无穷大二维周期加强板的声振特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
周期加强板结构广泛应用于机械工程、航空航天、船舶潜艇和车辆工程等领域,因而与其相关的振动及声学特性的研究具有十分重要的工程价值。为了深入分析周期加强板的声振特性,本文对其振动响应、声辐射、反射和透射等性质进行了系统研究,并对周期加强的微穿孔板的吸声性能进行了分析。其中主要研究内容包括:
     (1)综合运用空间波数法、格林函数、泊松迭加公式和傅里叶变换等数学方法分析了流体负载下的,异向正交周期加筋和同向双周期加筋两种不同类型加筋薄板结构在谐振面力作用下的振动响应和声辐射。对于异向正交周期加筋薄板,采用空间波数法将其振动位移及辐射声压表达为一系列谐波分量的迭加。对于同向双周期加筋薄板,利用分量迭加公式及结构周期性质,求解得到其振动位移及辐射声压方程。同时分析了加强筋对薄板的法向力作用及扭矩作用。计算结果表明周期加强筋在中低频域区间起到了降低薄板辐射声压的作用。
     (2)研究了流体负载下的不同类型双周期加强薄板,在谐振面力激励下的振动响应和声辐射,并提出了一种基于有限元和空间波数法的半解析半数值方法;附加的周期结构可以是包含筋在内的任意不同形状的结构。为了得到不同类型周期结构与薄板间的作用力,基于有限元的思想对周期结构进行单元离散,将薄板与周期结构的面力等效为离散节点力的作用,并最终将周期加强板的振动位移和辐射声压方程表达为薄板离散点位移的函数。运用加强板结构周期性质及空间波数理论,在实际分析时只需要计算一个周期单元的离散点位移,有效地降低了计算工作量。
     (3)分别通过均匀等效模型和周期模型两种建模方法研究了双周期肋骨连接的双层板结构的反射和透射声压;并在单层周期加筋板的基础上,对另外一种类型的拉杆连接的双层周期加筋板结构采用周期模型方法进行了研究。双层薄板结构附加周期连接肋后增加了结构的平均反射声压而降低了其透射声压。拉杆对双层加筋板结构反射和透射声压的影响主要是在几千赫兹内的中低频域区间。
     (4)采用耦合法和级联法两种方法研究了单层及多层双周期加强板的透声系数。耦合法是同时对整体多层加强板结构进行分析,并将所有声振未知量在统一的矩阵方程中计算求解得到。级联法是首先分析单层板结构的振动及声压方程,并在此基础上通过声波的空间传播性质以及各层板声压矩阵的级联得到整体多层结构的反射及透射声压系数矩阵。在水中环境下加强板结构的弯曲振动作用显著,且周期结构起到了降低结构透声系数的作用。
     (5)基于微穿孔板相关声学理论的基本公式,研究了周期加强微穿孔板的吸声性质,并在单层板结构反射与透射系数矩阵的基础上,通过级联的方法进一步分析了多层周期加强微穿孔板的吸声特性,并与单层结构进行了比较。分析结果表明,水中周期加强的微穿孔板的吸声性能远高于未加强的微穿孔板的吸声性能,多层板结构具有比单层结构更优良的吸声性能,且吸声系数随穿孔板层数的增加而增大。通过对薄板加工微孔和附加适当周期结构的方法可以有效地提高水下薄板的吸声性能,对吸声结构的设计和研究具有重要价值。
The study of the vibration and acoustic properties of periodically stiffened plates is practically important due to their widely applications in mechanical engineering, aerospace, submarine and automotive engineering fields, etc. To better analyze the vibro-acoustic properties of the periodically stiffened plates, their vibration response, acoustic radiation, reflection and transmission characteristics are systematically studied here. Furthermore, the acoustic absorption performance of the micro-perforated and periodically stiffened plates is also investigated. The doctoral dissertation mainly consists of five sections, which includes:
     (1) The vibration response and acoustic radiation of two kinds of periodically rib-stiffened plates under fluid loading are analyzed by employing the space harmonic method, Green function, Possion's summation formulas and Fourier transforms, comprehensively. The two kinds of stiffened plates include infinite plates periodically stiffened by two orthogonal sets of ribs and stiffened by two different sets of ribs along one direction respectively, both of which are exerted by a harmonic plane pressure. For the orthogonally rib-stiffened plate, the vibration displacement and acoustic radiation are expressed as sums of a series of harmonic amplitudes by using the space harmonic method. For the one-directionally rib-stiffened plate, the infinite amplitude summation formula and the periodic property of stiffened plates are utilized for obtaining its vibration response and acoustic radiation expressions. The vertical forces and torsional moment applied on the plate by the ribs are considered together. Through numerical analysis, it is found that the ribs can help degrading the acoustic radiation pressure of the plate in the middle and low frequency ranges.
