隧洞施工突水突泥机理及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电梯级开发规划促推了我国兴修水利的新一轮高潮,多座水电站应运而生,在水工建设中水工隧洞举足轻重。然而修建长大水工隧洞的过程中,可能遭遇多种复杂不利地质情况,突水突泥的情况时有发生,尤其在断裂破碎带附近突水突泥更为严重,给隧洞施工和周边环境带来极大的威胁。本文依托木里河流域水电工程水工隧洞进行针对性的研究,通过资料调研、理论研究与数值模拟等方式,对不同类型的突水突泥做出了宏观和细观机理的研究,探讨了影响隧洞施工过程中突水突泥的主要因素。
     基于地质构造、岩溶及水文地质条件、围岩性质三方面的分析,对不同地质环境下的突水突泥现象进行分类,确立研究的对象。在此基础上对不同类型突水突泥过程进行现象解释,力学分析,得到突水突泥宏观规律,为后面的数值模拟提供依据。
     根据隧洞施工突水突泥分类,结合颗粒流模拟流固耦合方法,考虑数值方法的适用范围,选用平均中尺度粗糙网格法与虚拟“域”—“通道”法来建立不同类型突水突泥的数值模型,然后分别阐释不同流固耦合数值模型的理论基础和实现方法。
     针对不同类型的突水突泥过程进行模拟和机理研究。首先通过PFC内置系统标定围岩的物理力学参数和水力学参数,建立细观与宏观的联系,同时改变细观组构来模拟不同结构类型的岩体特征;再根据不同突水突泥的类型,分别建立了蚀溃型和劈裂型颗粒流二维模型。最后按散体结构岩体(Ⅴ类围岩)、单节理裂隙岩体(Ⅳ类围岩)、较完整岩体(Ⅲ类围岩)三种围岩环境,模拟各自突水突泥的发生,发展至破坏的过程,研究其机理。结果表明:不同围岩环境与隧洞施工突水突泥类型密切相关,不同渗流场与应力场耦合方式影响突水突泥过程,即蚀溃型突水突泥与劈裂型突泥突水,其过程中的孔隙率变化、裂隙分布、突水突泥量规模、位移大小、突水通道的空间定位各异,其破坏形式存在差别。
     考虑单因素单独作用对突泥突水的影响,模拟单因素变量改变的突泥突水过程,对比因素变化对宏观现象和细观机理带来的改变,由此确定一定环境条件下的临界破坏状态,提出相应的临界值,为实际工程提供参考。
The hydropower cascade development promote a new round high tide of building hydropower engineering in my country,then a large number of hydropower stations were born at the right momen.Hydraulic tunnel is extremely important to hydraulic construction. However.it my encounter a variety of complex and unfavorable geological conditions in the process of building the hydraulic tunnel.The wate-mud-inrush is especially more serious in the fractured zone and bring great threat for tunnel construction and surrounding environment.In this thesis,different types of water-mud-inrush's macroscopic and mesoscopic mechanism are researched through information Investigate, theoretical study and numerical simulation which are based on the hydraulic tunnels of Muli river.The major factors that influence mud-water-inrush in the process of tunnel excavation are discussed.
     Based on geological structure, karst, hydro geological condition and rock property, the macro phenomenon of water-mud-inrush are classified and the research objects is established.For providing the basis for the numerical simulation.it need phenomenon explain,mechanics analysis and theoretical calculation in foundation of classifications to get the macroscopic rule of water-mud-inrush.
     According to the type of water-mud-inrush in the process of tunnel construction, illustrate the theoretical basis and implementation method for different numerical model of fluid-structure coupling after combining methods on particle flow simulation of fluid-structure interactionxonsidering the applicable scope of numerical method.matching suitable numerical models for different types of water-mud-inrush
     To simulate and mechanism research different types of the water-mud-inrush process:Firstly calibrate mechanical parameters and hydraulics parameters of surrounding rock by PFC built-in system to established mesoscopic and macroscopic connection while change micro-structure to modelling different structural types of rock mass characteristics;According to different types of water-mud-inrush,established two dimensional erosive and split particle flow model separately.Different types of water-mud-inrush process are respectively calculated according to the surrounding environment which is loose structure mass (grade V),single joint fractured rock mass(grade IV) and complete rock mass (grade III).Study mechanism and find that the type of water-mud-inrush in the progress of tunnel construction is closely related to the surrounding rock;the different way seepage and stress fields coupled affect water-mud-inrush process which indicate that there is big difference on porosity change,fracture distribution,water-mud-inrush scale,displacement,spatial orientation of water inrush channel and failure mode between erosive and split water-mud-inrush.
