新型电化学免疫分析仪的研究及其在急性白血病诊断中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫学分型在急性白血病(acute leukemia, AL)诊断中具有重要意义。目前在临床上,AL免疫分型主要是通过两种方法实现,一种是借助显微镜观察的人工计数法(免疫细胞化学或免疫荧光方法),另一种是使用流式细胞仪的流式细胞术(flow cytometry, FCM)。前者具有主观性较强、重复性较差、费时且每次只能检测一种抗原(即低通量)等缺陷;而FCM又因仪器与试剂昂贵难以在基层医院推广应用。因此,建立一种具有高通量、使用简便、灵敏度高、经济、准确、客观且易于临床推广的免疫分型新技术具有十分重要的意义。
     本研究将细胞酶联免疫分析(cell enzyme linked immunosorbent assay, cELISA)技术与电化学分析方法相结合,形成cELISA电化学分析新技术,该技术将cELISA中的酶催化显色反应改为酶催化银沉积反应,再通过电化学分析检测银沉积后电导率的大小来反应抗原量的多少。我们首先研究具有pA级超微电流检测灵敏度的多功能微小新型电化学免疫分析仪。其次,建立一种cELISA酶催化银沉积于插指电极阵列电化学免疫分析(简称为cELISA插指电化学)新方法,并探讨该仪器用于该方法对临床AL标本免疫分型的可行性。最后,探讨该仪器用于电化学阻抗法检测临床AL细胞内髓过氧化物酶(myeloperoxidase, MPO)活性的可行性。
     目的:研究适合于微型电化学传感器超微电流检测的多功能微小新型电化学分析仪。方法:首先,设计硬件电路,包括信号采集放大及转换器、滤波器和短路报警器等电路设计;其次,设计软件程序,包括微控制器程序、通讯软件和上位机软件设计。最后,采用线性扫描伏安法及电化学阻抗法对设计的新型电化学免疫分析仪的性能进行了测试。结果:新型电化学免疫分析仪检测到小于10pA量级的微电流;分析仪产生、显示和记录出阻抗波形图。结论:性能测试结果表明,新型电化学免疫分析仪满足微电流、多功能的设计要求,是一套具有应用价值的高集成度和高精度的微小仪器。
     目的:探讨新型电化学免疫分析仪用于本研究建立的cELISA插指电化学分析新方法对临床AL标本免疫分型的可行性。方法:在微孔板内,用多聚左旋赖氨酸(Poly-L-Lysine, P-L-L)包被白血病细胞,依次加入鼠抗人一抗及碱性磷酸酶(alkaline phosphatase, ALP)标记的马抗鼠二抗,再将银溶液和ALP底物加入到该微孔板内,待溶液中的银离子还原成银单质沉积到插指电极表面后,用新型电化学免疫分析仪测定电导率。首先建立cELISA插指电化学分析新方法,即对实验条件如多聚赖氨酸分子量的大小、抗体的浓度等进行优化及分析cELISA插指电化学分析新方法的特异性、灵敏度及其与FCM的相关性。然后,采用该方法与FCM分别测定72例相同的AL患者白细胞表面分化(cluster of differentiation, CD)抗原,并将这两种方法的检测结果进行比较。结果:最佳P-L-L分子量为7-15万道尔顿;最佳包被细胞数为1.6×105个;最佳一抗体浓度为20μg/ml;1/500为最适二抗浓度;可检测出300个左右的HL-60细胞;cELISA插指电化学分析新方法与FCM方法检测结果相关系数为0.93;经χ2计学分析,72例AL患者8种白细胞CD抗原检测结果与FCM分析结果无统计学差异(P=0.373)。结论:我们创建的cELISA插指电化学分析新方法对白血病细胞株及临床AL标本检测结果与FCM分析结果一致,这表明两种方法吻合程度较高,cELISA插指电化学分析新方法特异性好,灵敏度高,为临床白血病免疫分型提供一种新方法,新型电化学免疫分析仪可望成为临床白血病免疫分型的新仪器。
     目的:探讨新型电化学免疫分析仪用于电化学阻抗法检测AL髓过氧化物酶(myeloperoxidase, MPO)活性的可行性。方法:用Tris-HCL(pH 8.7)溶液裂解白血病细胞,将其滴加到金电极表面,再依次加入过氧化物酶(Peroxidase, POX)染液A和B,用新型电化学免疫分析仪测定催化反应前、后电极的电化学阻抗图,并计算出酶催化反应前、后阻抗实部半径差值。首先,分析电化学阻抗法的特异性;然后,分别用此方法和增强化学发光法分析25例相同的AL患者MPO活性,并将这两种方法的检测结果进行比较。结果:25例AL患者中,电化学阻抗法MPO活性阳性15例,阴性10例;增强化学发光法MPO阳性14例,MPO阴性11例,增强化学发光法检测MPO阳性的14例,电化学阻抗法检测也为阳性,增强化学发光法检测阴性的11例中,1例电化学阻抗法检测为阳性。经χ2计学分析,两种方法检测的阳性率无统计学差异(P=1)。结论:电化学阻抗法与增强化学发光法检测结果一致,这表明两种方法吻合程度好。电化学阻抗法特异性好,灵敏度高,为临床AL标本MPO活性检测提供了一种新方法。新型电化学免疫分析仪可用于该方法检测AL白血病细胞内MPO活性,是一台灵敏度高的仪器。
     本研究表明,新型电化学免疫分析仪是一台可检测pA量级微电流,支持多种电化学分析方法的多功能灵敏仪器。该仪器不仅可用来检测细胞表面抗原,还可用来检测细胞内MPO活性,且操作简单、携带方便、准确度高,具有临床推广价值和市场应用前景。
Immunophenotyping of acute leukemia (AL) plays a very important role in the diagnosis of AL. At present, there are two methods of immunophenotyping of AL:one is immunocytochemistry or immunofluorescence method by means of microcsope and the other is immunofluorescence by means of flow cytometry (FCM). However, the former is subjectivity, poor reproducibility, time consuming,one kind of antigen being detected(ie, low flux) and et al. Because of expensive equipment and reagents, it is difficult to apply FCM in the primary hospitals.Therefore, it is essential to develop a rapid, simple, high-through-put, high sensitivity, economical and more objective new technology for immunophenotyping of AL.