     (2) The vibration response and acoustic radiation of an infinite fluid-loaded plate, which is two-dimensionally periodically stiffened by various kinds of structures and excited by a harmonic plane pressure, are investigated deeply. The periodic structures can be given as any geometrical shapes including the ribs. And a semi-analytical approach based on the finite element method (FEM) and the space harmonic method is also proposed for analyzing periodically stiffened plates. To obtain the reaction forces of the periodic structures exerted on the plate, each structure is discretized into a sufficient number of finite elements and nodal points with the FEM, and then the reaction forces are approximated by the equivalent nodal forces. Finally, the vibration displacement and acoustic radiation pressure of the periodically stiffened plate are expressed as functions in terms of discrete point displacements of the studied plate. With employing the periodic property of the stiffened plate, only one periodic structure need be actually discritized, which greatly reduces the task of computational work.
     (3) The acoustic reflection and transmission pressures of a double-plate structure periodically linked by rib-like structures are studied respectively through the smeared model and periodic model. And another kind of two-layered rib-stiffened plate structure periodically linked by rods is also investigated by using the periodic model based on the single rib-stiffened plate. It is found that for the first kind of structures, the periodic rib-like structures lead to higher averaged acoustic reflection pressure and lower acoustic transmission pressure in the studied frequency range. For the second kind, the influences of the rods on the stiffened plates are mainly in the low and middle frequency ranges of several thousand hertzs.
     (4) The transmission coefficients of single layered and multilayered periodically stiffened plates are investigated by respectively using the coupled method and cascade connection method. The coupled method is to simultaneously analyze the multilayered plate structures and all the unknown vibro-acoustic parameters will be solved in one matrix equation. The cascade connection method is to firstly analyze the vibro-acoustic equations of one single layered plate, and then the acoustic propagation property and the cascade connection of acoustic pressure coefficient matrix of each plate will be applied to obtain the whole acoustic reflection and transmission coefficient matrices. Numerical result shows that the flexural vibration of the stiffened plate is significant and the periodic structures can decrease the plate's transmission coefficient in the water.
     (5) Based on the fundamental acoustic formulas of micro-perforated plates, the acoustic absorption performance of two-dimensionally periodically stiffened and micro-perforated plates is investigated. Meanwhile, the cascade connection method is employed to study the multilayered micro-perforated and periodically stiffened plate with using the reflection and transmission matrices of the single layered perforated plate. Furthermore, the absorption coefficients of one single layered and multilayered such plates are also compared. Numerical results indicate that the stiffened micro-perforated plate has better sound absorption property than the unstiffened perforated plate in the water. Also, multilayered plates have larger absorption coefficient than single layered ones, which increases with layer numbers. Consequently, attaching periodic structures to the plate and perforating it with micro-holes can effectively improve the sound absorption property of plates in the water, which is promising for the future research and practical design of acoustic absorption structures.
引文
[1]Lamb G L. Input impedance of a beam coupled to a plate [J]. Journal of the Acoustical Society of America,1961,33(5):628-633.
    [2]Ungar E E. Transmission of Plate Flexural Waves through Reinforcing Beams; Dynamic Stress Concentrations [J]. Journal of the Acoustical Society of America,1961,33(5): 633-639.
    [3]Maidanik G. Response of ribbed panels to reverberant acoustic fields [J]. Journal of the Acoustical Society of America,1962,34(6):809-826.
    [4]Heckl M. Wave propagation on beam-plate systems [J]. Journal of the Acoustical Society of America,1961,33(5):640-651.
    [5]Laura P A A, Gutierrez A. A note on transverse vibration of stiffened rectangular plates with edges elastically restrained against rotation [J]. Journal of Sound and Vibration,1981,78(1):139-144.
