矿物质催化先进再燃过程中NO_x和SO_2还原试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭燃烧是我国氮氧化物(NO_x)、硫氧化物(SO_2)的主要来源之一,其中火电行业NO_x排放量约占全国总NO_x排放量的35%~40%。随着全球环境问题的日益严峻,对氮氧化物(NO_x)、硫氧化物(SO_2)等主要大气污染物的排放控制要求变得越来越严格。因此,发展高效的脱硫、脱硝技术及提高现有脱硫、脱硝装置脱除效果已迫在眉急,且联合脱除技术已逐渐成为人们研究的重点。当前对煤灰矿物质催化再燃脱硝过程研究较多,但其分析的重点均只限于矿物质对C与NO异相还原过程的催化,而本文研究了煤灰矿物质对先进再燃脱硫、脱硝过程的催化性能,并重点从矿物质对CH_i、NH_i、CO等与NO的同相还原过程的催化角度揭示了煤灰矿物质影响脱硫、脱硝过程的催化路径及反应机理。为进一步提高先进再燃过程脱硝效果提供有力的理论依据,同时为燃烧法实现联合脱除NO_x和SO_2提供实际的指导意义。
     本文在两段式一维反应器试验台上进行了NaOH、KOH、FeCl_3和Ca(OH)_2催化先进再燃脱硝过程试验研究及电石渣催化先进再燃脱硫、脱硝过程试验研究。在保证反应温度、再燃比、NH_3/NO摩尔比、停留时间不变的条件下,研究了煤灰矿物质种类、负载量及再燃区初始氧量三因素对先进再燃脱硫、脱硝过程的影响。
     从矿物质对再燃、SNCR及先进再燃三过程脱硝率的影响角度分析比较了矿物质的催化能力,并揭示了其催化先进再燃脱硝过程的路径。结果发现:矿物质对再燃、先进再燃脱硝过程均表现出不同程度上的催化能力,且对先进再燃脱硝过程的催化效果最明显,各矿物质的催化能力大小依次为:NaOH> KOH> FeCl_3- Ca(OH)_2;矿物质催化先进再燃脱硝过程是通过催化该过程中的SNCR脱硝过程来实现的。通过分析矿物质对再燃、SNCR、先进再燃三过程中几种主要气相物质体积浓度变化的影响发现:NaOH和KOH可以通过抑制反应区NH_3与氧的氧化反应,从而促进NH_3与NO的还原过程,同时通过增加反应区CH_4与CO的浓度,进一步催化CH_i、NH_i、CO等与NO的同相还原过程;而FeCl_3和Ca(OH)_2对上述两方面影响较弱。因而NaOH和KOH对先进再燃脱硝过程的催化效果要强于FeCl_3和Ca(OH)_2。
     从电石渣对再燃、先进再燃两过程脱硝率、脱硫率的影响角度分析了电石渣对脱硫、脱硝过程的催化性能。结果发现:电石渣能小幅度提高再燃、先进再燃过程脱硫、脱硝效果,但均表现在再燃区初始氧量较低条件下,且电石渣对再燃脱硫、脱硝过程的催化能力要强于先进再燃的脱硫、脱硝过程。通过分析电石渣对再燃、先进再燃过程几种主要气相物质体积浓度变化的影响发现:电石渣和Ca(OH)_2类似,因对反应区气氛影响较弱,所以对脱硫、脱硝效果的催化能力较差。电石渣中的CaO在氧化性或者还原性气氛下会与SO_2反应生成不同的固硫产物,从而达到强化反应过程的脱硫效果。且当Ca/S比大小2.52时,电石渣能提高高氧条件下先进再燃过程脱硫效果。
In China, the NO_x and SO_2 emitted from the coal combustion contribute significantly to the total emission, and there are 35%~40% NO_x from electric power plants. As a result of the environmental problem in the worldwide getting worse and worse, the request of the emission of the main atmosphere pollutants such as NO_x and SO_2 is becoming stricter and stricter. So there need some new technique with a higher NO_x reduction efficiency or SO_2 reduciton efficiency strongly, and it is more cost-efficient to improve the reduction efficiency in the exist equipments for NO_x and SO_2 reduction. There are more and more attention paid to the combining reduction of NO_x and SO_2. At present, there are some studies on the catalysis of mineral matters in the coal ash for NO_x reduction in coal reburing, but only the catalysis for the heterogenous reduction of C-NO is considered. In the text, the catalysis of the mineral matters for the NO_x and SO_2 reduction in the reburning and advanced reburning with pulverized coal is studied, and their catalyses for the homogenous reduction of CHi-NO, NHi-NO and CO-NO are analyzed in order to find out the catalytic paths and reaction mechanism of mineral matters. It can provide a theoretic gist for the improvement of NO_x reduction in the advanced reburning, and it can also supervise the realization of combining reduction of NO_x and SO_2 in the furnace.
