用户名: 密码: 验证码:
毛竹林地上部分碳储量遥感定量估算模型可移植性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感在森林碳储量定量估算中的作用得到广泛的认可,是陆地植被碳储量定量研究的重要进展,也是目前和未来森林碳估算及其动态变化规律研究的重要手段之一。各种生物量、碳储量遥感估算模型见诸报道,模型的特点是简单,但结构多样,缺陷是模型易受植被类型、光照条件、观察位置、冠层结构等影响,同时对土壤背景等非植被因素也比较敏感。因此,模型的普适性即可移植性差,这也是生物量碳储量遥感估算的一个主要问题。针对该问题,本研究以毛竹(Phyllostachys heterocycla var.pubescens)林为例,以浙江省临安市、安吉县、龙泉市为研究区域,研究毛竹林地上部分生物量遥感估算模型的可移植性。
     本研究主要包括以下3方面的内容:
     1、三个研究区遥感数据预处理,包括空间配准、地形校正、大气校正及毛竹林遥感信息的提取。
     2、选用一元线性模型、一元非线性模型、逐步回归模型、多元线性模型和Erf-BP神经网络模型等5种模型,分别构建三个区域毛竹林碳储量遥感估算模型。
     3、毛竹林碳储量遥感估算模型的可移植性进行分析与评价,即选择某区域精度较好的模型并分别移植到其他两个区,采用实际地面调查样地对其可移植性进行评价。
     研究主要得到以下几方面的结论:
     (1)对三个不同的区域,所设定的5类模型中,Erf-BP神经网络模型精度最高、逐步回归模型和一元非线性模型次之。
     (2) Erf-BP神经网络模型的可移植性优于逐步回归模型和一元非线性模型,具有较强的可移植性。
     (3)模型类型和模型自变量对统计模型的可移植性有较大的影响。
Quantitative estimation of forest carbon stocks using remote sensing is widely recognized, which isimportant progress of quantitative study on terrestrial vegetation carbon stocks. Remote sensing is oneof the important means of future forest carbon estimation and its dynamic change detection. Researcheson a variety of remote sensing estimation models for biomass carbon stocks have been reported. Thecharacteristics of those models are simple, but structurally diverse. The defects of those models arevulnerable to vegetation type, light conditions, observation position, and canopy structure, while arealso more sensitive to the non-vegetation factors, such as soil background. Therefore, the statisticalmodel with poor transferability is also a major problem in estimation of biomass carbon stocks usingremote sensing. Aimed to this issue and taken Lin'an City, Zhejiang Province, Anji County, LongquanCity as study areas, the transferability of bamboo forest aboveground biomass estimation model basedon remote sensing will be discussed in this study.
     This research mainly includes the following three aspects.
     1、Remote sensing data preprocessing for three study areas, including spatial registration, terraincorrection, atmospheric correction, and bamboo forest remote sensing information extraction.
     2、Linear and nonlinear models, stepwise regression model, multivariate linear model, and Erf-BPneural network model were built to estimate bamboo forest carbon stocks using remote sensing data.
     3、The transferability of bamboo forest aboveground biomass estimation model was analyzed andevaluated. The models for one study area with better accuracy were transplanted to the other two areas,and results of model transferability were tested using the actual ground survey samples.
     There are three main conclusions:
     1、For the three study areas, Erf-BP neural network model had the highest accuracy, followed by thestepwise regression model and nonlinear model.
     2、The transferability of the Erf-BP neural network model was superior to the stepwise regressionmodel and nonlinear model, and Erf-BP model had strong transferability.
     3、Model type and independent variables of model had a significant impact on the transferability ofthe statistical model.
引文
[1]陈先刚,张一平,张小全,等.过去50年中国竹林碳储量变化[J].生态学报,2008,8(11):5218–5227.
    [2]黄伯惠.浙江省竹林概况及今后发展的建议[J].浙江林业科技,1988,8(4):47–52.
    [3]戚连忠,朱杭瑞,蔡琳,等.从文献分析看浙江省竹类研究进展[J].浙江林业科技,2000,20(6):68–72.
    [4]吴鸿编.“十五”浙江林业科技发展报告[M].北京:中国农业出版社,2005.