    [6]Bhat R B. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz methods [J]. Journal of Sound and Vibration,1985,102(4):493-499.
    [7]Gutierrez A, Laura P A A. Transverse vibration of rectangular plates elastically restrained against rotation along the edges with varying stiffener length [J]. Journal of Sound and Vibration,1985,101(1):122-124.
    [8]Mizusawa T, Kajita T, Naruoka M. Vibration of stiffened skew plates by using B-spline functions [J]. Computers & Structures,1979,10(5):821-826.
    [9]Mittelstedt C. Explicit local buckling analysis of stiffened composite plates accounting for periodic boundary conditions and stiffener-plate interaction [J]. Composite Structures,2009,91(3):249-265.
    [10]Aksu G, Ali R. Free vibration analysis of stiffened plates using finite difference method [J]. Journal of Sound and Vibration,1976,48(1):15-25.
    [11]Aksu G, Ali R. Free vibration analysis of stiffened plates including in-plane inertia [J]. Journal of Applied Mechanics-ASME,1982,49:206-212.
    [12]Mukhopadhyay M. Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, Part I:Consideration of bending displacements only [J]. Journal of Sound and Vibration,1989,130(1):27-39.
    [13]Mukhopadhyay M. Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, Part Ⅱ:consideration of bending and axial displacements [J]. Journal of Sound and Vibration,1989,130(1):41-53.
    [14]Sheikh A H, Mukhopadhyay M. Free vibration analysis of stiffened plates with arbitrary planform by the general spline finite strip method [J]. Journal of Sound and Vibration, 1993,162(1):147-164.
    [15]Long B R. A stiffness-type analysis of the vibration of a class of stiffened plates [J]. Journal of Sound and Vibration,1971,16(3):323-335.
    [16]Keltie R F. Structural acoustic response of finite rib-reinforced plates [J]. Journal of the Acoustical Society of America,1993,94(2):880-887.
    [17]黎胜,赵德有.加筋板结构声传输研究[J].船舶力学,2001,5(4):61-66.
    [18]黎胜,赵德有.用耦合有限元/边界元法研究加筋板的声传输[J].振动工程学报,2001,14(3):364-367.
    [19]Cotoni V, Langley R S, Shorter P J. A statistical energy analysis subsystem formulation using finite element and periodic structure theory [J]. Journal of Sound and Vibration, 2008,318(4-5):1077-1108.
    [20]Langley R S, Smith J R D, Fahy F J. Statistical energy analysis of periodically stiffened damped plate structures [J]. Journal of Sound and Vibration,1997,208(3):407-426.
    [21]Legault J, Mejdi A, Atalla N. Vibro-acoustic response of orthogonally stiffened panels: The effects of finite dimensions [J]. Journal of Sound and Vibration,2011,330(24): 5928-5948.
    [22]Eatwell G P, Butler D. The response of a fluid-loaded beam-stiffened plate [J]. Journal of Sound and Vibration,1982,84(3):371-388.
    [23]Dozio L, Ricciardi M. Free vibration analysis of ribbed plates by a combined analytical-numerical method [J]. Journal of Sound and Vibration,2009,319(1-2): 681-697.
    [24]Efimtsov B M, Lazarev L A. Forced vibrations of plates and cylindrical shells with regular orthogonal system of stiffeners [J]. Journal of Sound and Vibration, 2009,327(1-2):41-54.
    [25]Liu B L, Feng L P, Nilsson A. Sound transmission through curved aircraft panels with stringer and ring frame attachments [J]. Journal of Sound and Vibration,2007,300(3-5): 949-973.
    [26]Li F M, Wang Y S, Hu C, et al. Localization of elastic waves in periodic rib-stiffened rectangular plates under axial compressive load [J]. Journal of Sound and Vibration, 2005,281(1-2):261-273.
    [27]Munjal M L. Response of a multi-layered infinite plate to an oblique plane wave by means of transfer matrices [J]. Journal of Sound and Vibration,1993,162(2):333-343.
    [28]El-Raheb M, Wagner P. Effect of end cap and aspect ratio on transmission of sound across a truss-like periodic double panel [J]. Journal of Sound and Vibration,2002,250(2): 299-322.
    [29]Mead D J. Free wave propagation in periodically supported, infinite beams [J]. Journal of Sound and Vibration,1970,11(2):181-197.