     In the text, all the experiments are carried out on a two staged drop flow reactor. There contains two kinds experiments: one is on the catalyses for NO_x reduction in the advanced reburning of NaOH, KOH, FeCl3 and Ca(OH)_2, and the other is on the catalysis for the combining reduction in the advanced reburning of calcium carbide residue (CCR). The effects of the category and load of mineral matters and the original fraction of oxgen (OFO) in the reburning zone on the catalysis of NO_x and SO_2 reduction are studied with the same reaction temperature, the smae fuel ratio, the same NH3/NO ratio and the same resident time.
     Through comparing and analyzing the catalyses for NO_x reduction of mineral matters in the reburning, SNCR process and the advanced reburning get their catalytic capabilities and the catalytic paths. It indicates that: the mineral matters can catalyze the denitrification process of the reburning and advanced reburning in different degrees, and the catalysis for the advanced reburning is more obvious, and the catalytic capabilities of mineral matters are ranked as NaOH> KOH> FeCl_3- Ca(OH)_2; the catalyses for the advanced reburning of mineral matters are realized by their catalyses for the SNCR process contained in the advanced reburning. From the effects on the conversions of some main gas matters in the reburning, SNCR process and advanced reburning by mineral matters, the results can be concluded as following: NaOH and KOH can restrain the oxygenation of NH_3 with oxygen, then promote the reduction of NH_3 with NO, at the same time, they can increase the concentration of CH4 and CO which can catalyze the homogenous reduction of CHi-NO, NHi-NO, CO-NO etc.; however FeCl3 and Ca(OH)_2 have little effects on the two aspects. So NaOH and KOH have a higher catalytic capability on NO_x reduction in the advanced reburning than FeCl3 and Ca(OH)_2.
     Through comparing and analyzing the catalyses for NO_x reduction and SO_2 reduction of calcium carbide residue (CCR), it indicates that: calcium carbide residue (CCR) can improve the desulfurization and denitrification process of the reburning and advanced reburning a little, but it works only when the original fraction of oxygen (OFO) in the reburning zone is low, and its catalysis for the reburning is more obvious than the advanced reburning. From the effects on the conversions of some main gas matters in the reburning and advanced reburning by calcium carbide residue (CCR), the results can be concluded as following: calcium carbide residue (CCR) has a little effect on the NO_x reduction and SO_2 reduction in the reburning and advanced reburning like Ca(OH)_2, due to its few effect on the conversions of the main gas matters in the reaction. The CaO contained in the calcium carbide residue (CCR) can absorb SO_2 in fuel poor or fuel rich in different ways, so it improves the SO_2 reduction. When the Ca/S ratio is larger than 2.52, calcium carbide residue (CCR) can increase the SO_2 reduction efficiency in the advanced reburning when the original fraction of oxygen (OFO) in the reburning zone is high.