    [5]朱永军,程爱兴,何钧潮.临安竹产业实现跨越式发展的目标和对策[J].竹子研究汇刊,2003,22(3):8–12.
    [6]DU H Q, ZHOU G. M, FAN W Y, et al. Spatial Heterogeneity and Carbon Contribution ofAboveground Biomass of Moso Bamboo by Using Geostatistical Theory (a)[J]. Plant Ecology,2010(207):131–139.
    [7]李惠敏,陆帆,唐仕敏,等.城市化过程中余杭市森林碳汇动态[J].复旦学报(自然科学版),2004,43(6):1044–1050.
    [8]丁丽霞,王祖良,周国模,等.天目山国家级自然保护区毛竹林扩张遥感监测[J].浙江林学院学报,2006,23(3):297–300.
    [9]林华.毛竹林生态系统生物量动态变化规律研究[J].林业科技开发,2002,16(S1):26–27.
    [10]李正才,傅懋毅,徐德全.竹林生态系统与大气二氧化碳减量[J].竹子研究汇刊,2003,22(4):1–6.
    [11]DU Huaqiang, CUI Ruirui, ZHOU Guomo, et al. The responses of Moso Bamboo (Phyllostachysheterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance andNDVI[J].Acta Ecologica Sinica(International Journal),2010,30(5):257–263.
    [12]LOU Yiping, LI Yanxia, KATHLEEN Buckingham, et al. Bamboo and Climate Change Mitigation.INBAR, Technical Report No.32.
    [13]牛铮,王长耀,等.碳循环遥感基础与应用[M].科学出版社,2008.
    [14]SANDRA B. Measuring carbon in forests: current status and future challenges[J].EnvironmentalPollution,2002,116:363–372.
    [15]秦小光,蔡炳贵,张鹏,等.开展我国陆地生态系统碳循环的生物地球化学动态评估的思路与建议[J].科技导报,2002,51–54.
    [16]曹明奎,于贵瑞,刘纪远,等.陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟[J].中国科学D辑,地球科学,2004,34(S2):1–14.
    [17]徐小军,杜华强,周国模等.基于遥感植被生物量估算模型自变量相关性分析综述.遥感技术与应用,2008,23(2):239–247.
    [18]QI J, KERr Y H, MORAN M S, et al. Leaf Area Index Estimates Using Remotely Sensed Data andBRDF Models in a Semiarid Region[J]. Remote Sensing of Environment,2000,73:18–30.
    [19]陈新芳,安树青,陈镜明,等.森林生态系统生物物理参数遥感反演研究进展.生态学杂志,2005,24(9):1074–1079.
    [20]范文义,张海玉,于颖,等.三种森林生物量估测模型的比较分析[J].植物生态学报,2011,35(4):402–410.
    [21]FOODY, G.M, BOYD, D S. CULTER M E J. Predictive relations of tropical forest biomass fromLandsat TM data and their transferability between regions. Remote Sensing of Environment,2003,85:463–474.
    [22]EBERMEYR E. Die gesamte Lehre der Waldstreu mit Rucksicht auf die chemische statik desWaldbaues[M].Belin: J Springer,1876:116.
    [23]BOYSEN Jensen P. Studier over skovtraernes forhold til lyset Tidsskr[J]. F Skorvaessen,1910,22:11–16.
    [24]BURGER H Holz, BLATTMENGE, ZUWACHS.12Fichten im plenterwald Mitteil, Schweiz,Anst. Forttl[J]. Versuchsw,1952,28:109–156.
    [25]潘维侍,李利村,高正衡.两个不同地域类型杉木林的生物产量和营养元素分布[J].中南林业科技,1979,(4):1–14.
    [26]冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127–134.
    [27]李文华,邓坤枚,李飞.长白山主要生态系统生物量生产量的研究[J].森林生态系统研究,1981,(2):34–50.
    [28]刘世荣,柴一新,蔡体久,等.兴安落叶松人工林群落生物量及净初级生产力的研究[J].东北林业大学学报,1990,18(2):40–46.