     Considering different human and environmental factors influence on water-mud-inrushucompare the change on macroscopic phenomenon and mesoscopic mechanism caused by factor varied.Then determine the critical damage condition and critical value.It provide the reference for tunnel construction.
引文
[1].李利平.路为,李术才,张庆松,许振浩,石少帅.地下工程突水机理及其研究最新进展[J].山东大学学报(工学版).2010,03:104-112+118.
    [2]. KEIJI K.Experiment al study on permeability of crushed rock[J].Memoirs of the Defense Academy,1976,16(4):149-154.
    [3].刘卫群.散体结构岩体的渗流理论及其应用研究[D].北京:中国矿业大学,2002.
    [4].马占国.采空区散体结构岩体中水渗流特性研究[D].徐州:中国矿业大学,2003.
    [5].李顺才.散体结构岩体非Darcy渗流的非线性动力学研究[D].徐州:中国矿业大学,2006.
    [6].刘卫群,缪协兴.综放开采J型通风采空区渗流场数值分析[J].岩石力学与工程学报,2006,25(6):1152-1]58.
    [7].陈占清,缪协兴,刘卫群.采动围岩中参变渗流系统的稳定性分析[J].中南大学学报:自然科学版,2004,35(1):129-132.
    [8].李顺才,陈占清,缪协兴,等.散体结构岩体中气体渗流的非线性动力学研究[J].岩石力学与工程学报,2007,26(7):1372-1380
    [9].尹小涛.岩士材料工程性质数值试验研究[D].中国科学院研究生院(武汉岩土力学研究所),2008.
    [10]].魏龙海.基于颗粒离散元法的卵石层中成都地铁施工力学研究[D].西南交通大学,2009.
    [11]. NOBARI E S, LEE K L, DUNCAN J M. Hydraulic fracturing inzoned earth and rockfill dams[R]. Berkley, California:University ofCalifornia,1973.
    [12].詹美礼,岑建.岩体水力劈裂机制圆筒模型试验及解析理论研究[J].岩石力学与工程学报,2007,26(6):1173-1181
    [13].谢兴华.岩体水力劈裂机理试验及数值模拟研究[D]南京:河海大学,2004.
    [14]. HUBBERT M K, WILLIS D G. Mechanics of hydraulic fracturing[J].Petroleum Transactions AIME,1957,210(1):153-168.
    [15].阳友奎,肖长富,吴刚,等.不同地应力状态下水力压裂的破裂模式[J].重庆大学学报:自然科学版,1993,16(3):30-35.
    [16].仵彦卿,张倬元.岩体水力学导论.[M].成都.西南交通大学出版社,1995
    [17].黄润秋,王贤能,陈龙生.深埋隧道涌水过程的水力劈裂作用分析[J].岩石力学与工程学报,2000,19(5):573—576.
    [18].李宗利,王亚红,任青文.自然营造力作用下岩石单裂纹水力劈裂数值仿真模型[J].岩石力学与工程学报,2007,26(4):727—733.
    [19].谢坤.高水压力作用下岩体水力劈裂的无单元法模拟[D].杭州:浙江大学,2007.
    [20].沈振中,张鑫,孙粤琳.岩体水力劈裂的应力-渗流-损伤耦合模型研究[J].计算力学学报,2009,26(4):524—528.
    [21].杨艳,常晓林,周伟,周创兵.裂隙岩体水力劈裂的颗粒离散元数值模拟[J].四川大学学报(工程科学版),2012,05:78-85.
    [22].汪成兵.软弱破碎隧道围岩渐进性破坏机理研究[D].同济大学,2007.