     In our studies,a new method of cELISA electrochemical analysis was developed by combining cell enzyme-linked immunoassay technique with electrochemical methods,in which enzymatic silver deposition reaction took the place of enzyme-catalyzed color reaction,and the number of antigen was detected by the number of deposition silver. First,we developed a small new electrochemical immunoassay analyzer whose current detection limit was pA level.Secondly, a new methods of cELISA enzymatic silver deposition in the interdigitated electrode array (referred as cELISA interpolation electrochemical) was developed, the feasibility of the new type of electrochemical immunoassay analyzer applied in immunophenotyping of AL was explored. Finally, the feasibility of the new type of electrochemical immunoassay analyzer applied in detecting of MPO in AL with the electrochemical impedance method was explored.
     Objective:To develope a multi-function small new type of electrochemical immune analyser suitable for detecting of micro-current in micro-electrochemical sensor.Methods:First, the hardware circuitry designed included the circuitry of signal acquisition and conversion amplification, filters and short-circuit alarm, et al. Secondly, software programs designed was made up of micro-controller program, communications software and PC software. Finally, the performance of new electrochemical immunoassay analyzer was tested using linear sweep voltammetry (LSV) and electrochemical impedance impedance method. Results:The current of less than 10pA was detected by the new type of electrochemical immunologic analyser; a impedance waveforms was displayed and recorded by it. Conclusion:The new electrochemical immune analyzer has been developed, its performance meets the design requirements of multi-functional, high sensitivity and small-type.
     Objective:To explore the feasibility of the new type of electrochemical immune analyser applied in immunophenotyping of AL patients by cELISA interdigitated electrochemistry method established in this work. Methods:Leukemic cells were coated with Poly-L-Lysine (P-L-L) in the wells of microplate,after primary antibody of mouse against human and second antiobody of horse against mouse labled with alkaline phosphatase (ALP) was added one by one,the solution containing silver and ALP substrate was added, after the silver deposition on the surface of interdigitated electrode, the electrical conductance was measured with the new electrochemical immunologic analyzer.First,a new method of cELISA interdigitated electrode electrochemistry was established, which included optimizing the parameters such as the molecular size of P-L-L used, the concentration of antibodies,et al and analyzing the specificity and sensitivity of the cELISA interdigitated electrode electrochemistry method. Subsequently, the expression of 8 cluster of differentiation (CD) antigens on the surface of leukemic cells in 72 AL patients were determined by the method and FCM, and their results compared with each other. Results:The optimal molecular weight of poly-L-lysine was 7-15 million Dalton; The optimal number of cells coated on a microplate was 1.6×105, The optimal concentration of the primary antibody was 20μg/ml, and the optimal concentration of the second antibody was a ratio of 1:500 dilution; The sensitivity of the method of the cELISA interdigitated electrochemistry was about 300 of HL-60 cells. The relative coefficient for the results obtained by the cELISA interdigitated electrochemistry method and FCM analysis was 0.93. The results of 8 CD antigens expression in 72 AL patients, which obtained by cELISA interdigitated electrochemistry method had no significant difference from those of FCM byχ2 test (P=0.373). Conclusion:The results of testing leukemia cell lines and clinical specimens by cELISA interdigitated electrochemical analysis which we created were consistent with those of the FCM analysis, this indicates that there is high consistency in two methods. CELISA interdigitated electrochemical analysis is specificity, high sensitivity and a new way of immunophenotyping of AL in clinic. The new type of electrochemical immune analyser can be applied in immunophenotyping of AL by cELISA interdigitated electrochemistry method.