    [29]陈灵芝,任继凯,鲍显诚.北京西山人工油松林群落学特征及生物量的研究[J].植物生态学与地植物学报,1984,8(3):173–181.
    [30]党承林,吴兆录.季风常绿阔叶林短刺拷群落的生物量研究[J].云南大学学报(自然科学版),1991,14(2):95–107.
    [31]KITTERGE J. Estimation of amount of trees and shrubs[J]. Forest,1994,42:905–912.
    [32]李惠敏,陆帆,唐仕敏,等.城市化过程中余杭市森林碳汇动态[J].复旦学报(自然科学版),2004,43(6):1044–1050.
    [33]王效科,冯宗炜,欧阳志云.中国森林生态系统的植被碳储量和碳密度研究[J].2001,12(1):13–16.
    [34]赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].2004,24(1):50–54.
    [35]方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996,16(5):497–507.
    [36]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967–973.
    [37]刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733–740.
    [38]张德全,桑卫国,李曰峰,等.山东省森林有机碳储量及其动态的研究[J].植物生态学报,2002,26(增刊):93–97.
    [39]黄从德,张健,杨万勤,等.四川森林植被碳储量的时空变化[J].应用生态学报,2004,18(12):2687–2692.
    [40]邓旺华,范少辉,官凤英.遥感技术在竹资源监测中的应用探讨[J].竹子研究汇刊,2008,27(3):8–16.
    [41]HAME T, SALLI A, ANDERSSON K, et al. A new methodology for the estimation of biomass ofconifer-dominated boreal forest using NOAA AVHRR data[J]. International Journal of RemoteSensing,1997,18(15):3211–3243.
    [42]TODD S W, HOFFER R M, MILCHUNAS D G. Biomass estimation on grazed and ungrazedrangelands using spectral indices[J]. International Journal of Remote Sensing.1998,19(3):427–438.
    [43]LEFSKY M A, HARDING D, COHEN W B. Surface lidar remote sensing of basal area andbiomass in deciduous forests of eastern Maryland[J], Remote Sensing of Environment.1999,67:83–98.
    [44]HOUGHTON R A., LAWERENCE K T., HACKLER J L, et al. The spatial distribution of forestbiomass in the Brazilian Amazon: a comparison of estimates[J]. Global Change Biology,2001,(7):731–746.
    [45]SAATCHI S S, HOUGHTON R A, et al. Distribution of aboveground live biomass in the Amazonbasin[J]. Global Change Biology,(2007)13,816–837.
    [46]ZHENG D, LINDA S H, Mark J K. Spatial distribution of forest aboveground biomass estimatedfrom remote sensing and forest inventory data in New England[J],Journal of Applied RemoteSensing,2008,021502(2).
    [47]李仁东,刘纪远.应用Landsat ETM数据估算鄱阳湖湿生植被生物量[J].地理学报,2001,56(5):532–540.
    [48]郭志华,彭少麟,王伯荪.利用TM数据提取粤西地区的森林生物量[J].生态学报,2002,22(11):1832–1840.
    [49]丁圣彦,梁国付.近20年来洛宁县森林植被碳储量及动态变化[J].资源科学,2004,26(3):105–108.
    [50]CHEN Liangfu, GAO Yanhua, CHENG Yu, et al.Biomass estimation and uncertainty analysisbased on CBERS-02CCD camera data and field measurement[J].Science in China Ser.EEngineering&Materials Science,2005,48(1):116–128.
    [51]王淑君,管东生.神经网络模型森林生物量遥感估测方法的研究[J].生态环境,2007,16(1):108-111.
    [52]徐天蜀.基于遥感信息的森林生物量、碳储量估测技术研究[J].林业调查规划,2008,33(3):11–13.
    [53]鲁顺保,饶玮,彭九生,等.立地条件对毛竹生物量的影响研究[J].浙江林业科技,2008,28(4):22–27.
    [54]聂道平.毛竹林结构的动态特性[J].林业科学,1994,30(3):201–208.
    [55]方精云,陈安平.中国森林植被碳库的动态变化及其意义[J].植物学报,2001,43(9):967–973.
    [56]陈辉,洪伟,兰斌,等.闽北毛竹生物量与生产力的研究[J].林业科学,1998,34(专刊1):60–64.
