头部交界面及中层异重流头部下交界面均沿程呈线性升高,同一断面处的交界面高度随入流量及初始水位的增加而升高;中层异重流头部的上交界面高度沿程几乎不变,而同一断面处的高度随初始水位增加而增大。
     (3)底、中、表层异重流头部厚度均沿程呈线性递减,头部厚度对初始水位变化最敏感,随初始水位升高而增加,而温差变化对其几乎没有影响。
     (1)异重流运行稳定时前锋过后的异重流交界面形态不变,底部异重流与环境水体交界面比降与水槽底部相反,表层异重流交界面倾向与水槽底部一致,中层异重流上交界面倾向与水槽底部相反,下交界面倾向与水槽底部一致,同时所有交界面比降均小于水槽底坡。
     (2)室内温差异重流潜入点Fr0 2值分布均较集中,平均值约为0.54;潜入厚度大约是环境水深的0.5倍,稳定后的厚度大约是环境水深的0.4倍。
     (3)在一定范围内,异重流潜入点速度与入流量、初始水位及温差均呈正相关;潜入点厚度与入流量及初始水位呈正相关,而与温差呈负相关;
     (4)异重流头部速度与水体密度差及阻力系数呈显著正相关;头部厚度与初始水位及入流量呈显著正相关。
     (5)实验得到异重流潜入距离的特性与现场得到的基本一致,即与水位、入流量呈显著正相关,与入侵水体和环境水体之间的密度差呈显著负相关。3、对室内、野外温差倒灌异重流的运动特性进行对比分析得到如下规律:
After impounding, water environment of the total Three Gorges Reservoir (TGR) has been significantly changed due to dramatically increased water level, lower flow velocity, poorer diffusion ability and longer retention time in the tributaries; these problems have been a matter of social concern. More and more scholars realized that dramatically decreased flow velocity was the key factor driving eutrophication and algal boom problems of the TGR tributaries. Firstly, low flow velocity in tributaries reduced transport ability of the flows and strengthens the biomass H0accumulation directly. Secondly, quite low flow velocity in tributaries prolonged water retention time, enriched nutrients and increased H1light transmittance which indirectly accelerated algal growth. In addition, it is noteworthy that research indicated the tributaries were strongly impacted by reverse intrusion of the TGR arm water with high nitrogen and phosphorus concentration. Therefore, a hydrodynamic characteristic of the tributaries is now a primary goal to study water environment and eutrophication problems of the tributaries.
     In this paper, Xiangxi Bay (XXB) is chosen as the study area. Based on field data in 2008, the basic hydrodynamic characteristics is analyzed, then a physical model is established to study plunging conditions and motion characteristics of the reverse density currents in XXB. Major works and conclusions are as follows:
     1. Based on the field data of XXB in 2008, a series of flow velocity, water temperature, density, water level, temperature difference, flow and hydrodynamic parameters were analyzed, the results showed that hydrodynamics of the XXB could be generalized as a bidirectional flow but a one-dimensional flow. The inflow from upstream entered into XXB as a underflow all the time, while the TGR arm water intruded into XXB as reverse density currents most of the time. Underflows occurred in February and March, and then interflows occurred in April to September. Water temperature is the primary contributor to density differences driving reverse density flows, whereas sediment is the secondary in the creation of these flows.
     2. A series of bottom, mid-depth and surface reserve density current experiments were carried out in laboratory. Initial water level, total inflow and initial temperature difference are the basic variables. Developing processes of the H2correlated hydrodynamic parameters, such as density current front velocity, thickness, height of the front interface, velocity in plunging point are analyzed, the results are as follows:
     (1) Velocity of density current front during the processes of formation and developing is decreased approximately linearly along H3longitudinal direction; while in the same section it will increase as initial water level, total inflow or initial temperature difference increases;
     (2) During the propagation process, the height of the front interface of the underflows and overflows will increase linearly and slowly; while in the same section it will increase as the initial water level and total inflow increases; the height of the upper front interface of the interflows are nearly fixed, while in he same section it will increase as initial water level increases.
