盐渍化极端生态环境条件下土壤微生物生态及放线菌资源
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐渍化土壤改良与利用是世界范围内所面临的难题,长期以来在盐渍化土壤生态学研究领域内,人们以实现生物改良与利用为主要目标,开展了许多盐生植物生理生态的科学研究。由于受盐渍化土壤是“生命禁区”思想的长期禁锢,也由于缺乏适宜于盐渍化土壤环境条件下微生物分离、培养方法的系统研究,对盐渍化极端生态环境下土壤微生物类群情况研究至今仍然很少有人问津,极端盐渍环境下微生物资源的开发与利用价值研究更属于空白。为了探索极端盐渍环境条件下土壤微生物生态这个重大科学领域内所蕴藏的秘密,开发特殊生境中微生物资源在植病防治、渔业以及动物养殖等病害防治方面的利用价值,本研究以干旱地区的陕西北部以及宁夏不同类型盐渍化土壤为研究对象,开展了土壤微生物资源与微生物生态的系统研究,探求了适宜于盐渍环境微生物分离、培养的方法,并开展相关盐渍环境中放线菌多相分类鉴定以及在生产实际中应用研究。本研究在盐碱极端生态环境条件下微生物资源研究和放线菌资源开发应用方面迈出了坚实的一步,将为极端生态环境微生物资源研究提供重要的理论基础。
     本论文从不同典型生态系统中盐渍土的性状研究入手,分析了微生物及放线菌区系构成规律、土壤酶活性与盐渍土的盐分含量、盐分离子组成等因子间的关系;探讨了DGGE法在微生物生态研究中的应用,建立了盐渍极端环境条件下放线菌分离的方法,从中获取了许多放线菌资源;同时以农业生产中常见的危害较为严重的植物和动物病原菌为靶标菌进行拮抗放线菌资源的应用研究,旨在获得具有应用价值的拮抗放线菌;同时采用多相分类技术对形态特殊、生理特征特殊和优良拮抗菌株进行分类研究,确定其分类地位,并获得了几株潜在新物种。通过研究得出以下主要结论:
     1.获得了盐渍化极端生态环境条件下土壤微生物生态分布规律研究
     对盐渍化极端生态环境条件下土壤微生物生态分布规律研究得出,盐渍土壤微生物生态分布受盐渍化程度、盐分离子组成及土壤其它理化性质的影响很大。其中细菌和真菌的数量表现出与土壤养分含量、[CO_3~(2-)+HCO_3~-]/[Cl~-+SO_4~(2-)]显著的正相关关系,与pH和水溶性总盐含量显著负相关关系;而放线菌却除了与养分含量显著正相关外,与盐渍土的其它因子相关性不强,说明放线菌对土壤盐分含量和pH具有很强的耐受性。不同盐碱极端环境条件下土壤放线菌均具有相对较高的比例分布,进一步揭示了从极端盐碱环境获得放线菌资源的重要性。
     土壤盐渍化程度不同其中耐盐性放线菌的相对比例明显不同。总体上呈现出重盐化土壤中分布的耐盐放线菌最多,其次为中度盐渍化、轻度盐渍化土壤。根据放线菌生长状况对盐分的依赖关系的进一步研究得出,盐渍土壤中放线菌可以分为具有仅能在盐渍环境条件下才能良好生长的嗜盐性放线菌和对盐渍化的程度具有不同敏感度的耐盐性放线菌。对极端环境中放线菌生态分布及耐盐、嗜盐规律的进一步研究为西北地区其它极端盐渍环境放线菌资源研究提供了理论支撑和科学依据。
     2.探讨了DGGE法在微生物生态研究中的应用
     采用DGGE免培养法对宁夏5个典型盐渍土中微生物的多样性进行了研究。通过富集培养后间接提取总DNA与从土壤样品直接提取总DNA,利用DGGE方法进行比较,也与传统的平板计数法进行比较,结果表明富集培养对环境中微生物多样性的分析均优于土样直接提取法和平板计数法,而且从环境盐碱环境中直接提取总DNA分析微生物多样性,应注意DNA的多种提取方法的组合。应用DGGE免培养法可以有效地揭示盐碱环境中微生物物种的多样性,也为进一步发掘盐渍极端环境放线菌资源、研究盐渍化土壤基因特征提供了理论依据。
     3.建立了适宜于盐碱极端环境条件下放线菌分离的方法体系
     本次研究探讨了样品的预处理、激活剂、富集培养、培养基设计、盐种类及浓度梯度设计、不同pH设计等对放线菌分离效果的影响,获得了不同盐渍环境样品的预处理方法和适宜的分离培养基,建立了盐碱环境放线菌的分离方法体系,对进一步获得更多的盐渍环境中放线菌的纯培养具有重要的指导意义,也为研究该环境放线菌资源提供了良好的技术支撑。
     4.分析了盐渍土中放线菌区系组成,筛选出部分具有特殊生理特征的菌株
     较为系统地分析了盐渍环境中放线菌与其他生态因子的关系,探明了盐渍土中放线菌在不同盐碱环境的分布规律性,盐渍土中放线菌的种属数与土壤pH、[CO_3~(2-)]、多酚氧化酶活性均为极显著正相关关系;荒地中的放线菌组成比耕地复杂,盐土和龟裂碱土中放线菌组成比其它土壤类型复杂。该地区放线菌生态分布规律为进一步研究盐碱环境放线菌资源提供了良好的理论依据。同时确定了33株形态较特殊的稀有放线菌和22株耐在盐含量高达18%以上的耐盐放线菌菌株,为进一步的通过多相分类技术获得新的分类单元提供了供试菌株。
     5.获得了盐渍化环境放线菌对9种动植物病原菌的抗菌谱特征,从中筛选出了一批对动物病原菌具有良好拮抗效果的菌株,为特殊生境放线菌资源的进一步开发与利用奠定了基础。。
     获得了盐碱环境放线菌对农业生产中及畜牧养殖中危害较大的9种动植物病原菌的抗菌谱特征,获得了一批对动物病原菌具有良好拮抗效果的菌株,为畜牧养殖业健康发展中重大疾病的生物防治提供了优良的出发菌株。通过初筛和复筛试验得到了3株优良广谱拮抗放线菌02D01、43A04和13H06。
     通过生物试验确定出一株发酵液对于引发鱼细菌性肠炎的肠型点状气单胞菌有良好抑制作用的菌株02D01。用药量在2 mg/kg·d就能达到很好的治疗效果,其发酵液对生物无急性毒性,具有较好的温度和酸稳定性。
     通过发酵工艺优化,确定了02D01菌株产生抑菌活性物质的最佳培养基配方为可溶性淀粉2%,鱼粉2%,NaCl 2%,K_2HPO_4 0.05%,MgSO_4.7H_20 0.05%,CaCO_3 0.1%;在种龄为48 h,接种量5%,25℃,初始pH 9,发酵时间120 h发酵液的抑菌活性为最大,发酵液效价可达到34197.9μg/mL,比初始效价提高27倍。
     6.完善了适宜于盐碱极端环境条件下放线菌的多相分类技术,初步确定了部分特殊放线菌株的分类学地位
     本研究采用了形态学、生理生化特征、细胞化学、以及16S rDNA序列分析等多相分类的技术方法对分离筛选的供试放线菌进行了系统的分类研究。确定产特殊抑菌活性物质菌株02d01、13h06、14j18、43a04和56h02为链霉菌(Streptomyces),形态特殊菌株09j02为拟无枝酸菌(Amycolatopsis),耐盐菌株59h05为诺卡氏菌(Nocardia),其他形态特殊菌株和耐盐菌株均为拟诺卡氏菌(Nocardiopsis)。
     经构建供试菌株与拟诺卡氏菌属各种间的16S rDNA序列系统进化树分析,菌株09j03和47d01与N.synnemataformans,菌株04d01与N.synnemataformans,菌株68d14与N.dassonvillei subsp.Albirubida、菌株20f03和22f02与N.exhalans可能为同种,但有待于DNA-DNA杂交来证实。菌株07j03和21f15极可能给予新种的分类地位,但若想确定到种的水平同样需要借助DNA-DNA同源性分析即进一步确定。
     本研究较为系统的采用的多相分类技术,并依据盐碱极端环境的生态特征,对很多方法进行了修改,建立了一套较为系统的、适应于盐碱环境放线菌分类鉴定的多相分类技术体系。为该环境的放线菌系统分类奠定了良好的理论基础。
The melioration of saline and alkali soils is a difficult topic faced in the world. For long time, in the study filed of saline and alkali soil ecology, the research has been focused on plant physiology and bio-ecology. However, the research on microorganism in saline and alkali extreme environments is little because there are some old ideas that saline and alkali soils were life forbidden zone and shortage of the suitable methods for microorganism isolation and culture. Therefore, the exploitation and application of microorganism resources in saline and alkali extreme environments are very scarce. In order to investigate the secret and mechanisms of microorganism-ecological disciplines and exploitation and application of microorganism resources in plant, fishing and animal feeding for disease preventing and killing, saline and alkali soils in Ningxia, Shaanxi was used in this research for systematically studying the microorganism ecology and resource, and detecting the isolation and culture methods which are suitable for microorganism in saline-alkali extreme environment. At the same time, polyphasec techniques were used for classification and identification of microorganism in extreme environments and applied the techniques to practice. These will push the study on microorganism resource in saline-alkali extreme eco-environment advanced and forward the exploitation of actinomycetes resource. All that will be the solid foundation for the research of microorganism resource in saline-alkali extreme environment.