     Objective:To explore the feasibility of the new type of electrochemical immunologic analyser applied in the detection of MPO activity in AL patients by electrochemical impedance spectroscopy method. Methods:Cells were lysis with the solution of Tris-HCL (pH 8.7), and added slowly on the surface of gold electrode, POX staining solution of A and B were added respectively. The conductivity before and after catalysis was measured with the new electrochemical immunologic analyzer. Firstly, the specificity of electrochemical impedance spectroscopy method was analyzed with HL-60 cell and Jurket cell. Subsequently, the activity of MPO in AL patients was analyzed by the electrochemical impedance spectroscopy method, and whose results compared with those obtained from the enhanced chemiluminescent assay Results:15 of 25 AL patients were MPO-positive, and the remaining 10 of AL patients were MPO-negative detected by the electrochemical impedance spectroscopy method. For the 14 MPO positive AL patients detected by the enhanced chemiluminescent assay, MPO positive were also obtained by the electrochemical impedance spectroscopy in the 14 AL patients;for the 11 MPO negative AL patients detected by the enhanced chemiluminescent assay,one case was detected as positive by the electrochemical impedance spectroscopy. Results obtained with the new method has no significant difference from the enhanced chemiluminescent assay byχ2 test (P=1).Conclusion:The results of MPO activity in 25 tested AL patients by electrochemical impedance spectroscopy are consistent with those of the enhanced chemiluminescent assay, which indicates that there is high consistency in the two methods. The electrochemical impedance spectroscopy is a specificity, high sensitivity method,which provides a new method for detecting the activity of MPO in AL patients. The new type of electrochemical immune analyser can be applied in detecting the activity of MPO in AL patients by the electrochemical impedance spectroscopy.
     This study showed that the new type of electrochemical immunoassay analyzer is a multifunction apparatus,which could detect micro-current such as pA level.This instrument could be used not only to detect cell surface antigens, but also to detect intracellular MPO activity. It is simple, portable,and has clinical value and market prospect.
引文
[1]Bennett JM, Catovsky D, Daniel MT, et al.Proposal for the classification of the acute leukaemias. French-American-British(FAB) cooperative group.Br J Haematol,1976,33(4):451-458
    [2]Bennett JM,Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of the acute leukemias:a report of the French-American-British(FAB) cooperative group. Ann Intern Med,1985,103 (4):620-625
    [3]Edward G,Weir J,Micbael J,et al.Flow cytometry in the diagnosis of acute leukemia. Seminars in Hematology,2001,38(2):124-138
    [4]Reilly JT,Bain BJ,England JM,et al.The role of cytology, cytochemistry immunophenotying and cytogenetics analysis in the diagnosis of hematological neoplasms. Clin Lab Haematol,1996,18:231-236
    [5]First MIC Cooperating Study Group.MIC working classification of acute lymphoblastic leukemia. Report of the workshop held in Leuven, Belgium, April 22-23,1985. Cancer Genet Cytogenet,1986,23 (3):189-97
    [6]李建勇,薛永权,夏学鸣等.98例成人急性白血病形态学免疫学和细胞遗传学分型诊断.中华肿瘤杂志,1996,18(2):150-153
    [7]Lo Coco F,Foa R. Diagnostic and prognostic advances in the immunoph-Enotypic and genetic characterization of acute leukemia. Eur J Haematol,1995,55(1):1-9
    [8]Bennett Jm. Recommendations for a morphologic,immunologic,and Cytogenetic (MIC) Working Classification of the Primary and Therapy-related Myelodysplastic Disorders.Cancer Genet Cytogenet,1998,32(1):1-10
    [9]Paredes AR,Romero GL,Lopes SN,et al.Flowcytometric analysis of cell-surface and intracellular antigens in the diagnosis of acute leukemia.. Am J Hematol,2001,68(2):69-74
    [10]Kappelmayer J, Gratama JW, Karaszi E, et al. Flow cytometric detection of intracellular myeloperoxidase, CD3 and CD79a.Interaction between monoclonal antibody clones, fluorochromes and sample preparation protocols. J Immunol Methods,2000,242 (1-2):53-65
    [11]Rezaei A, Adib M, Mokarian F,et al.Leukemia markers expression Of peripheral blood vs bone marow blasts using flow cytometry. Med sci Monit.2003,9(8):CR359-362
    [12]Morphologic, immunologic and cytogenetic (MIC) working classification of the acute myeloid leukaemias. Second MIC Cooperative Study Group. Br J Haematol,1988,68(4):487-94.
    [13]Pagnucco G, Vanelli L, Gervasi F. Multidimensional flow cytometry immunophenotyping of hematologic malignancy. Ann N Y Acad Sci.,2002, 963:313-321
    [14]张之南,杨天楹,郝玉书.血液病学.北京:人民卫生出版社,2004,859-883
    [15]陈桂彬,汤美华,杨天楹,等.单克隆抗体在急性非淋巴细胞白血病免疫分型及预后的应用.中华内科杂志,1993,32(6):405-407
    [16]Bennett JM, Catovsky D, Daniel MT et al.Proposal for the recognition of minimally differentiated acute myeloid leukaemia (AML-MO) Br J Haematol. 1991,78(3):325-329.