    [23].汪成兵,朱合华.隧道塌方影响因素离散元分析[J].地下空间与工程学报,2007,S2:1490-1495.
    [24].崔峰,来兴平,曹建涛,朱世阳.急倾斜综放破碎顶煤流动规律数值模拟[J].西安科技大学学报,2010,03:255-259+270.
    [25].苏利军,孙金山,卢文波.基于颗粒流模型的TBM滚刀破岩过程数值模拟研究[J].岩土力学.2009.09:2823-2829.
    [26].周健,张刚,孔戈.渗流的颗粒流细观模拟[J].水利学报,2006,01:28-32.
    [27].周健,姚志雄,张刚.基于散体介质理论的砂土管涌机制研究[J].岩石力学与工程学报,2008,04:749-756.
    [28].罗勇,龚晓南,吴瑞潜.颗粒流模拟和流体与颗粒相互作用分析[J].浙江大学学报(工学版).2007,,11:1932-1936.
    [29].张刚.管涌现象细观机理的模型试验与颗粒流数值模拟研究[D].同济大学,2007.
    [30].庄宁.裂隙岩体渗流应力耦合状态下裂纹扩展机制及其模型研究[D].同济大学,2007.
    [31].白若虚.基于地下水劈裂的基坑突涌破坏机理研究与颗粒流数值模拟[D].天津大学,2012.
    [32].李宗利,张宏朝,任青文,王亚红.岩石裂纹水力劈裂分析与临界水压计算[J].岩土力学,2005,08:1216-1220.
    [33]. XingZhang,DavidJ.SandersonandAndrewJ.Barker.Numerical study of fluid flow of deforming fractured rocks using dual permeability model.[J],Geophys.J.lnt.(2002)151: 452-468
    [34].倪小东,王媛,陆宇光.隧洞施工过程中渗透破坏细观机制研究[J].岩石力学与工程学报,2010,S2:4194-4201.
    [35].王媛,陆宇光,倪小东,李冬田.深埋隧洞施工过程中突水与突泥的机理研究[J].水利学报,2011,05:595-601.
    [36].徐栋栋,邬爱清,孙玉杰.某水电站引水隧洞突水数值模拟[J].长江科学院院报.2010,08:44-49.
    [37].杨天鸿.岩石破裂过程渗透性质及其与应力耦合作用研究[D].东北大学,2001.
    [38].刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质工程地质,1987,02:32-33+28.
    [39].田开铭.裂隙水交义流的水力特性[J].地质学报,1986,02:202-214.
    [40].仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,01:1-5.
    [41].刘宝臣,向志坤.林玉山,卢春名,张炳晖.锦屏二级水电站隧洞工程岩溶涌突水机理[J].桂林工学院学报,2008,04:484-488.
    [42].王建秀,冯波,张兴胜,唐益群,杨坪.岩溶隧道围岩水力破坏机制研究[J].岩石力学与工程学报,2010,07:1363-1370.
    [43].郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报,2005,03:1-6.
    [44].李利平,李术才,张庆松.岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,02:523-528.
    [45].中华人民共和国国家标准.水利水电工:程地质勘察规范(GB50487-2008)[S].2008.12
    [46]. Itasca Consulting Group. Verification Problems and Example Applications [M].USA. Minneapolis,2005:8-9
    [47]. Itasca Consulting Group. Verification Problems and Example Applications [M]. USA. Minneapolis,2005:8-9
    [48]. Cundall P A, Strack O D L. The distinct element method as a tool for research in granular media, Part Ⅱ [R]. Minnesota:University of Minnesota,1979
    [49]. Cundall P A, Strack O D L. A discrete numerical model for granular assembles [J]. Geotechniaue,1979,29(1):47-65
    [50]. Cundall P. A. Discrete Element Models of Rock and Soil Structure [J]. Analytical and Computation Methods in Engineering Rock Mechanic, London:Allen & Unwin,1987
    [51]. Cundall P A. Computer Simulations of Dense Sphere Assemblies [J]. Micromechanics of Granular Materials.1988:113-123
    [52].张文杰,卢兴利.刘豫明.深埋隧洞雁行裂纹剪切破坏细观模拟[J].现代隧道技术,2008.S 1:256-258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700