     This dissertation started with the studies on characteristics of saline and alkali soils in different typical ecology environments, analyzed the composition and population of microorganism and actinomycetes, and the relationships between them to enzyme activity, the primary properties of saline and alkali soils, salt ions constituent and other factors. DGGE as a method was employed in microorganism-ecological studies. The isolation methods of actinomycetes in saline-alkali extreme environments were built so as to obtaining a lot of actinomycetes. Meanwhile, application research of antagonistic were done by adopting the most common and dangerous botanical and animal pathogens in agricultural production as target pathogens in order to get some antagonistic actinomycetes with application values; At the same time, polyphasec techniques were used for classification of actinomycetes with special morphology or physiological characteristics and strains with high antagonistic function. The classification status of the actinomycetes was determined and several potential new species were obtained. The main results are as follows:
     1. The distribution principle of microbial ecology in saline and alkali extreme environments was obtained
     Based on this research, the results showed that the distribution of microbial ecology in soil samples was greatly affected by soil types, salt ions constituent and soil physical and chemical properties. The bacterial and fungi amounts have significant positive correlation with nutrient content and [CO_3~(2-)+HCO~(3-)]/[Cl~-+SO_4~(2-)], and it was significant negative correlation with pH value and water-soluble salt content. However, actinomycetes was significant positive correlation with nutrient content, but was not correlated with the other factors. These indicate that actinomycetes have strong toleration to salt content and pH value. There was large population proportion of actinomycetes in different saline-alkali soils. This further revealed the importance of obtaining actinomycetes resources from extreme environments.
     The population distribution of shalotolerant actinomycete was different from various salinization degrees of soils. As a whole, population of shalotolerant actinomycete distributed in heavy salinization soil was the most, and followed by in moderate salinization soil and in light salinization soil. Based on the development of actinomycetes depended on salt content, actinomycetes can be divided into halophilic actinomycete developing well only in saline-alkali soil and halotolerant actinomycete with different susceptivity to salt content. The population distribution of actinomycete in extreme environment and the characteristic of halophilic and halotolerant actinomycete will provide the theoretical support and science foundation for the studies on actinomycete resources.
     2. Detection of the application of DGGE method in microbial ecology research
     Soil microbial diversity in five typical saline-alkali soils was studied with the DGGE free-culture method. The total DNA indirectly extracted from the enrichment culture and the total DNA extracted directly from soil samples using DGGE method were compared. And it was also compared with the traditional plate count method. The results showed that the enrichment culture of microbial diversity analysis was better than directly extraction from soil samples and plate count. DNA direct extraction from environment access to the population and types of micro-organisms had obvious advantages, but the methods and effects of DNA extraction should be noted. This approach effectively reveals the microbial species diversity in saline environment, and also provides a theoretical basis for further explore the actinomycetes resources in extreme environments.
     3. Establishment of the isolation method system of actinomycetes in salinized extreme environments
     This study investigated the effects of pretreatment of samples, activators, enrichment culture, medium design, salt types and concentrations design, different pH and others on the isolation effects of actinomycetes. The pretreatment methods to different saline samples and feasible isolation mediums were obtained. The isolation method systems of actinomycetes in saline environment were preliminarily established. These are very important for obtaining more actinomyceres in saline environment as well as for providing great technical support for the actinomyceres research.
     4. Analysis the components and population of actinomycetes flora in saline soil and selection of some strains with special physiological characteristics
     The relationshiip between actinomycetes and other ecological factors in saline soil was analyzed systematically and the distribution of actinomycetes in different environments was studied. The relationship between actinomycetes population and soil pH, [CO_3~(2-)], polyphenol oxidase activity are very significant positive correlated. Aactinomycetes composition in waste land is more complex than in arable land. In saline soil or in alkali soil, actinomycetes composition is more complex than other soil type. The ecological distribution of actinomycetes provides good theoretical basis for further studies on actinomycetes resources in saline-alkali soil. Simultaneously, 33 rare actinomycetes with specific form and 22 actinomycetes with salt-tolerant more than 18 percent salt content were identified, which providing a strain for the further study by the multi-phase classification technologies in order to obtain new taxonomy system.
     5. Determination of the characteristics of antibacterial spectrum of habitat salinity actinomycetes to nine kind animal and plant pathogens and Selection of some strains which had good antagonism.
     It was obtained that the characteristics of antibacterial spectrum of habitat salinity actinomycetes to nine kind animal and plant pathogens. Some strains with good antagonistic effects on animal pathogens were screened, which could be better strains for the biological prevention of major disease in animal husbandry. Three strains of actinomycetes 02D01, 43A04 and 13H06 with good antagonism spectrum were selected according to screening and re-screening.
     A strain 02D01 was found that its fermentation solution had good Inhibition effect on Point Aeromonas causing Fish bacterial enteritis. Dosage of 2 mg /kg·d could reach good treatment, and the fermentation solution had no acute toxicity but good temperature and acid stability.
     Through fermentation technology optimization, the best culture contained 2% soluble starch, 2% fish powder, 2% NaCl, 0.05% K_2HPO_4, 0.05% MgSO_4·7H_2O, 0.1% CaCO_3, in which the strain could grow and produce antibacterial substances, and the activity were best at the seed age of 48 h, inoculum of 5%, temperature of 25℃, initial pH of 9, fermentation time for 120 h, fermentation solution titer could reach 34197.94μg/ml, improved 27 times, which could be basis for deep production and application.
     6. The multiple taxonomy technology of actinomycetes habitated in salinity was perfected and classification status of some special actinomycetes was determined.
     In the study, morphology, physiological and biochemical characteristics, cytochemistry and 16S rDNA sequence and other multiple taxonomy technologies were used for the classification of actinomycetes isolated and screened from saline-alkali soils. The strains 02d01、13h06、14j18、43a04 and 56h02 producing antibacterial substances were identified as Streptomyces, and strain09j02 with special morphology as Amycolatopsis, salinity-resistance strain 59h05 as Nocardia, other strains all as Nocardiopsis.