     (3) The thickness of density current front decreases linearly along H4longitudinal direction, and more sensitive to the initial water level.
     3. Comparing the motion of density currents in laboratory with field monitoring results, some conclusions could be obtained:
     (1) When the reserve density current tends to stable, its interface shape after the highest point is nearly fixed, distribution of interface height of the underflow show opposite tendency with slope gradient of the flume, and the interface slope is lower. Interface height of the overflow is in accord with slope gradient of the flume, similarly, the interface slope is lower.
     (2) Fr0 2 of the density currents in laboratory are relatively concentrated with an average of about 0.54; the plunging thickness usually occupy half of the entire water depth, and the stable thickness of the density currents decreased to about 0.4 times.
     (3) To some extent, plunging velocity increases as the initial water level, total inflow and initial temperature difference increases; and density current thickness is positively correlated with the initial water level and total inflow, but negative correlation with the initial temperature difference.
     (4) Velocity of density current front is negatively related to the density difference and the coefficient of drag, and it is positively related to the initial water level and the total inflow.
     (5) In general, the hydrodynamic characteristics of the density currents in the experiments are accord with the field monitoring, both show significant positive correlation with the water level and the total flow, and significant negative correlation with the density difference between intruding water and environmental water.
引文
[1]方子云.长江流域水环境的主要问题、原因及对策探讨[J].长江流域资源与环境,1997,6(4):346-349.
    [2]黄真理.三峡工程生态与环境监测和保护[J].科技导报,2004,12: 26-30.
    [3]黄时达,徐小清,鲁生业.三峡工程与环境污染及人群健康[M],北京:科学出版社, 1994.
    [4]李崇明,黄真理,张晟等.三峡水库藻类“水华”预测[J].长江流域资源与环境, 2007,16(1):1-6.
    [5]孟春红,赵冰.三峡水库蓄水后水文特性和污染因素分析[J].人民长江,2007, 38(8):26-45.
    [6]李永建,李斗果,王德蕊.三峡工程Ⅱ期蓄水对支流富营养化的影响[J].西南农业大学学报:自然科学版, 2005,27(4):474-478.
    [7]李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展, 2005,16(6):777-778.
    [8] Duan S., Xu F., Wang L. J. Long-term changes in nutrient concentrations of the Changjiang River and principal tributaries[J]. Biogeochemistry, 2007, 85(2):215-234.
    [9] Liu S. M., Zhang J., Chen H. T., et al. Nutrients in the Changjiang and its tributaries[J]. Biogeochemistry,2003, 62(1):1-18.
    [10] YE L., Han X. Q., XU Y. Y., et al. Spatial analysis for spring bloom and nutrient limitation in Xiangxi bay of three Gorges Reservoir[J]. Environmental monitoring and assessment,2007, 127(1):135-145.
    [11]韩新芹,叶麟,徐耀阳.香溪河库湾春季叶绿素a浓度动态及其影响因子分析[J].水生生物学报, 2006, 30(1):89-94.
    [12]胡建林,刘国祥,蔡庆华.三峡库区重庆段主要支流浮游植物调查[J].水生生物学报, 2006, 30(1): 116-119.
    [13]周广杰,况琪军,胡征宇.三峡库区四条支流藻类多样性评价及“水华”防治[J].中国环境科学, 2006, 26(3): 337-341.
    [14]李崇明,黄真理,张晟.三峡水库藻类“水华”预测[J].长江流域资源与环境, 2007, 16((1)): 1-6.
    [15]李锦秀,禹雪中,幸治国.三峡库区支流富营养化模型开发研究[J].水科学进展, 2005, 16(6): 777-778.
    [16]曾辉,宋立荣,于志刚.三峡水库“水华”成因初探[J].长江流域资源与环境, 2007, 16(3): 336-339.
    [17]纪道斌,刘德富,杨正建,肖尚斌.三峡水库香溪河库湾水动力特性分析.中国科学[J], 2010年40(1): 101-112.