    [57]郑容妹,郑郁善,丁闽锋.苦竹生物量模型的研究[J].福建林学院学报,2003,23(1):61–64.
    [58]林新春,方伟.苦竹各器官生物量模型[J].浙江林学院学报,2004,21(2):168–171.
    [59]周国模.毛竹林生态系统中碳储量、固定及其分配与分布的研究[D].杭州:浙江大学.2006.
    [60]刘恩斌,周国模,姜培坤,等.生物量统一模型构建及非线性偏最小二乘辩识—以毛竹为例[J].生态学报,2009,29(10):5561–5569.
    [61]范渭亮,杜华强,周国模,等.大气校正对毛竹生物量估算的影响[J].应用生态学报,2010,21(1):1–7.
    [62]董德进,周国模,杜华强,等.6种地形校正方法对雷竹林地上生物量遥感估算的影响[J].林业科学.2012,47(12):1–8.
    [63]金爱武,周国模.雷竹各器官生物量模型研究[J].浙江林业科技,1999,19(2):7–9.
    [64]林华.毛竹林生态系统生物量动态变化规律研究[J].林业科技开发,2002,16:26–27.
    [65]周国模,姜培坤.毛竹林的碳密度和碳贮量及其空间分布[J].林业科学,2004,40(6):20–24.
    [66]李江,黄从德,张国庆.川西退耕还林地苦竹林碳密度、碳贮量及其空间分布[J].浙江林业科技,2006,26(4):1–5.
    [67]张小全,陈先刚,武曙红.土地利用变化和林业活动碳贮量变化测定与监测中的方法学问题[J].生态学报,2004,24(9):2068–2073.
    [68]陈先刚,张一平,张小全,郭颖.过去50年中国竹林碳储量变化[J].生态学报,2008,28(11):5218–5227.
    [69]王兵,魏文俊,邢兆凯,等.中国竹林生态系统的碳储量[J].生态环境,2008,17(4):1680–1684.
    [70]杨芳,吴家森,钱新标,吴丽君.不同施肥雷竹林土壤微生物量碳的动态变化[J].浙江林学院学报,2006,23(1):70–74.
    [71]MYNENI, WILLIAMS D L. On the relationship between FAPAR and NDVI[J].Remote SensingEnvironment,1994,49(3):200–211.
    [72]GONG P, D Wang, S Liang. Inverting a canopy reflectance model using an artificial neuralnetwork[J]. International Journal of Remote Sensing,1999,20(1):111–122.
    [73]李小文,汪骏发,王锦地.多角度与热红外对地遥感[M].北京:科学出版社,2001.
    [74]LI Xiaowen, STRAHLER A H. Geometric OpticalModeling of Conifer Forest Canopy[J]. IEEETraas Geosci Remote Sens,1985,23:705–721.
    [75]LI Xiaowen, STRAHLER A H, FRIEDL M A. A Conceptual Model for Effective DirectionalEmissivity from Nonisothermal Surfaces[J]. IEEE Traas Geosci Remote Sens,2000,37(5):2508–2517.
    [76]NARENDRA S G. Models of vegetation canopy reflectance and their use in estimation ofbiophysical parameters from reflectance data[J].Remote Sensing Reviews,1988.
    [77]MYNENI R B, Y Knyazikhin, J L Privette, et al. Global products of vegetation leaf area andfraction absorbed PAR from year one ofMODIS data[J].Remote Sensing of Environment,2002,83(1).
    [78]徐小军.基于LANDSAT TM影像毛竹林地上部分碳储量估算研究[D].临安:浙江农林大学,2009.
    [79]陈鹏飞,Nicolas Tremblay,王纪华,等.估测作物冠层生物量的新植被指数的研究[J].光谱学与光谱分析,2010,30(2):512–517.
    [80]LEE N J, NAKANE K. Forest vegetation classification and biomass estimation based on LandsatTM data in a mountainous region of west Japan[A]. The Use of Remote Sensing in the ModelingofForest Productivity[C]. Kluwer Academic Publishers, Netherlands,1997:159-171.