     Strain 09j03, 47d01 and N.synnemataformans, 04d01 and N.synnemataformans, 68d14 and N.dassonvillei subsp. Albirubida, 20f03, 22f02 and N.exhalans may be the same species. Strain 07j03 and 21f15 may be a new species, but need be confirmed through DNA-DNA hybrid.
     Based on revising many methods and ecological characteristics of salinity environment a multiple taxonomy technology system was founded, which was adapted to the classification and identification of actinomycetes in salinity environment. This technology system set up the foundation for the classification of actinomycetes in extreme environments.
引文
[1]马万里,Tibbits J,Adams M.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):103-107.
    [2]李 骁,王迎春.土壤微生物多样性与植物多样性[J].内蒙古大学学报(自然科学版),2006,37(6):708-713.
    [3]余龙江,李为.微生物生态学领域的研究动向[J].国际学术动态,2007,(6):20-23.
    [4]弓树文.全国第一次微生物生态学学术会议[J].微生物学杂志,1985,(1):58-61.
    [5]余利岩,姚天爵.微生物生态学研究方法的新进展[J].微生物学通报,2001,28(1):89-93.
    [6]尹玲莉,张学英.微生物在环境保护中的作用[J].安徽农学通报,2007,13(2):57-58.
    [7]李居忠,迟宗福,肖国华,等.微生物在水产养殖环境生物修复中的作用机制[J].渔业经济研究,2007.(6):10-13.
    [8]王红妹.极端微生物的多样性及其应用[J].枣庄学院学报,2006,23(2):88-92.
    [9]柳耀建,林影,吴晓英.极端微生物的研究概况[J].工业微生物,2000,30(3):15-20.
    [10]杨勇,崔恒林,张德超,等.极端环境中的微生物与现代生物技术[J].科学中国人,2006,4:84-85.
    [11]张崇邦.东北麦田土壤微生物、小型动物及其生化活性的季节动态[J].植物营养与肥料学报,2002,8(3):372-376.
    [12]许光辉,郑洪元,张得生,等.长白山北坡自然保护区土壤微生物生态分布及其生化特性的研究[J].生态学报,1984,4(3):207-220.
    [13]刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京,科学出版社,2004.
    [14]水利部计划司,农水司.中国水利水电科学研究院.全国灌溉面积发展“九五”计划及2010年规划[R].1997.
    [15]陈耀邦.中国土壤[M].中国农业出版社,1995:9.
    [16]王遵亲.中国盐渍化[M].北京,科学出版社,1993.
    [17]黄荣翰,魏永纯.盐碱地改良[M].北京:中国工业出版社,1962.
    [18]史晓杰,万力,张永庭,等.银北地区土壤盐渍化形成机理与模拟研究[J].水文地质工程地质,2007,(6):116-120.
    [19]王吉智.宁夏土壤[M].宁夏人民出版社,1990:1.
    [20]姚予龙.宁夏引黄灌区低洼盐碱荒地的开发利用方向研究[J].自然资源学报,1995,10(4):364-367.
    [21]杨建华.盐池县生态环境建设的成绩与做法[J].甘肃农业,2007,12:72-73.
    [22]鲁渊平,杜继稳,梁生俊,等.陕北气候变化与生态植被变迁[J].生态学杂志,2005,24(1):53-57.
    [23]杨子文.陕西土壤[M].科学出版社,1992:8.
    [24]王雪军,杨建新,孙玉军.晋陕蒙接壤地区沙地空间分布及其变化研究[J].干旱地区农业研究,2003,21(1):98-101.
    [25]张淑玲,吕俊杰,王慰昭,等.渭南市气候变化对农业影响研究分析[J].陕西农业科学,2002,(10).29-32
    [26]张蔚榛,张瑜芳.对灌区水盐平衡和控制土壤盐渍化的一些认识[J].中国农村水利水电,2003,(8): 13-18.
    [27]梅畅和.渭南土壤[M].天则出版社,1990.
    [28]葛成,江木兰.根瘤菌生态研究及其技术进展[J].土壤学进展,1990,18(3):11-16.
    [29]樊庆笙,程化葵,微生物学进展[M].北京:农业出版社,1984:250-280.
    [30]刘璐,孙晓玲.微生物生态学在国民经济中的作用[J].松辽学刊(自然科学版),1992,(3)75-76.
    [31]Feagi A,Torsvik V L,Goksoyr J.Soil Biol Biochem[J].1977,(9):105-112.
    [32]SuukiM T Giovannoni S J.Appl Environ,Microbial[J].1966,62:625-630.
    [33]Ritz K,Grifliths B S,Torsvik V L,et al.FEMS Microbial Lett[J].1997,149:151-156.
    [34]Britten R J,Kohne D E.Science[J].1968,161:529-540.
    [35]Weisburg W G,Banns S M,Pelletier D,et al.J Bacterial[J].1991,173:697-703.
    [36]Left L G,Dana J R,Shimkets L J,et al.ApplEnviron.Microbial[J].1995,61:1141-1143.
    [37]Nassar A,Darrasse A,Lematlre M,et al.Appl Environ Microbial[J].1996,62:2228-2235.
    [38]Ouverney C C,Fuhrman J A.ApplEnviron Microbial[J].1997,63:2735-2740.
    [39]马延和.新的生命形式—极端微生物[J].微生物学报,1999,26(1):80.
    [40]刘志恒.现代微生物学[M].北京,科学出版社,2002:186-216.
    [41]Woese C R,Fox G E.The archebacteria and eucaryoticorigins[J].Nature,1977,287:248-250.
    [42]Ciaramella M.Molecular biology ofextremophiles[J].Word J Microbial Biotech,1995,11:71-84.
    [43]阮继生.放线菌分类基础[M].北京:科学出版社,1971:1-5.
    [44]Vreeland R H.Mechanisms of halotolerance in microorganisms[J].Crit Rev Microbio,1987,14:311-356.
    [45]Larsen P L,Sydne L K,Landfald B,et al.Osmoregulation in Escherichia coliby accumulation of organic osmolytes,betaines,glutamica cidand trehalose[J].Arch Microbial,1987,147(1):1-7.
    [46]Ramos-Cormenzana A.Ecological distribution and biotechnological potential of halophilic microorganisms,In M.S.Da Costa,J.C.Duarte,and R.A.D.Williams(ed.),M icrobiology of extreme environments and its potential for biotechnology(1~(st) edition)[M].London:Elsevier Applied Science,1989:289-309.
    [47]Kushner D J.Life in high salt and solute concentrations:halophilic bacteria[M].In Kushner,D.J.(ed.),Microbial life in extreme environments(1~(st) edition) London:Academic Press,Ltd.,1978:317-368.
    [48]Gottieb D.General considerations and implications of the actionmycetes[M].In G.Sykes & F.A.Skinner(ed.) Mammalian Practical Importanc.New York:Academic Press.1973:1-10.
    [49]Trensner H D,Hayes J S,Backus E J.Diferential tolerance of streptomycetes to sodium chlorideas at axonomic tool[J].Appl Microbiol,1968,16:1134-1136.
    [50]Li W J,Tang,S K,Stackebrandt E,et al.Saccharomonospora paurometabolica sp.nov.,a moderately halophilic actinomycete isolated from soil in China[J].Int J Syst Evol Microbiol,2003,53:1591-1594.
    [51]Quesada E,Ventosa A,Rodriguez-Valera F,et al.Types and properties of some bacteriai solated from hypersaline soils[J].J Appl Microbiol,1982,53:155-161.
    [52]Ruan J S,Al-Tai A M,Zhou Z H,et al.Actinopolysporai raquiensis sp.nov.,an ew halophilic actinomycete isolated from soil[J].Int J Syst Bacteriol,1994,44:759-763.