引文
1 http://www.zhb.gov.cn/info/bgw/bbgth/200907/W020090713566703031134.pdf
    2 http://www.cnr.cn/allnews/201001/t20100107_505862738.html
    3 http://www.ccnews.gov.cn/commercial/MajorIndus/energy/Pages/a5383dc5-8287-4aaf-bd6b-f5e86a136bbf.aspx
    4 http://www.qyrb.com/epaper/content/20100205/ArticelB2004FM.htm
    5 http://www.chinapower.com.cn/newsarticle/1112/new1112842.asp
    6曾汉才,姚斌,程俊峰,王湘江.关于我国大型锅炉排放评价及其排放标准修订的建议[J].锅炉制造, 2001, 50(4):1~4
    7李子君,陈淑芬.泰安市城区大气环境质量状况及其评价.山东师范大学学报(自然科学版). 2001,16(1):63~67
    8 RT Watson. Climate Change. Cambridge Press. 1992
    9赛俊聪,吴少华,汪洪涛,秦裕琨.中国烟气脱硫技术现状及国产化问题.电站.系统工程. 2003, 19(1):53~54
    10刘恩栋,陆永祺,郝吉明.烟气脱硫技术的综合评价.武汉理工大学学报. 2001, 25(4): 404~407
    11韩愈,常瑞卿. SO_2的污染与控制.包钢科技. 2002, 28(1): 86~89
    12刘宗豪,孟凡华.国内SO_2污染现状及治理技术.辽宁城乡环境科技. 2003, 23(1): 5~7
    13尹华强,刘中正,朱联锡.试论我国二氧化硫污染控制战略.四川环境. 1996, 15(3): 1~4.
    14国家环境保护局. GB13223-2003.火电厂大气污染物排放标准.国家技术监督局. 2003
    15中国环境科学研究院标准编制组.火电厂大气污染物排放标准(征求意见稿), 2009
    16张聚伟.高温条件下NO-焦炭反应动力学的研究.哈尔滨工业大学博士学位论文. 2009
    17 J. A. Miller, C. T. Bowman. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energy. Combust. Sci. 1989, 15: 287~338
    18 P. Glarborg, J. A. Miller, R. J. Kee. Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-stirred Reactors. Combust. Flame. 1986, 65: 177~202
    19郑巧生.巴威公司的低成本NO_x控制技术.锅炉技术. 1995, (5): 27~30
    20何季民.国外煤粉燃烧器技术的新进展.东方电气评论. 1995, 9(4)
    21赵太平. PM浓淡燃烧器在400t/h锅炉上的应用.能源通讯. 1996, (2)
    22田子平.新型煤粉燃烧低NO_x-PM燃烧器.锅炉技术. 1996, (4): 26~30
    23郭晓宁. PM型燃烧器设计分析及其在低灰熔点无烟煤煤粉锅炉炉膛布置中的应用.电站系统工程. 1993, 9(1): 14~22
    24胡荫平,贾鸿祥.新型煤粉燃烧器.西安交通大学出版社, 1993
    25匡江红,丁士发.低负荷稳燃直流燃烧器攻关技术的研究.动力工程. 2000, 20(2): 611~614
    26刘贵苏,陈世英.宽调节比燃烧技术的研究.中国电机工程学报. 1996, 16(1): 54~58
    27孙绍增.水平浓缩煤粉燃烧过程的研究.哈尔滨工业大学博士学位论文. 1995
    28 Sun Shaozeng. Horizontal Bias Combustion Burners for low Rank Coal of China. Fifth International Conference on Technologies and Combustion for a Clean Environment, VolumeⅡ. 1999: 881~886
    29邢春礼.水平浓缩煤粉燃烧流动问题的研究.哈尔滨工业大学博士学位论文. 1995
    30朱彤.直流燃烧器结构与运行参数对炉内空气动力场影响的研究.哈尔滨工业大学博士学位论文. 1997
    31张晓辉,孙锐,孙绍增,秦明.燃尽风与水平浓淡燃烧联用对NO_x生成的影响.电机工程学报. 2007, 27(29):56~61
    32 N. A. Burdett. Effects of Air Staging on NO_x Emissions from a 500MW Down-fired. Journal of the Institute of Energy. 1987, 60(444): 103~107
    33 S. L. Chen. NO_x Formation from Different Coal Types in a Bench Scale Reactor under Excess Air and Staged Combustion Conditions. Energy and Environmental Research Corporation. 1981
    34 H. Spliethoff. Low-NO_x Combustion for Pulverized Coal a Comparison of Air Staging and Reburning. Inst. Energy’s Int. Conf. Combust. Emiss. Control Proc. Inst. Energy Conf. 2nd. 1995: 61~70
    35王义丹.煤粉再燃与NH3非催化联合还原NO_x过程的试验研究.哈尔滨工业大学硕士学位论文. 2009
    36郝吉明,王书肖,陆永琪编著.燃煤二氧化硫污染控制技术手册.化学工业出版社. 2001, 4