    [18]傅伯杰,陈利顶.长江流域可持续发展的资源环境评价.21世纪长江大型水利工程中的生态与环境保护[M].北京:中国环境科学出版社,1998:32-40.
    [19]黄真理,李玉栋.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社, 2006.
    [20]王玲玲.三峡水库支流库湾水体富营养化模型开发与应用[D].宜昌:中国长江三峡工程开发总公司, 2007. 1.
    [21]蔡庆华,胡征宇.三峡水库富营养化问题与对策研究[J].水生生物学报,2006, 30(1):7-11.
    [22]国家环境保护总局.长江三峡工程生态与环境监测公报. 2005.
    [23]国家环境保护总局.长江三峡工程生态与环境监测公报. 2006.
    [24]国家环境保护总局.长江三峡工程生态与环境监测公报. 2007.
    [25]国家环境保护总局.长江三峡工程生态与环境监测公报. 2008.
    [26] Straskraba M. Tundisi J.G. Guidelines of Lake Management-Reservoir Water Quality[M]. International Lake Environment Committee, 1999.
    [27] Thornton K W Kimmel B L and Payne F E. Reservoir limnology: Ecological perspectives[M]. A Wiley-Interscience Publication, 1990.
    [28]林秋奇,韩博平.水库生态系统特征研究及其在水库水质管理中的应用[J].生态学报, 2001, 21(6):1034-1040.
    [29]邬红娟,郭生练.水库水文情势与浮游植物群落结构[J].水科学进展, 2001, 12(1):51-56.
    [30]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报, 2003, 49-52.
    [31]《地表水环境质量标准》GB3838- 2002.国家环境保护总局国家质量监督检验检疫总局.北京:中国环境科学出版社.2002.04.28.
    [32]《地表水资源质量标准》SL63-94[P].中华人民共和国水利部.1994.03.28.
    [33]罗专溪,朱波,郑丙辉,张远.三峡水库支流回水河段氮磷负荷与干流的逆向影响[J].中国环境科学, 2007, 7(2):208-212.
    [34]方涛,付长营,敖鸿毅等.三峡水库蓄水前后香溪河氮磷污染状况研究[J].水生生物学报, 2006, 30(1):26-30.
    [35]叶麟,徐耀阳,蔡庆华.香溪河库湾春季水华期间硝酸盐、磷酸盐的时空分布[J].水生生物学报, 2006, (30)1: 75-79.
    [36]苏妍妹,纪道斌,刘德富.三峡水库蓄水期间香溪河库湾营养盐动态特征研究[J].科技导报, 2008, 26(17):62-69.
    [37]况琪军,周广杰,胡征宇.三峡水库藻类种群结构与密度变化及其与氮磷浓度的相关性分析[J].长江流域资源与环境, 2007, 16(2):231-235.
    [38]张晟,李崇明,郑坚等.三峡水库支流回水区营养状态季节变化[J].环境科学, 2009, (30)1:64-69.
    [39]邱光胜,涂敏,叶丹等.三峡库区支流富营养化状况普查[J].人民长江, 2008, 39(13):1-4.
    [40]张晟,李崇明,付永川等.三峡水库成库后支流库湾营养状态机营养盐输出[J].环境科学, 2008, 29(1):7-12.
    [41]周云龙,于明.水华的发生,危害和防治[J].生物学通报,2004,39(6):11-14.
    [42]窦明,谢平,夏军,张万顺,侯丙亮.南水北调中线工程对汉江水华影响研究[J].水科学进展,2002,13(6):714-718.
    [43]窦明,谢平,夏军,沈晓鲤,方芳.汉江水华问题研究[J].水科学进展,2002,13(5):557-561.
    [44]梁海燕,张学峰,杨玉琳,任江波.水量调度对改善黄河水质与水生态的作用探讨[J].西北水电,2008,(1):4-7.
    [45]黄委首次实施黄河下游生态调度[J].治黄科技信息2008,4:19-20.