    [17]Bennett JM, Catovsky D, Daniel MT et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med.1985,103 (3):460-462
    [18]Bene MC, Castoldi G, Knapp W,et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia,1995,9(10):1783-1786
    [19]刘征辉,张学光,夏学鸣,等.免疫表型在急性髓细胞白血病中的预后价值.中华血液学杂志.1996,17(11):588-591
    [20]丁红,孔平,杨继芳.白血病间接免疫荧光法免疫表型分析.大理学院学报,2005,4(3):55-56
    [21]徐从高,张锑,张春青,等,利用多指标流式细胞术和外周血标本进行白血病免疫分型的研究.山东大学学报(医学版),2002,40(6):509-522
    [22]Belov L, de la Vega o, dos Remedios CG, et al. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray.Cancer Res,2001,61(11):4483-4489
    [23]Belov L,Huang P,Barber N,et al.Identification of repertoires of surface Antigens on leukemias using an antibody microarray.Proteomics,2003,3(11):2147-54
    [24]Belov L,Huang P, Chrisp JS, et al. Screening microarrays of novel monoclonal antibodies for binding to T,B-and myeloid leukaemia cells.J Immunol Methods,2005,305(1):10-19
    [25]Belov L, Mulligan SP, Barber N, et al. Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray.Br J Haematol,2006,135(2):184-197
    [26]Christopherson RI, Stoner K,Barber N, et al. Classification of AML using a monoclonal antibody microarray.Methods Mol Med,2006,125:241-251
    [27]吴广平,赵雨杰,秦海明,等.细胞芯片诊断胸腔液中淋巴瘤细胞的初步评价.中国组织化学与细胞化学杂志,2003,12(4):425-427
    [28]秦海明,赵雨杰,侯伟健,等.细胞芯片在急性淋巴细胞白血病免疫分型中的应用.中国实验诊断学,2005,9(4):502-505
    [29]曾辉,王桦,陈方平,等一种新型的压电免疫传感器在急性白血病免疫分型中的应用.中国实验血液学杂志,2004,12(4):508-512
    [30]张盈华.流式细胞仪在医学检验中的应用.中华医学检验杂志,1997,20(4):203-204
    [31]王峰,向定成,刘仲明.压电免疫传感器的研究现状及应用前景.医疗卫生装备,2008,29(10):36-38
    [32]张炯,万莹,王丽华等.电化学DNA生物传感器.化学进展,2007,19(10):1576-1584
    [33]陈玲.生物传感器的研究进展综述.传感器与微系统,2006,25(9):4-7
    [34]张先恩.生物传感技术原理与应用.长春:吉林科学技术出版社,1991,6-8
    [35]覃柳,刘仲明,邹小勇.电化学生物传感器研究进展.中国医学物理学杂志,2007,24(1):60-62
    [36]罗斌.电化学免疫传感器的发展应用.辽宁化工,2009,38(6):398-400
    [37]Zong Dai, Feng Yan, Jin chen.et al. Reagentless Amperometric lmmunosensors Based on Direct Electrochemistry of Horseradish Peroxidase for Determination Of carcinoma Antige-125. Anal. Chem,2003,75(20):5429-5434
    [38]zong Dai, Feng Yan,Hua YU,et al. Novel amperometric immunosensor for rapid separation free immunoassay Of carcinoembryonic antigen.Journal of Immunological Methods,2004,287(1-2):13-20
    [39]Fehu JX, Ferrer-Miralles N, Blanco E,et al. Enhanced response to antibody binding in engineered beta-galactosidase enzymatic sensors. Biochim Biophys Acta,2002,1596(2):212-224
    [40]Dzantiev BB, Zherdev AV, Yulaev MF, et al. Electrochemical immunosensors for determination of the pesticides 2,4-dichlorophenoxyacetic and 2,4,5-tricholorophenoxyacetic acids.Biosensors & Bioelectronics,1996,11 (1-2):179-185
    [41]夏勇,杜艳,董晓东,等.USB插头式微型电化学分析仪的研制及应用.分析化学,2009,37(1):157-160
    [42]Jiang L, Lu Y, Dai Z, et al.Mini-electrochemical detector for microchip electrophoresis. Lab Chip.2005,5(9):930-934
    [43]刘庆良,仓尧卿,章谷生.细胞酶联免疫吸附试验.上海医学检验杂志,2002,17(1):60-62
    [44]Yang XY, Jiang H, Hartmann WK et al. Development of a quantitative antigen-specific cell-based ELISA for the 7G7/B6 monoclonal antibody directed toward IL-2Ra. J Immunol Methods,2003,277(1-2):87-100
    [45]Hong K, Presta LG, Lu Y,et al. Simple quantitative live cell and anti-idiotypic antibody based ELISA for humanized antibody directed to cell surface protein CD20. J Immunol Methods,2004,294(1-2):189-197