    [53]Al-Zarban A,Al-Musallam A,Abbas L,et al.Saccharomonospora halophila sp.nov.,a novel halophilic actinomycete isolated from marsh soil in Kuwait[J].Int J Syst Evol Microbiol,2002,52:555-558.
    [54]Chun J,Bae K S,Moon E Y,et al.Nocardiopsis kunsanensis sp.nov.,a moderately halophilic actinomycete isolated from a saltem[J],Int J Syst Evol Microbiol,2000,50:1909-1913.
    [55]Cui X,Mao P,Zeng M,Li W,et al.Streptimonospora,salina gen.sp.nov.,a new member of the family Nocardiopsaceae[J].Int J Syst Evol Microbiol,2001,51:357-363.
    [56]Li W J,Chen H H,Zhang Y Q,et al.Nesterenkonia halotolis sp.nov.and Nesterenkonia xinjiangensis sp.nov.,actinobacteria from saletie soil sinthe west of China,IJSEM Papers in Press-Published online 28 November 2003 as http://dx.doi.org/10.1099/ijs.0.02935-0.
    [57]Gochnauer M B,Leppard G G,Komaratat P,et al.Isolation and characterization of Actinopolyspora halophila,gen.et sp.nov.,an extremely halophilic actinomycete[J].Can J Microbiol,1975,21:1500-1511.
    [58]Wang Y M,Zhang Z S,Xu X L,et al.Actinopolymorphas ingaporensis gen.nov.sp.nov.,a novel actinomycete from the tropicalra in forest of Singapore[J].Int J Syst Evol Microbial,2001,51:467-473.
    [59]Al-Zarban,S.S.,Abbas,1.,A1-Musallam,A.A.,Steiner,U.Stackebrandt,E.and Kroppenstedt,R.M.Nocardiopsis halotolerans sp.nov.,isolated from salt marsh soil in Kuwait[J].Int J Svst Evol Microbial,2002,52:525-529.
    [60]Kobayashi T,Kamekura M,Kanlayakrit W,et al.Production,purification,and characterization of an amylase from the moderatehalophile,varians subspecies halophilus[J].Microbios,1986,46:165-177.
    [61]周培瑾,王大珍.亚嗜盐链霉菌新种的鉴定[J].微生物学报,1983,23:216-219.
    [62]Khire J M.Production of moderately halophilic amylase by newlyisolatedMicrococcussp.4 from a salt pan[J].Lett Appl Microbiol,1994,19:210-212.
    [63]Kobayashi T,Kamekura M,Kanlayakrit W,et al.Production,purification,and characterization of an amylase from the moderate halophile,Micrococcusv arians subspecies halophilus[J].Microbios,1986,46:165-177.
    [64]Onishi H.Halophilic amylase from a moderately halophilic[J].Micrococcus.J Bacteriol,1972,109:570-574.
    [65]Onishi H,Sonoda K.Purification and some properties of an extra ceilulara mylase from a moderate halophile[J].Micrococcus halobius Appl Environ Microbiol,1979,38:616-620.
    [66]Nyyssbla A,Kerovuo J,Kaukinen P,et al.Extreme Halophiles Synthesize Betaine from Glycine by Methylation[J].The Journal of Biological Chemistry,2000,275(29):22196-22201.
    [67]Galinski E A,Lippert K.Novel compatible solutes and the otential applica tionasst abilizersin enzymete chnology,In F..Rodriguez-Valera(ed.) (15edition),General and applied aspects of halophilic micro-organisms[M].New York:Plenum Press,1991:351-358.
    [68]Galinski E A,Louis P.Compatible solutes:ectoine production and gene expression,In Oren (ed.) (l~(st)edition),Microbiology and biogeochemistry of hypersaline environments[M].Boca Raton:CRC Press,Inc.1998:187-202.
    [69]Kushner D J.What is the “true” internal environment of halophilic and other bacteria?[J].Can J Microbiol,1988,34:482-486.
    [70]Murray R G,Spisy G E.Fault desscience University esite[J].J E Purkyne Brno,1968,43:249-253.
    [71]Bergey D H,Garrity G,Boone D Ret al.Bergey's manual of systematic bacteriology,vo14(1~(st) edtion)[M].New York:Sringer-Verlag,1989.
    [72]Fox G E,Pechman K R,Woese,C A.Comparative cataloging of 16S ribosomalribo nucleicacid:molecular approach toprokaryotic systematics[J].Int J Syst Bacteriol,1977,27(1):44-57.
    [73]Woese C R.Bacterial evolution[J].Microbiol Rev,1987,(5):122-127.
    [74]Woese C A,Gutell R,Gupta R,et al.Detailed analysis of the higher order of 16S likeri bonucleic acids[J].Microbiol Rev,1983,47:621-669.
    [75]Woese C R,Stackebrandt E,Macke T,et al.Adefinition of the eubacterial division[J].Syst APDI Microbiol,1985,51:221-271.
    [76]Stackebrandt E.Phylogenetic relation ships Vs Phenotypic diversity:How to archieve aphylogenetic chlassifica6on system of the eubacteria[J].Can J,1996,34:552-556.
    [77]Stackebrandt E,Rainey F A,Ward-Rainey N L.Proposalfor a new hierarchic classification system,Actinobacteria classis nov[J].Int J Syst Bacteriol,1997,47:479-491.
    [78]Waksman S A.Species concept among the actinomycetes with specialref erenceto the genus Streptomyces[J].Bacterial Rev,1957,21:1-29.
    [79]瓦克斯曼[美].放线菌属和种的分类、鉴定和描述[M].阎逊初,译.北京:科学出版社,1974:1-307.
    [80]Lechevalier M P,Lechevalier H A.Chemical composition as acriterionin the classification ofaeriobic actinomycetes[J].Int J Syst Bacteriol,1970,20:435 443.
    [81]Lechevalier M P,Lechevalier H A.Acriticale valuation of the genera of aerobic actinomycetes.In:Prauser(ed)[M].The actinomycete tales(1~(st)edition).Jena:Gustav Fischerverlae.1970:393-405.
    [82]Suzuki K,Goodfellow M,Donnell A G.Cell envelopes and classification.In:Goodfellow M,Donnell,A.G.Handbook of new bacteriasy stematics[M].London:Academic Press 2td.1993:221-253.
    [83]Mordarska M,Goodfellow M.Chemotaxonomic characters and classification of some nocardio form bacteria[J].J Gen Microbiol,1972,71:77-86.
    [84]Stackebrandt E,Woese C R.Towards aphylogeny of the actinomycetes and related organisms[J].Current Microbiology,1981,(5):197-202.
    [85]Stackebrandt E,Liesack W.Nucleic acids and Classification Systematics.In:Goodfellow M.O'Donnell,A.G.Handbook of new bacteria systematics[M].London:Academic Press 2td.1993:280-318.
    [86]Gurtler V,Wilson V A,Mayall B C.Classification of medical important clostridia using restriction endonuclease site differences of PCR-amplified 16S rDNA[J].J Gen.Microbiol,1991,137:2673-2679.
    [87]Mehling A,Wehmeier U,Piepersberg W.Nucleotide sequences of streptomycete 16Sribosomal DNA towards aspecific identification system for streptomycetes using PCR[J].Microbiology,1995,141:2139-2147.
    [88]Stackebrandt E,Goebel B M.Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequences analysis in the present species definition in bacteriology[J].Int J Syst Bacteriol,1994,44:846-849.
    [89]Kim S B,Yoon J H,Kim H.et al.A Phylogenetic analysis of the genus Saccharomonospora conducted with 16S rRNA gene sequences[J].Int J Syst Bacteriol,1995,45:351-356.
    [90]Colwell R R.Polyphasic taxonomy of the genus Vibrio:mumerical taxonmy of Vibrio cholerae,Vibrio parahaemolyticus,and related Vibrio species[J].Int J syst Bacteriol,1970,104:410-433.