    [46]李国英.努力实现黄河功能性不断流[J].治黄科技信息,2008,1:17-18.
    [47]李锦秀,杜斌,孙以三.水动力条件对富营养化影响规律探讨[J].水利水电技术, 2005,36(5):15-18.
    [48]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报,2003,9(2):49-52.
    [49]廖平安,胡秀琳.流速对藻类生长影响的试验研究[J].北京水利, 2005, 2: 12-15.
    [50]张晟,魏世强,李崇明等.三峡水库成库初期营养盐及浮游植物分布特征[J].重庆环境科学, 2006,27(6):1056-1061.
    [51]重庆市环境科学研究院,中国水利水电科学研究院.三峡库区典型支流河口回水区富营养化潜势研究[R]. 2004.3.
    [52]焦世珺,钟成华,邓春光.浅谈流速对三峡库区藻类生长的影响[J].微量元素与健康研究, 2006,23(2):78-50.
    [53]谭铁强,黄渤.汉江枯水期藻类生长调查[J].环境与健康杂志, 2002, 19(2): 136-137.
    [54]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报, 2003, 9(2):49-52.
    [55]陈伟民,陈宇炜.模拟水动力对湖泊生物群落演替的实验[J].湖泊科学, 2000, 12(4):343-352.
    [56]钱宁,范家骅,等.异重流[M].北京:水利出版社, 1957.
    [57]钱宁,万兆惠等.泥沙运动力学[M].科学出版社, 2003:464.
    [58]钱宁,范家骅,曹俊等.异重流[M].北京:水利出版社, 1958.
    [59]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社, 1983.
    [60]韩其为.水库淤积[M].科学出版社, 2003.
    [61]秦文凯,府仁寿,寒其为.反坡异重流的研究[J].水动力学研究与进展: A辑, 1995, 10(6) 637-647.
    [62] Raynaud JP. Etued des Courants d'eau Boueuse das les Retenues[J]. Congess on Large Dam, 1951,4:137-161.
    [63] Geza Bata, Bogich,Knezevich. Some Obervations on Density Currents in the Laboratoty and in the Field[J]. Minnesotal International Hydraulics Convention, 1953:387-400.
    [64] Kuenen PH. Turbidity currents of high density[A]. 1950, pp.44-52.
    [65] Kuenen PH. Properties of turbidity currents of high density[J]. Turbidity Currents and the Transportation of Coarse Sediments to Deep Water, 1951: 14-33.
    [66] Kuenen PH. H, Migliorini C. I. Turbidity currents as a cause of graded bedding: Jour[J]. Geology, 1950, 58(2): 91-127.
    [67] Long RR. Some aspects of the flow of stratified fluids. 111[J]. Continuous density gradients Tellus, 1955, 7: 341-357.
    [68] Ippen AT, Harleman Drf. Steady state characteristics of subsurface flow. Gravity wave symposium. Nat. Bur. Stands[J]. Circulation, 1951, 521: 79-93.
    [69] Michon X, Goddet J, Bonnefille R. Etude Theorique et Experimentale de Courants de Densite[J].Ⅰ-Ⅱ, Laboratoire National d'Hydraulique, Chatou, France, 1955.
    [70] Gariel,Paul, Hauteur sur la loi de la. Limite d’aspiration Dans deux Fluides de Densite differentes[J]. ComPtes Rendus , Academie des Seienees(France), 1946, 222: 781一783.
    [71]杜殿歇,刘海凌.三门峡水库异重流运动和排沙规律分析黄科院报告(SJ-2003-60(N31))[R], 2000,1.
    [72] Akiyama J, Stefan HG. Plunging flow into a reservoir: Theory[J]. Journal of Hydraulic Engineering, 1984,110(4):484-499.
    [73] Elder RA, Wunderlich WO. Inflow density currents in TVA reservoirs[A]. 1972.
    [74] Jain, Subash C. June 2-5, 1980, , 1981. Plunging Phenomena in ReservoirsProceedings of the Symposium on surface Water Impoundments, Minneapolis, Minn.,[J]. Published by ASCE, 1981.