    [30]Mead D J, Pujara K K. Space-harmonic analysis of periodically supported beams:response to convected random loading [J]. Journal of Sound and Vibration,1971,14(4):525-541.
    [31]Mead D J. Vibration response and wave propagation in periodic structures [J]. Transactions of the American Society of Mecanical Engineering,1970,93(Series B): 783-792.
    [32]Lin Y K, McDaniel T J. Dynamics of beam-type periodic structures [J]. Transactions of the American Society of Mecanical Engineering,1969,91(Series B):1133-1141.
    [33]Mercer C M, Seavey C. Prediction of natural frequencies and normal modes of skin-stringer panel rows [J]. Journal of Sound and Vibration,1967,6(1):149-162.
    [34]Zhong W X, Williams F W. On the direct solution of wave propagation for repetitive structures [J]. Journal of Sound and Vibration,1995,181(3):485-501.
    [35]Rumerman M L. Vibration and wave propagation in ribbed plates [J]. Journal of the Acoustical Society of America,1975,57:370-373.
    [36]Mead D J. An approximate theory for the sound radiation from a periodic line-supported plate [J]. Journal of Sound and Vibration,1978,61(3):315-326.
    [37]Mead D J. A new method of analyzing wave propagation in periodic structures; Applications to periodic timoshenko beams and stiffened plates [J]. Journal of Sound and Vibration,1986,104(1):9-27.
    [38]Mead D J, Parthan S. Free wave propagation in two-dimensional periodic plates [J]. Journal of Sound and Vibration,1979,64(3):325-348.
    [39]Mead D J, Zhu D C, Bardell N S. Free vibration of an orthogonally stiffened flat plate. Journal of Sound and Vibration [J]. Journal of Sound and Vibration,1988,127(1):19-48.
    [40]Mead D J. Plates with regular stiffening in acoustic media:vibration and radiation [J]. Journal of the Acoustical Society of America,1990,88(1):315-326.
    [41]Mead D J. The forced vibration of one-dimensional multi-coupled periodic structures: An application to finite element analysis [J]. Journal of Sound and Vibration, 2009,319(1-2):282-304.
    [42]Mace B R. Sound radiation from a plate reinforced by two sets of parallel stiffeners [J]. Journal of Sound and Vibration,1980,71(3):435-441.
    [43]Mace B R. Periodically stiffened fluid-loaded plates, I:response to convected harmonic pressure and free wave propagation [J]. Journal of Sound and Vibration,1980,73(4): 473-486.
    [44]Mace B R. Periodically stiffened fluid-loaded plates, Ⅱ:response to line and point forces [J]. Journal of Sound and Vibration,1980,73(4):487-504.
    [45]Mace B R. Sound radiation from fluid loaded orthogonally stiffened plates [J]. Journal of Sound and Vibration,1981,79(3):439-452.
    [46]Mace B R. The vibration of plates on two-dimensionally periodic point supports [J]. Journal of Sound and Vibration,1996,192(3):629-643.
    [47]Maxit L. Wavenumber space and physical space responses of a periodically ribbed plate to a point drive:A discrete approach [J]. Applied Acoustics,2009,70(4):563-578.
    [48]Zhou H A, Wang X M, Mei Y L. A semi-analytical method for the vibration of and sound radiation from a two-dimensional beam-stiffened plate [J]. Acta Mechanica Solida Sinica,2011,24(3):231-240.
    [49]Lee J -H, Kim J. Analysis of sound transmission through periodically stiffened panels by space-harmonic expansion method [J]. Journal of Sound and Vibration,2002,251(2): 349-366.
    [50]吴文伟,冷文浩,沈顺根.具有等间距相同加强筋板的声辐射[J].中国造船,1999,146(3):72-81.
    [51]Yin X W, Gu X J, Cui H F, et al. Acoustic radiation from a laminated composite plate reinforced by doubly periodic parallel stiffeners [J]. Journal of Sound and Vibration, 2007,306(3-5):877-889.
    [52]Cao X T, Hua H X, Zhang Z Y. Sound radiation from shear deformable stiffened laminated plates [J]. Journal of Sound and Vibration,2011,330(16):4047-4063.