    [46]Qiu H, Yan J, Sun X P, et al. Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector. Anal Chem.2003,75(20):5435-5440
    [47]梁文平,庄乾坤.分析化学的明天.北京:科学出版社,2003.18-22
    [48]汪尔康.21世纪的分析化学.北京:科学出版社,1999.23-30
    [49]陈昌国,刘渝萍,吴守国.国内电化学分析测试仪器发展现状.现代科学仪器,2004(3):8-11
    [50]金钦汉.从99匹兹堡会议看仪器的跨世纪发展动向.分析仪器.1999,(2):1-5
    [51]范世福.新形势下我国分析仪器事业的发展.分析仪器.1999,(3):1-5
    [52]王学琳.现代分析仪器发展趋势.现代仪器,2007,13(6):10-13
    [53]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学技术出版社,2002.20-25
    [54]史美伦.交流阻抗谱原理及应用.北京:国防工业出版社,2001:18-19
    [55]朱果逸,张月霞.国外电化学分析仪器进展.现代科学仪器,1992(2):19-20
    [56]许荣达,洪丽娟,陈庆绸,等.微机化多功能电化学分析仪的研制.分析仪器,1990,(2):35-39
    [57]于庆泽,周政普.微机电化学测试分析系统.大连铁道学院学报,1993,14(3): 81-84
    [58]隋青美,杨连喜,王志定.微机自动控制电化学测试系统的研.山东工业大学学报,1994,24(4):336-340
    [59]贺荫南.MEC212A多功能微机电化学分析仪在环境分析中的应用.株冶科技,1994,22(1):52-57
    [60]冯业铭,党红社,林海潮.智能电化学分析系统的研究阴.中国矿业大学学报,1996,25(4):63-67
    [61]蒋敦斌,付植桐.智能电化学综合测试仪.化工自动化及仪表,1997,24(3): 42-47
    [62]姜学国,晏双龙,常旭晋,等.MEC2Ⅱ型微机电化学分析仪的研.化学传感器,1999,19(1):67-71
    [63]周红,董献堆,夏勇,等.综合电化学分析系统的研制.分析仪器,2000,(4):9-13
    [64]于俊生,张祖训.计算机化的多功能超微电极电化学仪器.高等学校化学学报,1992,13(7):902-905
    [65]许立名,董泽华.计算机控制的腐蚀电化学测量与分析系统的研制.计算机与应用化学,1996,13(1):60-64
    [66]林广,王建明,张鉴清,等.电化学暂态联机测试.腐蚀科学与防护技术,2000,12(4):237-239
    [67]胡庚,靳洋,杨士元,等.微型电化学系统中的微电流测量.微电子学与计算机,2009,26(6):1-4
    [68]邓家栋,杨崇礼,杨天楹,等.邓家栋临床血液学.上海:上海科学技术出版社,2001,942-997
    [69]徐功立,杨道理,王永康,等.当代血液病的诊治和实验室检查技术.济南:山东科学技术出版社,2001:488-491
    [70]邱鞠,刘越磐,鄂慧淑等.流式细胞术在159例急性白血病免疫分型中的应用.中国实验诊断学,2009,13(1):103-105
    [71]邢娟娟,周欣,辜小汉.624例白血病三色流式细胞术免疫表型分析.实用临床医学,2008,9(9):9-11
    [72]A.Orfao, Flow cytometry:its application in hematology. Haematologica, 1995,80(1):69-81
    [73]C.D.Jennings, K.A.Foon, Recent advances in flow cytometry:application to the diagnosis of hematologic malignancy. Blood,1997,90(8):2863-2892
    [74]易雪,邹萍,黎纬明等.91例急性白血病FCM免疫分型分析.临床血液学杂志,2004,17(3):151-153
    [75]姚志娟,廖丽,党永辉等.180例急性白血病流式细胞术免疫分型的特点分析.中国实验血液学杂志,2004,12(1):83-85
    [76]Liu Z,Gurlo T,von Grafenstein H. Cell-ELISA using beta-galactosidase conjugated antibodies.J Immunol Methods,2000,234(1-2):153-67
    [77]刘丹丹,贡敬霞,吴伟林等.免疫分型对白血病诊断的临床意义.江苏医药杂志,2004,30(10):770-771
    [78]张秋堂,李涛.201例成人急性白血病免疫分型特点.检验医学,2005,20(4):373-375
    [79]Collins S.J, Gallo R.C, Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature,1977, 270(5635):347-349
    [80]何小庆,韩锐.HL-60细胞属AML-M2型,NB4细胞为真正的AML-M3型。中华血液学杂志,1996,17(5):277-278
    [81]Dalton W. T. Jr, Ahearn M. J, McCredie K.B, et al. HL-60 cell line was derived from a patient with FAB-M2 and not FAB-M3. Blood,1988,71(1):242-247
    [82]赵建斌,崔勤,张雪,等.华蟾毒精抗癌作用的体外研究.第四军医大学学报,2001,22(16):1504-1507
    [83]U. Schneider, H.U. Schwenk, G. Bornkamm, et al. Characterization of EBV-genome negative"null"and"T"cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. Int J Cancer,1977,19(5):621-626
    [84]Avrameas S,Guilbert B.A method for quantitative determination of cellular immunoglobulins by enzyme-labeled antibodies.Eur J Immunol,1971,1(5):394-396
    [85]Lansdorp PM,Astaldi GC,Oosterhof F,et al.Immunoperoxidase procedures to detect monoclonal antibodies against cell surface antigens.Quantitation of binding and staining of individual cells.J Immunol Methods,1980,39(4):393-405