    [75] Ippen A.T., Harleman D.R.F. Steady-State Characteristics of Subsurface Flow, CireularNo.521, Gravity Waves Symposium[J]. National Bureau of Standards, Washington, DC, 1952.
    [76]解河海,张金良,郝振纯等.水库异重流研究综述[J].人民黄河, 2008, 30(5): 28-30.
    [77]水利水电科学研究院河渠研究所.异重流的研究和应用[M].水利电力出版社, 1959:179.
    [78]焦恩泽.水库异重流问题研究与应用[M].郑州:黄河水利出版社, 1986.
    [79]焦恩泽,马金超,陈士丹.异重流的产生条件与孔口吸出高度的试验研究[A].黄科院报告(科技第87054号)[C], 1987.
    [80]曹如轩,任晓枫,卢文新.高含沙异重流的形成与持续条件分析[J].泥沙研究, 1984(2):1-10.
    [81]曹如轩,陈诗基,卢文新等.高含沙异重流阻力规律研究[A].第二次河流泥沙国际学术讨论会论文集[C]:水利电力出版社, 1983.
    [82]范家弊,吴德一等.浑水异重流实验研究及其应用[M].河流泥沙国际学术讨论会论文集.光华出版社. 1980: 227-236.
    [83]吕秀贞.异重流的孔口排沙问题[J].泥沙研究, 1984(l):12-21.
    [84]祁伟.二维异重流数学模型研究及在刘家峡水库中的应用[D].北京:中国水利水电科学研究院硕士学位论文, 2002.
    [85]范家骅,焦恩泽.官厅水库异重流初步分析[J].泥沙研究, 1985, 3(4):35.
    [86]王玉成,王荣新.丹江口水库汉江库区支流(支沟)预计情况调查[R]:长办丹江口水文总站, 1983.
    [87]陕西省水利科学研究所河渠研究室,清华大学水利工程系泥沙研究室合编.水库泥沙[M].水利电力出版社, 1979.
    [88]焦恩泽.黄河水库泥沙特性研究[D].西安:西安理工大学, 2003.
    [89]芦田和男.水库淤积预报[D]:北京:中国光华出版社, 1980.
    [90]焦恩泽,林斌文.水库淤积的简化估算方法[J].人民黄河,1981年第1期[J].
    [91]朱鹏程.异重流的形成与衰减[J].水利学报, 1981(5).
    [92] GV Middleton. Experiments on density and turbidity currents: III. Deposition of sediment [J]- Canadian Journal of Earth Sciences, 1967[J].
    [93] Keulegan G H. The motion of saline fronts in stillwater[R]. Washington: U. S.NationalBureau of Standards, 1958.
    [94] Altinakarm S GRAFW H, Hopfinger E J. Flow structure in turbidity currents[ J ]. Journal of Hydraulic Research, 1996(5) :713 - 718.
    [95]方春明,韩其为,何明民.异重流潜入条件分析及立面二维数值模拟[J]。泥沙研究, 1997(4):68~74.
    [96] Ippen A. Mechanics of supercritical flow[J]. Trans Amer Soc Civil Eng, 1951, 116: 268-295.
    [97] Bata GL. The archimedean screw as an extruder; historical note[J]. Polymer Engineering & Science, 1984,24(9).
    [98] Michon X, Goddet J, Bonnefille R. Etude theorique et experimentale des courants de densite: Chatou[J]. Laboratoire Nat d'Hydraulique (France),1955.
    [99]丹江口水文总站,丹江口水库蓄水初期泥沙淤积的初步分析(长江水文技术交流)[M].长办水文处. 1977.
    [100] Keulegan GH. An experimental study of the motion of saline water from locks into fresh water channels[J]. Nat Bur Stand Rep, 1957, 5168.
    [101] Lock RC. The velocity distribution in the laminar boundary layer between parallel streams[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1951, 4(1): 42.
    [102] Reynolds EE. The League experiment: by EE Reynolds[M]. T. Nelson and sons, 1939.