    37 Illan-Gomez M , Linares-Solano A ,Radovic L R ,et al . NO Reduction by Activated Carbons 7. Some Mechanistic Aspects of an Catalyzed and Catalyzed Reaction [ J ] . Energy & Fuels. 1996 ,10(1) :58~168
    38 Vitali V. Lissianski, Vladimir M. Zamansky, Peter M. Maly. Effect of Metal-Containing Additives on NO_x Reduction in Combustion and Reburning.Combustion and Flame. 2001, 125:1118~1127
    39 Yasuo Ohtsukaan, Wu Zhiheng and Edward Furimskyb. Effect of Alkali and Alkaline Earth Metals on Nitrogen Release during Temperature Programmed Pyrolysis of Coal. Fuel. 1997 76(14/15):1361~1367
    40 A. Bueno-Lopez, J. A. Cballero-Suarez, A. Garcia-Gricia. Kinrtic Model for the NO_x Reduction Process by Potassium Containing Coal Char Pellets at Moderate Temperature (350-450℃) in the Presence of O2 and H2O. Fuel Processing Technology. 2006, 87:429~436
    41 A. Bueno-Lopez, A. Garcia-Garcia. Potassium-Containing Coal-Pellets for NO_x Reduction under Gas Mistures of Different Composition. Carbon. 2004, 42: 1568~1574
    42 Tsuyoshi Takuwa, Ichiro Naruse. Detailed Kinetic and Control of Alkali Metal Compounds during Coal Combustion. Fuel Processing Technology. 2007, 88, 1029~1034.2007.
    43 Wu Xianxian, Radovic Ljubisa R. Catalytic Oxidation of Carbon/Carbon Composite Materials in the Presence of Potassium and Calcium Acetates. Carbon.2005, 43:333~334
    44 M. J. Illan-Gomez, S. Brandan, A. Linares-Solano, C. Salinas-Martinez de lecea. NO_x Reduction by Carbon Supporting Potsssium-Bimetallic Catalysts. Environmental. 2000, 25:8~11
    45 A. Bueno-Lopez, A. Garcia-Garcia, J. A. Caballero, A. Linares-Solano. Influence of Potassium Loading at Different Reaction Temperatures on the NO_x Reduction Process by Potassium-Containing Coal Pellets. Fuel. 2003, 82: 267~274
    46 A. Bueno-Lopez, A. Garcia-Garcia, J. A. Caballero. NO_x Reduction by Potassium-Containing Coal Pellets. Fuel Processing Technology. 2002, 77/78: 301~307
    47 Avelina Garcia-Garcia, Maria Jose Illan-Gomez, Angel Linares-Solano, Concepcion Salinas-Martinez de Lecea. Potassium-Containing Briquetted Coal for the Reduction of NO. Fuel. 1997, 76(6):499~505
    48周俊虎,温正城,王智化,杨卫娟,刘建忠,岑可法.用煤粉来再燃脱硝中金属氧化物催化作用的实验研究.高校化学工程学报. 2008, 22(1)
    49 Garcí-García , Avelina , María José, et al . Potassium Containing Briquetted Coal for the Reduction of NO [J ] . Fuel. 1997, 76(6):499~505
    50 M. Jose Illan-Gbmez, Angel Linares-Solano," Ljubisa R. Radovic, Concepcih Salinas-Martinez de Lecea. NO Reduction by Activated Carbons. 2. Catalytic Effect of Potassium.Energy & Fuels. 1995, 9:97~103
    51 M. Jose Illan-Gbmez, Angel Linares-Solano," Ljubisa R. Radovic, and Concepcih Salinas-Martinez de Lecea.NO Reduction by Activated Carbons. 4.Catalysis by Calcium.Energy &Fuels. 1995, 9:112~118
    52 M. Jose Illan-Gbmez, Angel Linares-Solano," Ljubisa R. Radovic, and Concepcih Salinas-Martinez de Lecea.NO Reduction by Activated Carbons.