    [86]Salih A M,Nixon N B,Dawes P T,et al.Antibodies to neuroblastoma cells in rheumatoid arthritis:a potential marker for neuropathy.Clin Exp Rheumatol,2000,18(1):23-30
    [87]Lee J C,Cevallos A M,Naeem A,et al.Detection of anti-colon antibodies in inflammatory bowel disease using human cultured colonic cells.Gut,1999,44(2):196-202
    [88]Das J, Jo K, Lee J W, et al. Electrochemical Immunosensor Using p-Aminophenol Redox Cycling by Hydrazine Combined with a Low Background Current. Analytical Chemistry,2007,79(7):2790-2796
    [89]Ivnitski D, Rishpon J. A one-step, separation-free amperometric enzyme immunosensor. Biosensors and Bioelectronics,1996,11(2):409-417
    [90]Campanella L, Attioli R, Colapicchioni C, et al. New amperometric and potentiometric immunosensors for anti-human immunoglobulin G determinations. Sensors and Actuators B:Chemical,1999,55(1):23-32
    [91]Alfonta L, Bardea A, Khersonsky O, et al. Chronopotentiometry and Faradaic impedance spectroscopy as signal transduction methods for the biocatalytic precipitation of an insoluble product on electrode supports:routes for enzyme sensors, immunosensors and DNA sensors. Biosens and Bioelectron,2001,16(9-12):675-87
    [92]Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase:a probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal Chem.,2001,73(1):91-102
    [93]Zhou L, Ou L J, Chu X, et al. Aptamer-Based Rolling Circle Amplification: A Platform for Electrochemical Detection of Protein. Anal Chem,2007,79(19): 7492-7500
    [94]Chen Z P, Peng Z F, Luo Y, et al. Successively amplified electrochemical immunoassay based on biocatalytic deposition of silver nanoparticles and silver enhancement. Biosensors and Bioelectronics,2007,23(2):485-491
    [95]Park S J, Taton T A, Mirkin C A. Array-based electrical detection of DNA with nanoparticle probes. Science,2002,295(5559):1503-6
    [96]Velev O D, Kaler E W. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir,1999,15(11):3693-3698
    [97]Huang Y, Wang TH, Jiang JH,et al. Prostate specific antigen detection using microgapped electrode array immunosensor with enzymatic silver deposition. Clin Chem,2009,55(5):964-971
    [98]Sheppard N F, Tucker R C, Wu C. Electrical conductivity measurements using microfabricated interdigitated electrodes. Analytical Chemistry,1993,65(5): 1199-1202
    [99]Lu Y C, Chuang Y S, Chen Y Y, et al. Becteria detection utilizing electrical conductivity. Biosensors and Bioelectronics,2008,23(2):1856-1861
    [100]Maenga J H, Lee B C, Ko Y J, et al. A novel microfluidic biosensor basec on an electrical detection system for alpha-fetoprotein. Biosensors and Bioelectronics, 2008,23(2):1319-1325
    [101]Yang, L. Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta,2008,74(2):1621-1629
    [102]Yang L, Li Y, Erf GF.Interdigitated Array microelectrode-based electrochemical impedance immunosensor for detection of Escherichia coli O157:H7. Anal Chem.2004,76(4):1107-1113.
    [103]张津辉.生物分子固定化技术及应用[M].北京:化学工业出版社,1998.56-60
    [104]Huang WM, Gibson SJ, Facer P, et al. Improved section adhesion for immunocytochemistry using high molecular weight polymers of L-lysine as a slide coating. Histochemistry.1983,77(2):275-279.