    [91]Rainey R A,Burghardt J.Polyphasic evidence for the transfer of Rhodoccoccus roseus to Rhodoccoccust hodochrous[J].Int J Syst Bacteriol,1995,45(1):101-103.
    [92]Lockhart W R,Histon J.Mothods for numerical taxonomy[J].Methesda American Society for Microbiology,1970,23:560-568.
    [93]Lechevalier H A,Lechevalier M P.The Prolarytes Mortimer,P.Starr,et al.Spinger-verlag Berling,Heidelbery[M].1981.
    [94]Stackebrandt E,Goebel B M.Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequences analysis in the present species definition in bacteriology[J].Int J Syst Bacteriol,1994,44:84-849.
    [95]Lechevalier M P,Lechevalier H A.The chemotaxonomy of actinomycetes.In actinomycetes[M].In actinomycetes Taxonomy(ed.by Dietz and Theayer),1980:227-291.
    [96]Collins M D,Jones D.Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication[J].Microbiology,1981,45:316-354.
    [97]Saddler G S,Goodfellow M,Minnikin D E,et al.Influence of the growth cycle on the fatty acid and menaquinone composition of Streptomyces cyaneus NCIB 9616[J].J Appl Bacteriol,1986,60:51-56.
    [98]Ochi K.Polyacrylamide gel electrophoresis analysis of ribosomal protein AT-L30 from an actinomycete genus[J].Streptosporangium Intematinal Journal of Systematic Baceriology,1992,42:151-155.
    [99]Stackebrandt E,Liesack W.Nucleic acids and Classification[M].In:Goodfellow M,O'Donell A G ed.Handbook of New Bactrial Systematics.London:Academic Press Ltd.1993.
    [100]De Ley J,Cattoir H,Reynaerts A.Eur J Biochem[J].1970,12:133-142.
    [101]Grimont P A D.Can J Microbiol[J].1988,34:541-546.
    [102]王意敏,刘志恒.放线菌的多相分类[J].微生物学通报,1999,26(2):137-140.
    [103]Jahnke K D.J Microbiol Methods[J].1994,20:273-288.
    [104]黎裕,贾继增,王天宁.分子标记的种类及其发展[J].生物技术通报,1999,(4):19-22.
    [105] Yoon J H, Park Y H. Comparative sequence analyses of the ribonuclease P (RNase P) RNA genes from LL-2,6-diaminopimelic acid-containing actinomycetes[J] .International Journal of Systematic and Evolutionary Microbiology, 2000,50: 2021-2029.
    [106] Woese C R. Bacterial evolution[J] .Microbiol Rev, 1987,51: 221-271.
    [107] Maidak B L, Olsen G J, Larsen N, et al. The RDP (Ribosomal database project) [J]. Nucleic Acids Res, 1997,25:109-110.
    [108] Stackbrandt E, Goebel B M. Int J Syst Bacteriol[J]. 1994,44: 846-849.
    [109] Fox G E, Wisotzkey J D, Jurtshuk P. Int J Syst Bacteriol[J]. 1994,42: 166-170.
    [110] Yassin A F, Rainey F A, Burghardt J,et al. Int J Syst Bacteriol[J]. 1994, 47: 983-988.
    [111] 李 炜,刘志恒.链霉茵分类研究进展[J].微生物学报, 2001, 41(1): 121-126.
    [112] Cho M, Yoon J H, Kim S B, et al. Application of the ribonuclease P (RNase P) RNA gene sequence for phylogenetic analysis of the genus Saccharomonospora[J]. International Journal of Systematic Bacteriology, 1998,48: 1223-1230.
    [113] Herrmann B, Pettersson B, Everett K D E, et al. Characterization of the rnpB gene and RNase P RNA in the order Chlamydiales[J]. International Journal of Systematic and Evolutionary Microbiology, 2000,50: 149-158.
    [114] Schon A, Fingerhut C,Hess W R. Conserved and variable domains within divergent RNase P RNA gene sequences of Prochlorococcus strains[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52: 1383-1389.
    [115] James W B. The Ribonuclease P Database[J]. Nucleic Acids Research, 1998,26(1):351-352.
    [116] James W B. The Ribonuclease P Database[J]. Nucleic Acids Research, 1999,27(1 ):314.
    [117] Yamamoto S, Harayama S. Phylogenetic analysis of Acinnetobacter stains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products[J]. Int J Syst Bacteriol, 1996,46:506-511.
    [118] Kasai H, Tamura T, Harayama S. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50: 127-134.
    [119] Kasai H, Watanabe K, Elisabeth G, et al. Construction of the gyrB database for identification and classification of bacteria[M]. In: Genome Infromatics. Tokyo: Universal Academy Press, 1998:13-21
    [120] Yugueros J, Temprano A, Sanchez M, et al. Identification of Staphylococcus spp. by PCR-Restriction Fragment Length Polymorphism of gap Gene[J].. Journal of Clinical Microbiology, 2001,39(10): 3693-3695.
    [121] Yugueros J, Temprano A, Berzal B, et al. Glyceraldehyde-3-Phosphate Dehydrogenase-Encoding Gene as a Useful Taxonomic Tool for Staphylococcus spp[J]. Journal of Clinical Microbiology, 2000,38(12): 4351-4355.
    [122] Elsaied H, Naganuma T. Phylogenetic Diversity of Rivulose-1,5-Bisphosphate Carboxylase/ Oxygenase Large-Subunit Genes from Deep-Sea[J]. Microorganisms Applied and Environmental Microbiology, 2001, 67(4): 1751-1756.
    [123]Felis G E,Dellaglio F,Mizzi L,et al.Comparative sequence analysis ofa recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group[J].International Journal of Systematic and Evolutionary Microbiology,2001,51:2113-2117.
    [124]Marechal J,Clement B,Nalin R,et al.A recA gene phylogenetic analysis confirms the close proximity of Frankia to Acidothermus[J].International Journal of Systematic and Evolutionary Microbiology,2000,50:781-785.
    [125]Ko K S,Lee H K,Park M Y,et al.Population Genetic Structure of Legionella pneumophilia Inferred from RNA Polymerase Gene (rpoB) and DotA Gene (dotA) Sequences[J].Journal of Bacteriology,2002,184(8):2123-2130.
    [126]Houpikian P,Fournier P E,Raoult D.Phylogenetic position of Bartonella vinsonii subsp,arupensis based on 16S rDNA and gltA gene sequences[J].International Journal of Systematic and Evolutionary Microbiology,2001,51:179-182.
    [127]Hedegaard J,Steffensen S A,Norskov-Lauritsen N,et al.Identification of Enterobacteriaceae by partial sequencing of the gene encoding translation initiation factor 2[J].International Journal of Systematic Bacteriology,1999,49:1531-1538.
    [128]Steingrube V A,Wilson R W,Brown B A,et al.Rapid identification of clinically significant species and taxa of aerobic actinomycetes,including Actinomadura,Gordona,Nocardia,Rhodococcus,Streptomyces,and Tsukamurella isolates,by DNA amplification and restriction endonuclease analysis[J].Joumal of Clinical Microbiology,1997,35(4):817-822.
    [129]Marston E L,Sumner J W,Regnery R L.Evaluation of intraspecies genetic variation within the 60 kDa heat-shock protein gene (groEL) of Bartonella species[J].International Journal of Systematic Bacteriology,1999,49:1015-1023.
    [130]Kwok A Y C,Su S C,Reynolds R P,et al.Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus[J].International Journal of Systematic Bacteriology,1999,49:1181-1192.
    [131]Jian W,Zhu L,Dong X.New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences[J].International Journal of Systematic and Evolutionary Microbiology,2001,51:1633-1638.