    [53]Xin F X, Lu T J. Sound radiation of parallelly stiffened plates under convected harmonic pressure excitation [J]. SCIENCE CHINA Technological Sciences,2012,55(2):496-500.
    [54]Mead D J, Mallik A K. An approximate theory for the sound radiated from a periodic line-supported plate [J]. Journal of Sound and Vibration,1978,61(3):315-326.
    [55]Williams F W, Ouyang H J, Kennedy D, et al. Wave propagation along longitudinally periodically supported or stiffened prismatic plate assemblies [J]. Journal of Sound and Vibration,1995,186(2):197-205.
    [56]Williams F W, Ouyang H J, Kennedy D, et al. Computation of the eigenvalues of wave propagation in periodic substructural systems [J]. Journal of Vibration and Acoustics——Transactions of the ASME,1993,115:422-426.
    [57]Ouyang H J, Williams F W, Kennedy D. A general method for analyzing wave propagation along longitudinally periodic structures, [J]. Journal of Sound and Vibration, 1994,177(2):277-281.
    [58]Brown G P, Byrne K P. Determining the response of infinite, one-dimensional, non-uniform periodic structures by substructuring using waveshape coordinates, [J]. Journal of Sound and Vibration,2005,287(3):505-523.
    [59]Arruda J R F, Gautier F, Donadon L V. Computing reflection and transmission coefficients for plate reinforcement beams, [J]. Journal of Sound and Vibration,2007,307(3-5): 564-577.
    [60]Cotoni V, Langley R S, Shorter P J. A statistical energy analysis subsystem formulation using finite element and periodic structure theory, [J]. Journal of Sound and Vibration, 2008,318(4-5):1077-1108.
    [61]Lin G F, Garrelick G M. Sound transmission through periodically framed parallel plates, [J]. Journal of the Acoustical Society of America,1977,61(4):1014-1018.
    [62]Takahashi D. Sound radiation from periodically connected double-plate structures, [J]. Journal of Sound and Vibration,1983,90(4):541-557.
    [63]Wang J, Lu T J, Woodhouse J, et al. Sound transmission through lightweight double-leaf partitions:theoretical modelling, [J]. Journal of Sound and Vibration,2005,286(4-5): 817-847.
    [64]Legault J, Atalla N. Numerical and experimental investigation of the effect of structural links on the sound transmission of a lightweight double panel structure, [J]. Journal of Sound and Vibration,2009,324(3-5):712-732.
    [65]Legault J, Atalla N. Sound transmission through a double panel structure periodically coupled with vibration insulators, [J]. Journal of Sound and Vibration,2010,329(15): 3082-3100.
    [66]Xin F X, Lu T J. Sound radiation of orthogonally rib-stiffened sandwich structures with cavity absorption, [J]. Composites Science and Technology,2010,70:2198-2206.
    [67]Xin F X, Lu T J. Analytical modeling of fluid loaded orthogonally rib-stiffened sandwich structures:Sound transmission, [J]. Journal of the Mechanics and Physics of Solids, 2010,58(9):1374-1396.
    [68]Xin F X, Lu T J. Analytical modeling of wave propagation in orthogonally rib-stiffened sandwich structures:Sound radiation, [J]. Computers and Structures,2011,89: 507-516.
    [69]余晓菲.加筋圆柱壳在水下爆炸载荷作用下的动力响应及动力屈曲[D].武汉:华中科技大学,2007.
    [70]刘见华,金咸定,李喆.阻振质量阻抑结构声的传递[J].上海交通大学学报,2003,37(8):1201-1204.
    [71]刘见华,金成定,李拮.多个阻振质量阻抑结构声的传递[J].上海交通大学学报,2003,37(8):1205-1208.
    [72]刘洪林,王德禹.阻振质量块对板结构振动与声辐射的影响[J].振动与冲击,2003,22(4):76-79.
    [73]石勇,朱锡,刘润泉.方钢隔振结构对结构噪声隔离作用的理论分析与试验[J].中国造船,2004,45(2):36-42.
    [74]钱德进,姚熊亮,计方,等.多级阻振质量阻隔振动波的传递特性研究[J].应用声学,2009,28(5):321-329.
    [75]王伟.利用附加质量法降低加筋平板声辐射[J].船海工程,2009,38(6):167-170.