    [81]ZHENG D, RADEMACHERB J, CHEN J, et al. Estimating aboveground biomass using Landsat7ETM+data across a managed landscape in northern Wisconsin, USA[J]. Remote Sensing ofEnvironment,2004,93:402–411.
    [82]于颖,范文义,李明泽,等.利用大光斑激光雷达数据估测树高和生物量[J].林业科学,2010,46(9):84–87.
    [83]金丽芳,徐希孺,张猛,等.内蒙古典型草原地带牧草产量估算的光谱模型[J].中国草原与牧草杂志,1986,3(2):51–54.
    [84]GILABERT M A, GANDIA S, MELIA J. Analyses of spectral-biophysical relationships for a corncanopy[J]. Remote Sensing of Environment,1996,55:11–20.
    [85]黄劲松,邸雪颖.帽儿山地区6种灌木地上生物量估算模型[J].东北林业大学学报,2011,39(5);54–57.
    [86]洪保章.毛豆遥感光谱与地上鲜生物量的相关性分析[D].福州:福建农林大学,2006.
    [87]邢素丽,张广录,刘慧涛,等.基于Landsat ETM数据的落叶松林生物量估算模式[J].福建林学院学报,2004,24(2):153–156.
    [88]张元庆.大兴安岭地区森林生物量遥感模型的研究[D].东北林业大学,2009.
    [89]国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):13–16.
    [90]李健,舒晓波,陈水森.基于Landsat-TM数据鄱阳湖湿地植被生物量遥感监测模型的建立[J].广州大学学报(自然科学版),2005,4(6):494–498.
    [91]刘卫国,潘晓玲,高炜,等.新疆阜康绿洲生态系统生物量遥感估算分析[J].资源科学,2005,27(5):134–140.
    [92]宋开山,张柏,于磊.玉米地上鲜生物量的高光谱遥感估算模型研究[J].农业系统科学与综合研究,2005,21(1):65–67.
    [93]FAZAKAS Z, NILSSON M, OLSSON H. Regional forest biomass and wood volume estimationusing satellite data and ancillary data[J]. Agricultural and Forest Meteorology.1999,98(99):417–425.
    [94]TOMPPO E, NILSSON M, ROSENGREN M. Simultaneous use of Landsat-TM and IRS-1C WiFSdata in estimating large area tree stem volume and aboveground biomass[J]. Remote Sensing ofEnvironment.2002,82:156–171.
    [95]MAKELA H, PEKKARINEN A. Estimation of timber volume at the sample plot level by means ofimage segmentation and Landsat TM imagery[J]. Remote Sensing of Environment.2001,77:66–75.
    [96]MAKELA H, PEKKARINEN A. Estimation of forest stand volumes by Landsat TM imagery andstand-level field-inventory data[J]. Forest Ecology and Management.2004,196:245–255.
    [97]曹庆先,徐大平,鞠洪波.基于TM影像纹理与光谱特征和KNN方法估算5种红树林群落生物量.林业科学研究,2011,24(2):144–150.
    [98]HAME T. A new methodology for the estimation of biomass of conifer-dominated boreal forestusing NOAA AVHRR data[J]. Int. J. Remote Sens,1997,18(15):3211–3243.
    [99]LEROY M.. Sun and view angle correction on reflectance derived from NOAA AVHRR data[J].IEEE Trans Geosci. Remote Sens,1994,32:684–697.
    [100]PRINCE S D,GOWARD S N. Global primary production: A re-mote sensing approach[J]. JBiogeogr.1995,22:815–835.
    [101]朱志辉.自然植被净第一性生产力估计模型[J].科学通报,1993,38(15):1422–1426.
    [102]周广胜,张新时.自然植被净第一性生产力模型初探[J].植物生态学报,1995,19(3):193–200.
    [103]闫淑君,洪伟,等.自然植被净第一性生产力模型的改进[J].江西农业大学学报,2001,23(2):248–252.
    [104]肖乾广,陈维英,等.用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J].植物学报,1996,38(1):35–39.
    [105]SONG C, WOODCOCK C E, SETO K C, et al. Classification and change detection using LandsatTM data: When and how to correct atmospheric effects[J]. Remote Sensing of Environment.2001,75:230–244.