    5.Catalytic Effect of Iron Energy & Fuels. 1995, 9:540~548
    53赵宗彬,李文,李保庆.半焦负载钙和铁催化还原NO的研究.环境科学. 2001, 22(5)
    54赵宗彬,李文,李保庆.半焦负载Na2Fe催化还原NO的研究.环境化学.2002, 21(1)
    55赵宗彬,李保庆.煤半焦负载钠催化还原NO的研究.环境工程. 2001, 19(2)
    56钟北京,施卫伟,傅维标.煤焦再燃过程中催化剂对NO还原的影响.热能动力工程.第16卷(总第93期), 2001年5月
    57闫晓,车得福,徐通模.煤灰及各种矿物质对SO_2排放特性的影响.燃料化学学报. 2005, 33(3)
    58龚德鸿,钱进,朱兵.电石渣在电厂烟气脱硫中的应用.锅炉技术. 2008, 39(6)
    59唐浩,钟北京.不同催化剂对脱矿煤焦还原NO的催化能力比较.热能动力工程. 2005, 20(1)
    60唐浩,钟北京. CaO对煤焦还原NO的催化作用.工程热物理学报. 2003, 24(6)
    61孟辉,王永征,路春美,井汇.灰分和黄铁矿对燃煤NO和SO_2生成的影响.站系统工程. 2006, 22(3)
    62魏砾宏,姜秀民,杨天华,李延吉,王雷.矿物成分对超细化煤粉燃烧过程中氮转化的影响.环境科学学报. 2006, 26(11):1780~1784
    63 Ralf F W Kopsel, Sven Halang. Calalytic Influence of Ash Elements on NO_x Formation in Char Combustion under Fluidized Bed Conditions. Fuel. 1997, 76(4):345~351
    64 M. J. Illan-Gomez, E. Raymundo-Pinero, A. Garcia-Garcia, A. Linares-Solano, C. Salinas-Martinez de Lecea. Catalytic NO_x Reduction by Carbon Supporting Metals. Environmental. 1999, 20: 267~275
    65刘银河,刘艳红,车得福,徐通模.煤中灰分和钠添加剂对煤燃烧中氮释放的影响.中国电机工程学报. 2005, 25(4)
    66 Yuye Xue, Guanzhong Lu, Yun Guo, Yanglong Guo, Yanqian Wang, Zhigang Zhang. Effct of Pretreatment Method of Activated Carbon on the Catalytic Reduction of NO by Carbon over CuO. Environmental. 2008. 79: 262~269
    67乔晋红,赵炜.以模型化合物吡啶研究煤中氮转化成HCN和NH3的机理.质谱学报. 2005, 26(3)
    68高正阳.煤粉再燃还原NO_x的实验研究与机理分析.华北电力大学生博士论文. 2003.
    69路军锋.不同再燃燃料还原NO_x反应过程的试验研究.哈尔滨工业大学硕士论文. 2008.