    [103]高学平,洪柔嘉.全沙模型试验的一种设计方法[J].水利学报, 1996, (006): 57-61.
    [104]汤立群,陈界仁.白沙水库一维泥沙数学模型及电厂取水方案计算[J].河海大学学报:自然科学版, 1998, 26(005): 34-38.
    [105]张红武.论动床变态河工模型的相似律[J].黄河科学研究所科学研究论文集(第二集), 1990.
    [106]张俊华,陈书奎.小浪底水库2000年运用方案库区动床模型试验研究[J].人民黄河, 2000, 22(008): 36-37.
    [107] Parker G P. Experiments on turbidity currents over an erodible bed [J]. J Hydr Research, 1986, 1: 123-147.
    [108] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
    [109] Bournet P Dartus D, Tassin B. Numerical investigation of plunging density current [J]. Journal of Hydraulic Engineering, 1999, 125(6): 584-594.
    [110] Cesare G DE, Schlriss A, Hermann F. Impact of turbidity currents on reservoir sedimentation[J]. J Hydr Engrg, 2001, 1: 6-16.
    [111]包为民,张叔铭,黄贤庆等.异重流总流运动微分方程:Ⅱ-差分模型求解与验证[J].水动力学研究与进展: A辑, 2005(4): 501 - 506.
    [112]包为民,张叔铭,瞿思敏等.异重流总流运动微分方程:Ⅰ-理论推导解与验证[J].水动力学研究与进展: A辑, 2005(4): 497-500.
    [113]王光谦,方红卫.异重流运动基本方程[J].科学通报, 1996 (18): 1715 - 1720.
    [114]王光谦,周建军,杨本均.二维泥沙异重流运动的数学模拟[J].应用基础与工程科学学报, 2000(1): 52 - 60.
    [115]张俊华,张红武.黄河水库泥沙模型相似律的初步研究[J].水力发电学报,2001, (003): 52-58.
    [116]赖锡军,汪德,姜加虎等.斜坡上异重流的三维数值模拟[J].水科学进展, 2006 (3): 342 - 347.
    [117]韩新芹,叶麟,徐耀阳,蔡庆华.香溪河库湾春季叶绿素a浓度动态及其影响因子分析[J].水生生物学报,2006,30(1):89-94.
    [118]黄钰铃.三峡水库香溪河库湾水华生消机理研究[D].杨凌:西北农林科技大学, 2007.
    [119]付长营,陶敏,方涛,敖鸿毅,邓南圣.三峡水库香溪河库湾沉积物对磷的吸附特征研究[J].水生生物学报,2006,30(1):31-36.
    [120] Soulsby R. L. Selecting record length and digitization rate for near-bed turbulence measurements[J]. Journal of Physical Oceanography, 1980, 10(2): 208-219.
    [121] G voulgaris J. H. Evaluation of the Acoustic Doppler Velocimeter (ADV) for Turbulence Measurements*[J]. Journal of Atmospheric and Oceanic technology, 1998, 15(1): 272-289.
    [122]中华人民共和国建设部. GB50159-92.河流悬移质泥沙测验规范[M].北京:中国计划出版社2007.
    [123] 6H3http://www.ctgpc.com.cn/.
    [124]范家骅.异重流的研究和应用[M].北京:水利电力出版社. 1959.
    [125]李义天.明渠异重流头部运动速度的理论分析[ J ].水动力学研究与进展,1995 (2) :197-203.
    [126]徐建华,李晓宇,李树森.小浪底库区异重流潜入点判别条件的讨论[J].泥沙研究. 2007,(6):71-74.
    [127]韩其为.水库淤积[M].北京:科学出版社, 2003.
    [128] Bonefille R. , GoddeT J. Etude des Courants de density en Canal, Proc.,Intern. Assoc. Hyd. Res.,Vol. 2,1959, pp. 33.
    [129]周建军.关于三峡电厂日调节调度改善库区支流水质的探讨[J].科技导报, 2005, 23(10):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700