    [132]Rijpens N P,Jannes G,Asbroeck M V,et al.Direct detection of Brucella spp.in raw milk by PCR and reverse hybrudization with 16S-23S rRNA spacer probes[J].Applied and Environmental Microbiology,1996,62(5):1683-1688.
    [133]Srivastava A K,Schlessinger D.Mechanism and regulation of bacterial ribosomal RNA processing[J].Annu Rev Microbiol,1990,44:105-129.
    [134]Hain T,Ward-rainey N,Kroppenstedt R M,et al.Discrimination of streptomyces albidoflavus strains based on the size and number of 16S-23S ribosomal DNA intergenic spacers[J].International Journal of Systematic Bacteriology,1997,47(1):202-206.
    [135]焦振泉,刘秀梅.细菌分类与鉴定的新热点16S-23S rDNA间区[J].微生物学通报,2001,28(1):85-89.
    [136]Lane D J,Pace B,Olsen G J,et al.Proc Natl Acad Sci USA[J].1985,82:6955-6959.
    [137]Jensen M A,Webster J A,Straus N.Rapid identifcation of bacteria on the basis of polymerase chain reation-amplified ribosomal DNA spacer polymorphisms[J].Appl Environ Microbiol,1993,59(4):945-952.
    [138]Park Y H,Yoon J H,Shin Y K,et al.Classification of 'Nocardioides fulvus'IFO 14399 and Nocardioides sp.ATCC.39419 in Kribbella gen.nov.,as Kribbella flavida sp.nov.and Kribbella sandramycini sp.nov[J].Int J Syst Bacteriol,1999 49:743-752.
    [139]Behrendt U,Ulrich A,Schumann P,et al.Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward;polyphasic characterization of Subtercola pratensis sp.nov.,Curtobacterium herbarum sp.nov.,and Plantibacter flavus gen.nov.,sp.nov[J].Int J Syst Evol Microbiol,2002,52,1441-1454.
    [140]Williams S T,Goodfellow M,Alderson G,et al..Numerical classification of Streptomyces and related genera[J].J Gen Microbiol,1983,129:1743-1813.
    [141]徐丽华,姜成林,杨宇容,等.云南若干地区土壤放线菌区系及资源考察IXA西和滇东北地区[J].微生物学报,1 995,35(1):58-64.
    [142]Hill R T.Isolation of Actinomycetes from Diverse Marine Environments for Natural Products Screening[M].X International Symposium on Biology of Actinomycetes-Beijing,China:1997.
    [143]Saddler G S,Tavecchia P,Lociouro S,et al.Analysis of madurose and other actinomycete whole cells ugars by gas chromatogrsphy[J].J Microbiol Methods,1991,14:185-191.
    [144]Ohno Y,Yano I,Masui M.Effect of NaC1 concentration and temperature on phospholipid and fatty acid composition of a moderately halophilic bacterium Pseudomonas halosaccharolytica[J].J Biochem,1979,85:413-421.
    [145]Schdn A,Fingerhut C,Hess W R.Conserved and variable domains with in divergent RNaseP RNAgene sequences of Prochlorococcus strains[J].Int J Syst Evol Microbiol,2002,52:1383-1389.
    [146]Jian W,Zhu L,Dong X.A new approach for phylogenetic analysis of the genus Bifdobacterium based on partial HSP60 gene sequences[J].Int J Syst Evol Microbiol,2001,51 (5):1633-1638.
    [147]Oren A,Stackebrandt E.Prokaryote taxonomy on line:challengesa head[J].Nature,2002,41915.
    [148]黄思良,赵艳珠,黄连江.空气中拮抗芒果炭疽病菌的微生物类群初步调查[J].广西农业科学,1999.(3):121-22.
    [149]兰时乐,陈海荣,肖宏英,等.稻曲病菌拮抗菌的筛选及拮抗活性测定[J].植物保护,2004,30(2):69-72.
    [150]童蕴慧,徐敬友,陈夕军,等.番茄灰霉病菌拮抗菌的筛选和应用[J].江苏农业研究,2001,22(4):25-28.
    [151]闫建芳,刘 秋,刘志恒,等.瓜类枯萎病菌拮抗放线菌分离方法的研究[J].河南农业科学,2006,(4):81-83.
    [152]杨 阳,何随成,张丽.抗人参真菌病害的链霉菌的摇瓶发酵试验[J].微生物学杂志,2002,22(3):56-58.
    [153]张亚平,李国英.北疆棉花根际微生物对棉花立枯病拮抗作用的研究[J].石河子大学学报(自然科 学版),1998,1(4):8-11.
    [154]蔡艳,薛泉宏,陈占全.青海省保护地辣椒根际土壤和根表放线菌研究[J].应用与环境生物学报,2003,9(1):92-96.
    [155]马 萍,张玲琪,魏荣城,等.西双版纳橡胶、咖啡和胡椒根际放线菌的抗菌作用研究[J].云南大学学报(自然科学版),1995,17(3):229-233.
    [156]左艳霞,.1株抗水稻纹枯病放线菌的筛选[J].华中农业大学学报,2006,25(1):60-63.
    [157]宋 漳,黄耀坚.不同林分中拮抗菌的筛选及其对绿色木霉的拮抗试验[J].中国生物防治,1997,13(1):20-22.
    [158]宋漳,黄耀坚,马 壮.不同森林土壤链霉菌及其绿霉拮抗菌的分布[J].福建林学院学报,1996,16(2):171-173.
    [159]来航线,朱铭莪,袁胜君.喜玛拉雅山中部林地土壤中放线菌的初步鉴定[J].西北农业大学学报,1998,26(6):36-39.
    [160]司美茹,薛泉宏,余博,等.36株生防菌对辣椒疫病等4种病原真菌的拮抗作用研究[J].西北农林科技大学学报(自然科学版),2005,33(1):49-54.
    [161]颜霞,朱铭莪,薛泉宏.藏南草毡土、寒漠土中部分放线菌的生物学特性研究[J],麦类作物,1999,19(3):64-70.
    [162]王启兰,曹广民,姜文波,等.青海高寒草甸土壤放线菌区系研究[J],微生物学报,2004,44(6):733-736.
    [163]薛泉宏,蔡艳,陈占全,等.青海高原东部土壤中拮抗性放线菌的生态分布特征[J].中国抗生素杂志,2004,29(4):203-205.
    [164]游春平,肖爱萍,李湘明,等.稻瘟病菌拮抗微生物的筛选及鉴定[J].江西农业大学学报,2001,23(4):519-521.
    [165]荣小萦,詹明刚,张荣登.拮抗内生放线菌在番茄体内的定殖研究[J].西北农林科技大学学报(自然科学版),2005,33(增刊):87-92.
    [166]邢鲲,韩 巨,刘慧平.辣椒内生放线菌的分离、鉴定和拮抗作用[J].安徽农业科学,2005,33(5):777-778.
    [167]曹理想,田新莉,周世宁.香蕉内生真菌、放线菌类群分析[J].中山大学学报(自然科学版),2003,42(2):70-73.
    [168]鄢庆枇,王 军,苏永全,等.大黄鱼病原弧菌拮抗放线菌的筛选与人工诱变[J].台湾海峡,2002,21(2):187-191.
    [169]方金瑞,黄维真.海洋嗜碱放线菌产生的抗生素的研究[J].中国海洋药物.1993,(1):3-5.
    [170]方金瑞,黄维真.福建沿海底栖放线菌及其产生的抗菌物质[J].中国海洋药物,1991,10(3):1-6.
    [171]郑忠辉,陈连兴,黄耀坚等.厦门海区潮间带海洋动植物共附生微生物的抗菌活性[J].台湾海峡,1998,17(4):439-444.
    [172]LU Chun-hua,SHEN Yue-mao.New angucycline antibiotic produced by Streptomyces sp.1-B1,acommensal microbe of Maytenus hookeri Loes[J].Chinese Journal of Medicinal Chemistry,2003,54 (14):230-232.