    [76]姚熊亮,计方,钱德进,等.偏心阻振质量阻抑振动波传递特性研究[J].振动与冲击,2010,29(1):48-52.
    [77]缪旭弘,钱德进,贾地.环形阻振质量隔振降噪的实船应用研究[J].船舶工程,2011,33(1):33-37.
    [78]刘从光,于德介,姚凌云,等.利用附加质量载荷降低薄板声辐射[J].噪声与振动控制,2010,3:64-66.
    [79]车驰东,陈端石.转角处阻振质量对平面纵波—弯曲波传递衰减作用的研究[J].船舶力学,2011,15(1-2):132-142.
    [80]车驰东,陈端石.成任意角度连接的两块平板转角处阻振质量对平面弯曲波传递的影响分析[J].声学学报,2007,32(3):282-288.
    [81]石勇,朱锡,胡忠平.方钢刚性减振结构对组合板振动影响的计算分析[J].海军工程大学学报,2003,15(2):45-49.
    [82]姚熊亮,计方,钱德进.舰船阻振质量刚性隔振特性研究[J].中国舰船研究,2010,5(5):15-21.
    [83]姚熊亮,计方.动力设备周围阻振质量闭式回路隔振特性研究[J].船舶,2010,2:35-41.
    [84]钱德进,缪旭弘,贾地,等.刚性阻振质量阻隔振动波传递特性数值研究[J].中国舰船研究,2010,5(5):22-26.
    [85]姚熊亮,王强勇,孙明,等.刚性阻振质量在舰船基座设计中的应用研究[J].中国舰船研究,2010,5(3):8-12.
    [86]王祖华,周海波,计方.典型舰船舱壁结构隔振优化设计[J].船舶,2011,1:26-33.
    [87]Liu J H, Jin X D, Li X B. Attenuation of the plate flexural wave transmission through a vibration isolation mass [J]. Journal of Ship Mechanics,2006,10(6):131-137.
    [88]姚熊亮,钱德进,张阿漫,等.刚性阻振降噪技术的应用研究及发展[J].中国舰船研究,2008,3(5):1-6.
    [89]Kopmaz 0, Telli S. Free vibration of a rectangular plate carrying a distributed mass [J]. Journal of Sound and Vibration,2002,251(1):39-57.
    [90]Wong W 0. The effects of distributed mass loading on plate vibration behavior [J]. Journal of Sound and Vibration,2002,252(3):577-583.
    [91]Li S, Li X H. The effects of distributed masses on acoustic radiation behavior of plates [J]. Applied Acoustics,2008,69(3):272-279.
    [92]Alibeigloo A, Shakeri M, Kari M R. Free vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass using third-order shear deformation theory [J]. Ocean Engineering,2008,35(2):183-190.
    [93]Zhou D, Ji T J. Free vibration of rectangular plates with continuously distributed spring-mass [J]. International Journal of Solids and Structures,2006,43(3): 6502-6520.
    [94]张朝晖.计算机在材料科学与工程中的应用[M].长沙:中南大学出版社,2008.
    [95]傅建,彭必友,曹建国.材料成形过程数值模拟[M].北京:化学工业出版社,2009.
    [96]汤蕴璆,梁艳萍.电机电磁场的分析与计算[M].北京:机械工业出版社,2010.
    [97]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [98]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [99]孙炳楠,项玉寅,张永元.工程中边界元法及其应用[M].杭州:浙江大学出版社,1991.
    [100]郑建军,刘兴业,周欣竹.边界元法及其在结构分析中的应用[M].合肥:安徽科学技术出版社,2006.
    [101]朱加铭,欧贵宝,何蕴增.有限元与边界元法[M].哈尔滨:哈尔滨工程大学出版社,2002.
    [102]Woodhouse J. An introduction to statistical energy analysis of structural vibration [J]. Applied Acoustics,1981,14(6):455-469.
    [103]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1995.
    [104]Langley R S. On the Modal Density and Energy Flow Characteristics of Periodic Structures [J]. Journal of Sound and Vibration,1994,172(4):491-551.
    [105]Langley R S, Smith J R D, Fahy F J. Statistical energy analysis of periodically stiffened damped plate structures [J]. Journal of Sound and Vibration,1997,208(3): 407-426.
    [106]马大猷.微穿孔板吸声结构的理论和设计[J].中国科学,1975,18(1):38-50.