    [106]SCHROEDER T A, COHEN W B, SONG C, et al. Radiometric correction of multi-temporalLandsat data for characterization of early successional forest patterns in western Oregon[J]. RemoteSensing of Environment,2006,103:16–26.
    [107]GU D, GILLESPIE A. Topographic normalization of Landsat TM images of forest based onsubpixel Sun-canopy-sensor geometry[J]. Remote Sense of Environment,1998,64(2):166–175.
    [108]CUI R R,DU H Q, ZHOU GM,et al. Remote sensing-based dynamic monitoring of moso bambooforest and its carbon stock change in Anji County[J]. Journal Of ZheJiang Forestry College,2011,28(3):422–431.
    [109]XU X J(徐小军). Study on Estimation of Aboveground Carbon Storage of MosoBamboo ForestBased on LANDSAT TM Image. Linan[J] Zhejiang Forestry University Dissertation for theDegree of Master,2009.
    [110]李英成.数字遥感影像地形效应分析与校正[J].北京测绘,1994,(2):14–19.
    [111]高永年,张万昌.遥感影像地形校正研究进展及其比较实验[J].地理研究,2008,27(2):467–477.
    [112]LU D S. The potential and challenge of remote sensing based biomass estimation.[J]. InternationalJournal of Remote Sensing,2006,27(7):1297–1328.
    [113]章孝灿,黄智才,赵元洪.遥感数字图像处理[M].杭州:浙江大学出版社,1997.
    [114]田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998,13(4):328–333.
    [115]JENSEN J R.遥感数字影像处理导论(2005)[M].陈晓玲,龚威,李平湘,等,译.第三版.北京:机械工业出版社,2007.
    [116]BAUSCH W C. Soil Background Effects on Reflectance-Based Crop Coefficients for Corn[J].Remote Sensing of Environment,1993,46:1–10.
    [117]HARALICK R M. Statistical and Structural Approaches to Texture[J]. Proceeding of theIEEE.1979,67:786–804.
    [118]LU D, BATISTELLA M. Exploring TM Image Texture and its Relationship with BiomassEstimation in Rondonia, Brazilian Amazon[J]. Acta Amazonica.2005,35:249–257.
    [119]ST-LOUIS V, PIDGEON A M, RADELOFF V C. High-resolution image texture as a predictor ofbird species richness[J]. Remote Sensing of Environment.2006,105:299–312.
    [120]向东进,李宏伟,刘小雅.实用多元统计分析[M].武汉:中国地质大学出版社,2005.
    [121]KRASNOPOLSKY V M, CHEVALLIER F. Some neural network applications in environmentalsciences. Part II: Advancing computational efficiency of environmental models[J]. NeuralNetworks.2003,16:335–348.
    [122]ABUELGASIM A A, GOPAl S, STRAHLER A H. Forward and inverse modelling of canopydirectional reflectance using a neural network[J]. International Journal of Remote Sensing.1998,19:453–471.
    [123]DANSON F M, ROELAND C S, BARET F. Training a neural network with a canopy reflectancemodel to estimate crop leaf area index[J]. International Journal of Remote Sensing.2003,24:4891–4905.
    [124]FANG H, LIANG S. A hybrid inversion method for mapping leaf area index from MODIS data:Experiments and application to broadleaf and needleleaf canopies[J].Remote Sensing ofEnvironment.2005,94:405424.
    [125]WEISS M, BARET F. Evaluation of canopy biophysical variable retrieval performances from theaccumulation of large swath satellite data[J].Remote Sensing of Environment.1999,70:293306.
    [126]ROGERS S K, KABRISKY M. An Introduction to Biological and Artificial Neural Networks forPattern Recognition[M].Washington: SPIE Opt Eng Press,1991.
    [127]王正兴,刘闯,HUETE Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,22(05):979987.
    [128]章元,朱尔一,李静,等.模拟退火算法与遗传算法结合用于变量筛选[J].分析化学,1999,27(10):11311135.
    [129]肖厚军,蒋太明,夏锦慧,等.贵州主要作物生产潜力估算与分析[J].西南农业学报,2004,17(05):580583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700