    [173]胡继兰,张春颖,娜仁,等.产生抗肿瘤抗生素Sandramycin的南极放线菌C3905[J].微生物学报, 2000,40(6):646-651.
    [174]王泽君,戚长菁.南极土壤防线菌产生的抗肿瘤抗生素C3905A的分离与鉴别[J].中国抗生素杂志,1999,24(5):388-391.
    [175]Demin A L.Health,Wealth and Actinomycetes[M].In the International Symposium on Biology of Actinomycetes,1997:3.
    [176]Chater K F.Annu Rev Microbiol[J].1993,47:685-713.
    [177]刘志恒.放线菌—微生物药物的重要资源[J].微生物学通报,2005,32(6):143-145.
    [178]孙秋,杨慧敏,褚红标.筛选新抗生素的方法[J].云南农业科技,2003,4:43-45.
    [179]张致平.抗生素科学的进展[J].中国药学杂志,1997,11(32):698-700.
    [180]林永成,周世宁,乐长高.海洋微生物活性代谢产物化学[J].大学化学,1996,6(11):15-21.
    [181]Nakamura H,Iitaka Y,Kitahara T,et al.Antibiot[J].1977,30:714.
    [182]姜成林.放线菌资源开发利用[M].工业微生物,1989,19(6):31-35.
    [183]杜冠华.高通量药物筛选[M]北京:化学工业出版社,2002.
    [184]杜冠华,胡娟娟,夏利娟,等.药物筛选的发展与现状[J].药学学报,1998,33:876-880.
    [185]喻子牛.微生物农药及其产业化[M].北京:科学出版社,2000.
    [186]胡厚芝,向固西,易原惠,等.核菌类抗生素16A-6对水稻白叶枯病大田应用研究[J].植物保护学报,1998,14(3):191-196.
    [187]朱建华.农抗16A-6防治蔬菜白粉病药效试验[J].中国蔬菜,1985,(3):49-51.
    [188]胡厚芝,向固西,陈家任,等.宁南霉素防治烟草花叶病的研究[J].应用与环境生物学报,1998,(4):390-395.
    [189]汪 明,甘德培,王有为.国产安普霉素(Apramycin)可溶性粉剂对雏鸡白痢的预防促生长效果.[EB/OL]http:/www.chinafeedorg.cn/men/hongtianwei/page322.htm.
    [190]张镇福,苏忠厚,李德发,等.不同抗生素对早期断奶仔猪腹泻和生产性能的影响[J].饲料加工,1999,20(9):12-13.
    [191]黄夺先,赵伟,戴杏庭,等.国产双氢阿弗菌素注射液对奶牛寄生虫的驱除试验[J].中国奶牛,1998,(2):59-61.
    [192]绕丽娟.塔里木盆地土壤放线菌分布及抗动物病原菌菌株的研究[D].吉林长春:吉林大学.第二章
    [1]陈耀邦.中国土壤[M].中国农业出版社,1995:9.
    [2]王吉智.宁夏土壤[M].宁夏人民出版社,1990:1.
    [3]杨子文.陕西土壤[M].科学出版社,1992:8.
    [4]夏北成,Zhou J Z,James M T.植被对土壤微生物群落结构的影响[J].应用生态学报,1998,9(3):296-300.
    [5]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990:20-23.
    [6]王岩,沈其荣.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51
    [7]柳耀建,林影,吴晓英极端微生物的研究概况[J].工业微生物,2000,30(3):23-28.
    [8]范光南,傅世宗.极端环境微生物的研究概况[J].福建热作科技,2000,25(2):35-39.
    [9]王晓玲.极端微生物的多样性及应用[J].生物学教学,2002,27(1):16-20.
    [10]程丽娟,薛泉宏.微生物学实验技术[M].陕西西安:世界图书出版公司,2000:80-83.
    [11]周德庆.微生物学实验手册[M].上海:上海科学技术出版社,1986.
    [12]鲍士旦.土壤农化分析[M].北京:农业出版社,1996:10.
    [13]关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    [14]司美茹,薛泉宏,来航线.放线菌分离培养基筛选及杂菌抑制方法研究[J].微生物学通报,2004,31(2):61-65.
    [15]LeffL G,Dana J R,Shimkets L J,et al,ApplEnviron.Microbial[J].1995,61:1141-1143.
    [16]Nassar A,Darrasse A,Lematlre M,et al,Appl Environ Microbial[J].1996,62:2228-2235.
    [1]Muyzer G,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Appl Envir Microbiol,1993,59:695-700.
    [2]Gerard M.DGGE/TGGE a method for identifying genes from natural ecosystems[J].Current Opinion in Microbiology,1999,(2):317-322.
    [3]王 涛,柴丽红,崔晓龙,等.免培养法对一热泉细菌多样性的初步研究[J].微生物学报,2003,43(5):542-546.
    [4]张东华,李沁元,刘 杨,等.腾冲热海眼镜泉粉红色菌藻席的细菌组成分析[J].微生物学报,2004,44(6):820-823.
    [5]柴丽红,崔晓龙,彭 谦,等.青海两盐湖细菌多样性研究[J].微生物学报,2004,44(3):271-275.
    [6]赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环境科学学报,2005,25(2):186-191.
    [7]段学军,闵 航.镉胁迫下稻田土壤微生物基因多样性的DGGE分子指纹分析[J].环境科学,2004,25(5):122-126.
    [8]殷峻,陈英旭,刘和,等.应用PCR-DGGE技术研究处理含氨废气的生物滤塔中微生物多样性[J].环境科学,2004,25(6):11-15.
    [1]母连军,胡永松,王忠彦.放线菌分离方法的进展[J].四川食品工业科技.1996,(3):4-6.
    [2]姜成林,徐丽华,杨宇容,等.微生物资源学[M].北京:科学出版社,1997:16-23.
    [3]梁泉峰,池振明.间型假丝酵母菌株对多种水果蔬菜腐败霉菌的拮抗效果和拮抗机制的研究[J].食品与发酵工业,2001,28(1):34-38.
    [4]司美茹,薛泉宏,来航线.放线菌分离培养基筛选及杂菌抑制方法研究[J].微生物学通报,2004,31(2):61-65.
    [5]胥秀英,郑一敏,温寿祯,等.土壤放线菌分离方法的初步研究[J].生物学杂志,2000,17(2):16-17.
    [6]Hayakawa M.Actinomycetologica[M]2003:95-104.
    [7]徐成勇,袁野,黎丹辉,等.选择性分离放线菌[J].无锡轻工大学学报,1999,1(2):45-49.
    [8]程丽娟,薛泉宏,来航线,等.微生物学实验技术[M].陕西西安:世界图书出版公司,1988.
    [9]李文均,张忠泽,姜成林.几种主要稀有放线菌的选择性分离[J].国外医药:抗生素分册2002,23(1):18-22.
    [10]Hayakawa M,Momose Y,Kajinra T,et al.A selective isolation method for Actinomadura viridis in soil.[J].J Fernem Bioeng,1995,79:287.
    [11]杨宇容,徐丽华,段若玲,等.稀有放线菌分离方法的研究[J].云南大学学报(自然科学版),1997,19(4):403-408.
    [12]杨宇容,徐丽华,李启任,等.放线菌分离方法的研究Ⅰ.抑制剂的选择[J].微生物学通报,1995,22(2):88-91.
    [13]Athalye M,Lacey J,Goodfellow M.Selectiv isolation and enumeration of Actinomycetes using rifam picin.[J].J Appl Bacteriol,1981,51:289.
    [14]中国科学院微生物研究所—放线菌分类组.链霉菌鉴定手册[M].北京:科学出版社,1975.