    [105]Rincon V, Corredor A, Martinez-Gutierrez M,et al. Fluorometric cell-ELISA for quantifying rabies infection and heparin inhibition.J Virol Methods.,2005,127, (1):33-39
    [106]Kranz BR,Thiel E,Thierfelder S.Immunocytochemical identification of meningeal leukemia and lymphoma:poly-L-lysine-coated slides permit multimarker analysis even with minute cerebrospinal fluid cell specimens.Blood, 1989,73(7):1942-1950
    [107]李蓉芬,陈敏,康运生,钟小林,何凤田.影响细胞ELISA结果的主要因素.第三军医大学学报,2001,23(7):871-872
    [108]黄瑾,韩淑华,刘明兰,李淑芳.利用酶联免疫吸附技术检测细胞表面标志的初步探讨.白求恩医科大学学报,1999,25(2):208-209
    [109]丁宁,刘承武,李志杰,刘靖华,邓鹏,姜勇.细胞酶联免疫吸附试验在检测噬菌体阳性克隆中的应用和改进.中国病理生理杂志,2008,24(9):1869-1872
    [110]H. Wang, C..C. Wang, Z.Y. Wu, et al. Studies on a Novel Piezoelectric Immunosensor Based on Plasma Polymerized Film for the Schistosoma-Japonicum. Acta. Chim. Sinica.,2001,59(9):1457-1463
    [111]Baumgarten H. A cell ELISA for the quantitation of leukocyte antigens. Requirements for calibration. J Immunol Methods.1986,94(1-2):91-98
    [112]谭三勤,王光平,蒋健晖等。白血病细胞酶联免疫酶催化银沉积于插指电极陈列电化学免疫分析新方法。高等学校化学学报,2009,30(12):2371-2375
    [113]Ogino T, Wang X, Ferrone S. Modified flow cytometry and cell-ELISA methodology to detect HLA class I antigen processing machinery components in cytoplasm and endoplasmic reticulum. J Immunol Methods.,2003,278 (1-2):33-44
    [114]卢兴国.现代血液形态学理论与实践.上海:上海科学技术出版 社.2003,347-350
    [115]McDonagh CF, Thrcott E, Westendorf L, et al.Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment, Protein Eng Des Sel,2006,19(7):299-307
    [116]Brekke OH, Sandlie I.Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat Rev Drug Discov,2003,2(1):52-62
    [117]Brekke OH, Loset GA.New technologies in therapeutic antibody development.Curr Opin Pharmacol,2003,3(5):544-550
    [118]Carter PJ.Potent antibody therapeutics by design.Nat Rev Inununol,2006, 6(5):343-357
    [119]李艳明,曹志红,彭敏源.169例急性白血病免疫表型分析.实用预防医学,2008,15(3):668-671
    [120]宣柳,沈佐君,李筱青.双表型急性白血病的免疫分型.安徽医科大学学报,2007,42(6):705-706
    [121]Sperr WR, Florian S, Hauswirth AW,et al.CD 33 as a target of therapy in acute myeloid leukemia:current status and future perspectives. Leuk Lymphoma. 2005,46(8):1115-20
    [122]李睿,陈燕.老年急性白血病的临床特点及免疫学表型的研究.中国实验血液学杂志,2006,14(6):1221-1226
    [123]裴敏飞,张广森,肖乐,等.成人急性白血病免疫表型特征分析及意义.湖南医科大学学报,2000,25(3):262-264
    [124]Del Poeta G, Stasi R, Venditti A, et al. CD7 expression in acute myeloid leukemia.Blood,1993,82 (9):2929-2930
    [125]Tien HF, Wang CH, Su IJ,et al. Immunoglobulin and T-cell receptor gene rearrangements in acute lymphoblastic leukemia-a higher incidence of double rearrangements in patients with myeloid antigen expression. Leukemia,1991,15(2-3):91-98
    [126]Lo Coco F, De Rossi G, Pasqualetti D, et al.CD7 positive acute myeloid leukemia:a subtype associated with cell immaturity.Br J Haematol.,1989,73 (4):480-485
    [127]Steiner M, Attarbaschi A, Dworzak M, et al.Cytochemically myeloperoxidase positive childhood acute leukemia with lymphoblastic morphology treated as lymphoblastic leukemia. J Pediatr Hematol Oncol,2010,32(1):e4-7.
    [128]Buccheri V, Shetty V, Yoshida N, et al.The role of an anti-myeloperoxidase antibody in the diagnosis and classification of acute leukemia:a comparison with light and electron microscopy cytochemisty.Br J Haematol,1992,80(1):62-68
    [129]李舜华,粱平,陈莲云.电镜髓过氧化物酶反应及其在白血病诊断中的应用.福建医学院学报,1986,20(2):26-29
    [130]Vainchenker W, Villeval JL, Tabilio A, et al. Immunophenotype of leukemic blasts with small peroxidase-positive granules detected by electron microscopy. Leukemia,1988,2(5):274-281
    [131]da Costa M, Ximenes VF, Brunetti IL, et al. p-Iodophenol-enhanced luminal chemiluminescent assay applied to discrimination between acute lymphoblastic and minimally differentiated acute myeloid (FAB-MO) or acute megakaryoblastic (FAB-M7) leukemias.Hematol J 2004,5 (6):496-499