    70孟德润,赵翔,周俊虎,岑可法.水煤浆热解过程中HCN和NH3释放特性的分析.热能动力工程. 2006, 21(4)
    71 Vladimir M. Zamansky, Peter M. Maly, Loc Ho, Vitali V. Lissianski, Darwin Rusli. Promotion of Selective Non-Catalytic Reduction of NO by Sodium Carbonate. Twenty-seventh Sympostium (International) on Combustion/ The combustion Institute. 1998, 1443~1449
    72武洋仿,景晓霞,孙鸿,常丽萍.煤种及气氛对煤热解中NH3和HCN释放的影响.山西化工. 2008, 28(1)
    73闫金定,崔洪,杨建丽,刘振宇.热重质谱联用研究兖州煤的热解行为.中国矿业大学学报. 2003, 32(3)
    74段春雷.低中变质程度煤的结构特征及热解过程中甲烷、氢气的生成机理.太原理工大学硕士论文. 2007
    75曹庆喜,吴少华,刘辉.添加剂对选择性非催化还原脱硝及NH3氧化影响的实验研究.中国电机工程学报. 2009,29(11)
    76于海洋,杨石,张海,吕俊复.生物质再燃还原NO_x的机理分析.电站系统工程. 2008, 24(1)
    77 George E K, Rechard J W. Equilibrium Studies of Direct Reduction of SO_2 by Coal[J]. Fuel. 1984, 63:1450~1454
    78郑诗礼,杨松青,张宏闻等.碳热还原二氧化硫的热力学平衡验证[J].环境化学. 1997, 16(4):300~305
    79王树森,凌爱莲,王志忠等.从含硫废气中回收单质硫[J].北京工业大学学报. 1991, 17(4):76~81
    80凌爱莲,王志忠,王树林.排烟脱硫新方法的研究[J].北京工业大学学报, 1992, 18(2):74~79
    81王树森,凌爱莲,王志忠等. SO_2还原为单质硫的条件研究[J].北京工业大学学报, 1992, 18(1):56~61
    82 Chung J S, Paik S C, Kim H S, et al. Removal of H2Sand/or SO_2 by Catalytic Conversion Technologies [J]. Catal Today. 1997, 35:37~43
    83 Quinlan C W, Okay V C, Kittrrll J R. Simultaneous Catalytic Reduction of Nitric Oxide and Sulfur Dixoide by Carbon Monoxide [J]. Ind Eng Chem Procees Des Dev. 1973, 12(3):359~365
    84 Hibbert D B, Tseung A C, Catalyst Participation in the Reduction of Sulfur Dioxide by Carbon Monoxide in the Presence of Water and Oxygen [J]. J Chem Soc Faraday Trans I. 1978, 74:1981~1989
    85 Okay V C, Short W L. Effect of Water on Sulfur Dioxide Reduction by Carbon Momoxide [J]. Ind Eng Chem Process Des Dev. 1973, 12(3):291~294
    86 Goetz V N, Sood A, Kittrell J R. Catalyst Evaluation for the Simultaneous Reduction of SO_2 and NO by CO [J]. Ind Eng Chem Prod Res Dev. 1974, 13(2):110~114
    87 Ryason P R, Harkins. Studies on a New Method of Simultaneously Removing SO_2 and NO from Combusition Gases [J]. J. Air Pollution Control Association, 1967, 17(12):796~799
    88 Quinlan C W, Okay V C, Kittrell J R. Kinetics and Yields for SO_2 Reduction by CO [J]. Ind Eng Chem Proc Des Dev. 1973, 12(1):107~111
    89 Querido R, Short W L. Removal of SO_2 from Stack Gases by Catalytic Reduction to Elemental Sulfur with CO [J]. Ind Eng Chem Process Des Dev. 1973, 12(1):10~17
    90 Haas L A, Khalafalla S E. Kinetic Evidence of a Reactive Intermediate in Reduction of SO_2 with CO [J]. J Catal. 1973, 29:264~269
    91 Happel J, Hnatow M A, Bajars L, et al. Lanthanum Titanate Catalyst-SO_2 Reduction [J]. Ind Eng Chem Prod Res Dev. 1975, 14(3):154~158