    [15]阮断生.放线菌分类基础[M].北京:科学出版社,1977:163-167.
    [16]胡小平,王长发.SAS基础及统计实例教程[M].陕西西安:西安地图出版社,2001:160-164.
    [1]林雁冰,薛泉宏.新疆南部巴楚地区干旱生境土壤放线菌的研究[J].西北农林科技大学学报(自然科学版).2005,33(1):43-48.
    [2]张海燕,贺江舟,龚明福,等.利用菌落PCR-DGGE快速鉴定盐渍土壤菌种多样性[J].塔里木大学学报,2007,(4):86-90.
    [3]MikamY,Miyashnita,AraiT.J Gen Microbial[J].1982,12(8):1709-1712.
    [4]MikamiY,Miyashita,AraiT.TActinomycetes[J].1985-1986,19(3):176-191.
    [5]Sato M,Beppu T,Arima K.Agr biol chem.1983,47(9),2019-2027.
    [6]Forster S M.Orangic components Process.Soil sci,1969,33,421-423.
    [7]唐庆凤.开发利用大西北极端环境微生物资源的作用和意义[J].干旱地区研究,1998,(1):69-70.
    [8]姜成林,徐丽华.微生物资源学[M].北京:科学出版社,1997:35-87.
    [9]阮继生.放线菌分类基础[M].北京:科学出版社,1977:163-167.
    [10]中国科学院微生物研究所放线菌分类组.链霉菌鉴定书册[M].北京:科学出版社,1975.
    [11]Al-Zarban S S,Abbas L,Al-Musallam A A,et al.Nocardiopsis halotolerans sp.nov.,isolated from salt marsh soil in Kuwait[J].Int J Svst Evol Microbial,2002,52:525-529.
    [12]Kobayashi T,Kamekura M,Kanlayakrit W,et al.Production,purification,and characterization of an amylase from the moderatehalophile,varians subspecies halophilus[J].Microbios,1986,46:165-177.
    [13]王来福,宋尚直,阮继生.盐碱放线菌分类研究[J].微生物学报,1993,33(6):393-399.
    [14]胡小平,王长发.SAS基础及统计实例教程[M].陕西西安:西安地图出版社,2001:160-164.
    [15]刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:科学出版社,2004:1.
    [16]姜成林,徐丽华,郭光远.云南若干地区土壤放线菌区系及资源考察V.高寒地区的放线菌[J].微生物学报,1988,28(3):198-205
    [1]刘志恒.放线菌—微生物药物的重要资源[J].微生物学通报,2005,32(6):143-145.
    [2]黄琪琰.暴发性鱼病防治技术[M].北京:农业出版社,1993.
    [3]陈万义,薛振祥,王能武,等.新农药的研究与开发[M].化学工业出版社北京,1996:278-280.
    [4]左常智,陈丽肖,永昌,等.球形芽孢杆菌1593的发酵条件[J].生物防治通报,1986,2(4):170-172.
    [5]周 分,金玉清,陈瑛瑛,等.青霉素球状菌株发酵工艺的研究[J].抗生素,1988,13(2):81-91.
    [6]陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术[M].上海:科学技术文献出版社,1994.
    [7]赵斌,何绍江.微生物学试验[M].北京:科学出版社,2002.
    [8]纪春晓,胡功政,程天印.鸡源大肠杆菌的药物抗性及其机制[J].上海畜牧兽医通讯,2005,(2):27-29.
    [9]Al-Zarban A,Al-Musallam A,Abbas L,et al.Saccharomonospora halophila sp.nov.,a novel halophilic actinomycete isolated from marsh soil in Kuwait[J].Int J Syst Evol Microbiol,2002,52:555-558.
    [10]Chun J,Bae K S,Moon E Y,et al.Nocardiopsis kunsanensis sp.nov.,a moderately halophilic actinomycete isolated from a saltem[J].Int J Syst Evol Microbiol,2000,50:1909-1913.
    [1]阮继生.放线菌分类基础[M].北京:科学出版社,1971:1-5.
    [2]Murray R G,Spisy G E.Fault desscience University esite[J].J E Purkyne Brno,1968,43:249-253.
    [3]Bergey D H,Garrity G,Boone D R,et al.Bergey's Manual of Systematic Bacteriology,vo14(1~(st)edtion)[M].New York:Sringer-Verlag,1989.
    [4]Fox G E,Pechman K R,Woese C A.Comparative cataloging of 16S ribosomalribo nucleicacid:molecular approach toprokaryotic systematics[J].Int J Syst Bacteriol,1977,27(1):44-57.
    [5]Woese C R.Bacterial evolution[J].Microbiol Rev,1987,(5):122-127.
    [6]Woese C A,Gutell R,Gupta R,et al.Detailed analysis of the higher order of 16S likeri bonucleic acids[J].Microbiol Rev,1983,47:621-669.
    [7]Woese C R,Stackebrandt E,Macke T,et al.Adefinition of the eubacterial division[J].Syst APDI Microbiol,1985,51:221-271.
    [8]Stackebrandt E.Phylogenetic relation ships Vs Phenotypic diversity:How to archieve aphylogenetic chlassifica6on system of the eubacteria[J].Can J,1996,34:552-556.
    [9]Stackebrandt E,Rainey F A,Ward-Rainey N L.Proposalfor a new hierarchic classification system,Actinobacteria classis nov[J].Int J Syst Bacteriol,1997,47:479-491.
    [10]Lechevalier H A,Lechevalier M P.The Prolarytes Mortimer,P.Starr,et al.,Spinger-verlag Berling,Heidelbery[M].1981.
    [11]Stackebrandt E,Goebel B M.Taxonomic note:a place for DNA-DNA reassociation and 16S rRNA sequences analysis in the present species definition in bacteriology[J].Int J Syst Bacteriol,1994,44:846-849.
    [12]Lechevalier M P,Lechevalier H A.The chemotaxonomy of actinomycetes.In actinomycetes[M].In actinomycetes taxonomy(ed.by Dietz and Theayer),1980,:227-291.
    [13]Collins M D,Jones D.Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication[J].Microbiology,1981,45:316-354.
    [14]Saddler G S,Goodfellow M,Minnikin D E,et al.Influence of the growth cycle on the fatty acid and menaquinone composition of Streptomyces cyaneus NCIB 9616[J].J Appl Bacteriol,1986,60:51-56.
    [15]Ochi K.Polyacrylamide gel electrophoresis analysis of ribosomal protein AT-L30 from an actinomycete genus[J].Streptosporangium.lnternatinal Journal of Systematic Baceriology,1992,42:151-155.
    [16]Stackebrandt E,Liesack W.Nucleic acids and Classification[M].In:Goodfellow M,O'Donell A G ed.Handbook of New Bactrial Systematics.London:Academic Press Ltd,1993.
    [17]De Ley J,Cattoir H,Reynaerts A.Eur J Biochem[J].1970,12:133-142.
    [18]Grimont P A D.Can J Microbiol[J].1988,34:541-546.
    [19]王意敏,刘志恒.放线菌的多相分类[J].微生物学通报,1999,26(2):137-140.
    [20]Jahnke K D.J Microbiol Methods[J].1994,20:273-288.
    [21]黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,.999,(4):19-22.
    [22]Colwell R R.Polyphasic taxonomy of the genus Vibrio:mumerical taxonmy of Vibrio cholerae,Vibrio parahaemolyticus.and related Vibrio species[J].Int J syst Bacteriol,1970,104:410-433.
    [23]阎逊初.放线菌的分类和鉴定[M].北京:科学出版社,1992.
    [24]中科院微生物所放线菌分类组.链霉菌鉴定手册[M].北京:科学出版社,1975.
    [25]瓦克斯曼[美].放线菌属和种的分类、鉴定和描述[M].阎逊初,译.北京:科学出版社,1974:1-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700