    [107]Crandall I B. Theory of Vibrating Systems and Sound [M]. New York:D. Van Nostrand Company,1926.
    [108]Sivian L J. Acoustic impedance of small orifices, [J]. Journal of the Acoustical Society of America,1935,7:94-101.
    [109]Thurston G B. Periodic flow through circular orifices, [J]. Journal of the Acoustical Society of America,1953,25:26-31.
    [110]Ingard K U. On the theory and design of acoustic resonators, [J]. Journal of the Acoustical Society of America,1953,25:1037-1061.
    [11]Melling T H. The acoustic impedance of perforates at medium and high sound pressure levels, [J]. Journal of Sound and Vibration,1973,29(1):1-65.
    [112]马大猷.微穿孔板声阻抗的直接准确测量[J].声学学报,1983,8(5):257-262.
    [113]马大猷.微穿孔板结构的设计[J].声学学报,1988,13(3):174-180.
    [114]马大猷.组合微穿孔板吸声结构[J].噪声与振动控制,1990,18(3):3-9.
    [115]马大猷.微穿孔板吸声体的准确理论和设计[J].声学学报,1997,22(5):385-393.
    [116]Maa D Y. Potential of microperforated panel absorber, [J]. Journal of the Acoustical Society of America,1998,104(5):2861-2866.
    [117]马大猷,刘克.微穿孔吸声体随机入射吸声性能[J].声学学报,2000,25(4):289-296.
    [118]马大猷.微穿孔板的实际极限[J].声学学报,2006,31(6):481-484.
    [119]赵松龄,苏建新.高强度声场中微穿孔板的非线性声阻抗率[J].同济大学学报,1992,20(3):249-256.
    [120]刘克,Nocke C,马大猷.扩散场内微穿孔板吸声特性的实验研究[J].声学学报,2000,25(3):211-218.
    [121]陆凤华,籍仙蓉,王佐民.微穿孔板吸声结构在阶梯教室中的声反射和声吸收性能分析[J].声学学报,2006,31(3):222-227.
    [122]王泽锋,胡永明.水下穿孔板结构的透声特性研究[J].声学学报,2008,33(2):184-191.
    [123]王泽锋,胡永明,倪明,等.用等效结构模型分析水下双层穿孔板结构的吸声特性[J].噪声与振动控制,2008,2:117-129.
    [124]王泽锋,胡永明,倪明,等.用传递矩阵法分析水下穿孔板结构的透声特性[J].振动与冲击,2008,27(3):154-156.
    [125]王泽锋,胡永明,倪明,等.微穿孔板吸声结构水下应用研究[J].应用声学,2008,27(3):161-166.
    [126]罗忠,朱锡,梅志远,等.水理微穿孔吸声体结构设计与实验研究[J].声学学报,2010,35(3):329-334.
    [127]张斌,李林凌,卢伟健.计及孔间相互作用的微穿孔板吸声特性研究[J].应用声学,2010,29(2):134-140.
    [128]赵晓丹,张晓杰,姜哲.三层微穿孔板的优化设计及特性分析[J].声学学报,2008,33(1):84-87.
    [129]查雪琴,康健,张婷,等.单片独立的(stand-alone)微穿孔吸声体[J].声学学报,2005,30(6):493-497.
    [130]姜在秀,王佐民.可压缩偏流条件下穿孔板声阻抗率的分析[J].同济大学学报,2006,34(10):1417-1420.
    [131]王佐民,蔺磊,姜在秀,等.切向流对微穿孔共振吸声结构声学性能的影响[J].声学学报,2009,34(3):350-354.
    [132]蔺磊,王佐民,姜在秀.微穿孔共振吸声结构中吸声材料的作用[J].声学学报,2010,35(4):385-392.
    [133]Zhu C Y, Huang Q B. A method for calculating the absorption coefficient of a multi-layer absorbent using the electro-acoustic analogy [J]. Applied Acoustics,2005,66(7): 879-887.
    [134]Takahashi D, Tanaka M. Flexural vibration of perforated plates and porous elastic materials under acoustic loading [J]. Journal of the Acoustical Society of America, 2002,112(4):1456-1464.
    [135]Sakagami K, Morimoto M, Yairi,M. A note on the relationship between the sound absorption by microperforated panels and panel/membrane-type absorbers [J]. Applied Acoustics,2009,70(8):1131-1136.