    92 Hibbert D B, Tseung A C C. The Reduction of SO_2 by CO on a La0.5Sr0.5CoO3 Catalyst [J]. J Chem Tech Biotechnol,. 1979, 29:713~722
    93 Bagllo J A. Lanthanum Oxysulfide as a Catalyst for the Oxidation of CO and COS by SO_2 [J]. Ind Eng Chem Prod Res Dev. 1982, 21(1):38~41
    94 Ma J X, Fang M. Lau N T. On the Synergism between La2O2S and CoS2 in the Rduction of SO_2 by CO [J]. J Catal. 1996. 158:251~259
    95 Liu W, Sarofim A F, Stephanopoulos M F. Reduction of SO_2 by CO to Elemental Sulfur over Composite Oxide Catalysts [J]. Appl Catal B. 1994, 4:167~186
    96 Ma J X, Fang M, Lau N T. Activation of La2O3 for the Catalytic Reduction of SO_2 by CO [J]. J Catal. 1996, 163:271~278
    97 Ma J X, Fang M,Lau N T. The Catalytic Reduction of SO_2 by CO over La2O2S [J]. Appl Catal. 1997, 150:253~268
    98 Helmstrom J J, Atwood G A. The Kinetics of the Reduction of SO_2 with Methane over a Bauxite Catalyst [J]. Ind Eng Chem Prod Res Dev. 1978, 17:114~117
    99 Sariis J, Berk D. Reduction of SO_2 with CH4 over Activated Alumina [J]. Ind Eng Chem Res. 1988, 27:1951~1954
    100 Mulligan D J, Dberk D. Reduction of SO_2 with CH4 over Selected TransitionMetal Sulfides [J]. Ind Eng Chem Res. 1989, 28:926~931
    101 Mulligan D J, Berk D. Reduction of SO_2 over Alumina-supported Molybdenum Sulfide Catalysts [J]. Ind Eng Chem Res. 1992, 31:119~125
    102 Mulligan D J, Tan K, Berk D. A Study of Supported Molybdenum Catalysts for Reduction of SO_2 with CH4: Effect of Sulphidation Method [J]. Can J Chem Eng. 1995, 73:351~356
    103 Sarlis J. Berk D. Reduction SO_2 by CH4 over Transition Oxide Catalysts[J]. Chem Eng Common. 1996, 140:73~85
    104 Yu J J, Yu Q Q, Jin Y, et al. Reduction of SO_2 by CH4 to Elemental Sulfur over Supported Cobalt Catalysts [J]. Ind Eng Chem Res. 1997, 36:2128~2133
    105 Karl P S., Hill N J, Peter E D. Catalytic Decomposition of Ammonia from Coke-oven Gas[J]. Iron and Steel Eng. 1990, (12):42~46
    106 Murdock D L, Atwood G A. Kinetics of Catalytic Reduction of SO_2 With Hydrogen [J]. Ind Eng Chem Process Des Dev. 1974, 13(3):254~260
    107 Moody D C, Ryan R R, Salazar K V. Catalytic Reduction of Sulfur Dioxide [J]. J Catal. 1981, 70:221~224
    108 Paik S C, Chung J S. Selective Catalytic Reduction of SO_2 with Hydrogen to Elemetal Sulfur over Co-Mo/Al2O3[J]. Appl Catal B. 1995, 5:233~243
    109 Paik S C, Chung J S. Selective Hydrogenation of SO_2 to Elemetal Sulfur over Transition Metal Sulfides Supported on Al2O3[J]. Appl Catal B. 1996, 8:267~279
    110曹欣玉,范红宇,周俊虎,程军,赵翔,刘建忠,黄镇宇,周志军,岑可法. W型火焰煤粉炉两段喷钙脱硫技术的试验研究. 2003, 23(3)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700