    [136]Toyoda M, Tanaka M, Takahashi D. Reduction of acoustic radiation by perforated board and honeycomb layer systems [J]. Applied Acoustics,2007,68(1):71-85.
    [137]Prydz R A, Wirt L S, Kuntz H L, et al. Transmission loss of a multilayer panel with internal tuned Helmholtz resonators [J]. Journal of the Acoustical Society of America, 1990,87(4):1597-1602.
    [138]Stinson M R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape [J]. Journal of the Acoustical Society of America,1991,89(2):550-558.
    [139]Asdrubali F, Pispola G. Properties of transparent sound-absorbing panels for use in noise barriers [J]. Journal of the Acoustical Society of America,2007,121(1): 214-221.
    [140]David Abrahams I. Sound radiation from a line forced perforated elastic sandwich panel [J]. Journal of the Acoustical Society of America,1999,105(6):3009-3020.
    [141]Putra A, Thompson D J. Sound radiation from perforated plates [J]. Journal of Sound and Vibration,2010,329(20):4227-4250.
    [142]Toyoda M, Takahashi D. Reduction of acoustic radiation by impedance control with a perforated absorber system [J]. Journal of Sound and Vibration,2005,286(3): 601-614.
    [143]Toyoda M, Tanaka M, Takahashi D. Reduction of acoustic radiation by perforated board and honeycomb layer systems [J]. Applied Acoustics,2007,68(1):71-85.
    [144]Toyoda M, Mu R L, Takahashi D. Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers [J]. Applied Acoustics,2010,71(4):315-320.
    [145]Sakagami K, Nakamori T, Morimoto M, et al. Double-leaf microperforated panel space absorbers:A revised theory and detailed analysis [J]. Applied Acoustics,2009,70(5): 703-709.
    [146]Sakagami K, Matsutani K, Morimoto M. Sound absorption of a double-leaf micro-perforated panel with an air-back cavity and a rigid-back wall:Detailed analysis with a Helmholtz-Kirchhoff integral formulation [J]. Applied Acoustics, 2010,71(5):411-417.
    [147]Sakagami K, Morimoto M, Yairi M, et al. A pilot study on improving the absorptivity of a thick microperforated panel absorber [J]. Applied Acoustics,2008,69(2):179-182.
    [148]Lee Y Y, Lee E W M, Ng C F. Sound absorption of a finite flexible micro-perforated panel backed by an air cavity [J]. Journal of Sound and Vibration,2005,287(1-2): 227-243.
    [149]Lee Y Y, Lee E W M, Ng C F. Widening the sound absorption bandwidths of flexible micro-perforated curved absorbers using structural and acoustic resonances [J]. International Journal of Mechanical Sciences,2007,49(8):925-934.
    [150]Liu J, Herrin D W. Enhancing micro-perforated panel attenuation by partitioning the adjoining cavity [J]. Applied Acoustics,2010,71(2):120-127.
    [151]Dupont T, Pavic G, Laulagnet B. Acoustic properties of lightweight microperforated plate systems [J]. Acta Acustica united with Acustica,2003,89(2):201-212.
    [152]Mu R L, Toyoda M, Takahashi D. Sound insulation characteristics of multi-layer structures with a microperforated panel [J]. Applied Acoustics,2011,72(2):849-855.
    [153]Zhang Z M, Gu X T. The theoretical and application study on a double layer microperforated sound absorption structure [J]. Journal of Sound and Vibration, 1998,251(3):399-405.
    [154]Zou J, Shen Y, Yang J B, et al. A note on the prediction method of reverberation absorption coefficient of double layer micro-perforated membrane [J]. Applied Acoustics,2006,67(3):106-111.
    [155]Lee F -C, Chen W -H. Acoustic transmission analysis of multi-layer absorbers [J]. Journal of Sound and Vibration,2001,248(4):621-634.
    [156]Kang J, Brocklesby M W. Feasibility of applying micro-perforated absorbers in acoustic window systems [J]. Applied Acoustics,2005,66(6):669-689.
    [157]Onen 0, Caliskan M. Design of a single layer micro-perforated sound absorber by finite element analysis [J]. Applied Acoustics,2010,71(6):79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700