    [132]Sanqin Tan, Guangping Wang, Minyuan Peng. Detection of myeloperoxidase activity in primary leukemic cells by an enhanced chemiluminescent assay for differentiation between acute lymphoblastic and non-lymphoblastic leukemia. Clinica Chimica Acta,2009,403(1-2):216-218
    [133]Alvarado CS, Austin GE, Borowitz MJ,et al. Myeloperoxidase gene expression in infant leukemia:a Pediatric Oncology Group Study.Leuk Lymphoma. 1998,29(1-2):145-160
    [134]Serrrano J,Roman J,Sanchez J,et al.Myeloperoxidase gene expression in acute lymphoblastic leukemia.Br J Haematol,1997,97(4):841-843
    [135]Taguchi J, Miyazaki Y, Tsutsumi C,et al. Expression of the myeloperoxidase gene in AC133 positive leukemia cells relates to the prognosis of acute myeloid leukemia.Leuk Res,2006,30(9):1105-1112
    [136]Lepelley P, Preudhomme C, Sartiaux C, et al. Immunological detection of myeloperoxidase in poorly differentiated acute leukemia. Eur J Haematol,1993,50(3):155-159
    [137]Saravanan L, Juneja S.Immunohistochemistry is a more sensitive marker for the detection of myeloperoxidase in acute myeloid leukemia compared with flow cytometry and cytochemistry. Int J Lab Hematol,2010,32(1 Pt 1):e132-136
    [138]Dijksma M, Kamp B, Hogvliet JC, et al. Development of an electrochemical immunosensor for direct detection of interferon-gamma at the attomolar level. Anal chem,2001,73(5):901-907
    [139]Schreiber A, Feldbrugge R,, Key G, et al. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction.Biosens Bioelectron,1997,12(11):1131-1137
    [140]Fernandez-Sanchez C, Costa-Garcia A.. Adsorption of immunoglobulin G on carbon paste electrodes as a basis for the development of immunoelectrochemical devices. Biosens Bioelectron.1997,12(5):403-413
    [141]Arnhold J. Properties, functions, and secretion of human myeloperoxidase. Biochemistry,2004 Jan;69(1):4-9.
    [142]包宗明。髓过氧化物酶及其多态性与冠状动脉疾病的研究进展。中国心血管病研究杂志,2007,5(1):70-73
    [143]Koeffler HP, Ranyard J, Pertcheck M. Myeloperoxidase:its structure and expression during myeloid differentiation..Blood,1985,65(2):484-491
    [144]Van der Schoot CE,Daams GM,Pinkster J,et al. Monoclonal antibodies against myeloperoxidase are valuable immunological reagents for diagnosis of acute myeloid leukemia.Br J Haemotol,1990,74(2):173-178
    [145]Kaleem Z,Crawford E,Pathan MH,et al.Flow cytometric analysis of acute leukemias.Diagnostic utility and critical analysis of data.Arch Pathol Lab Med,2003,127(1):42-48
    [146]Knapp W,Strobl H,Majdic O.Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosisi.Cytometry,1994,18(4):187-198
    [147]王国才,朱秀云,丁旭.髓过氧化物酶染色在急性白血病分型诊断中的价值.中国厂矿医学,2008,21(3):346
    [148]唐亚辉,杨平地,张东,等.细胞化学染色在急性白血病分型中意义的探讨.海军总医院学报,2002,15(4):221-223
    [149]边红放.5种细胞化学染色对42例急性髓细胞白血病分型诊断的价值.白血病.淋巴瘤,2002,8(11):222-223
    [150]余晓红,王蓬滨,孟桂芳.POX与SB细胞化学染色在白血病鉴别诊断中的价值比较.解放军医学高等专科学校学报。1999,3:87
    [151]王冀粤.细胞化学染色对急性髓系白血病(M4)分型意义的探讨.中国误诊学杂志,2001,7(1):999-1000
    [152]Eivazi-Ziaei J.Myeloperoxidase index and subtypes, of acute myeloid leukemia. J Pak Med Assoc.2009,59(6):406-407
    [153]谭齐贤.临床血液学和血液学检验.北京:人民卫生出版社,2004,46-47
    [154]Catovsky D, Matutes E. The classification of acute leukemia. Leukemia, 1992,6(suppl 2):1-6
    [155]李玲,艾孜买提,阿吉,等髓系过氧化物酶基因表达对急性白血病分型 的意义.新疆医科大学学报,2000,23(4):310-311
    [156]Reiffers J, Broustet A.. Acute myeloblastic leukemia masquerading as null cell acute lymphoblastic leukemia. N Engl J Med,1981,304(20):1238-1239
    [157]Kawada H, Ichikawa Y, Kobayashi N, et al. Acquisition of CDI 3 and CD33 expression at relapse on acute myeloid leukemia cells with an unusual phenotype:MPO+CD13-CD33-. Intern Med,1993,32(9):733-736
    [158]Nguyen PL, Olszak I, Harris NL, et al. Myeloperoxidase detection by three-color flow cytometry and by enzyme cytochemistry in the classification of acute leukemia. Am J Clin Pathol,1998,110(2):163-169
    [159]Nakase K, Sartor M, Bradstock. Detection of myelopemxidase by flow cytometry in acute leukemia. Cytometry。1998,34(4):198-202
    [160]丁天凌, 朱萍, 吴蓓倩,等.流式细胞仪检测白细胞胞浆内抗原髓过氧化物酶的实验研究及其应用.检验医学,2007,22(6):651-655
    [161]Leong CF,Kalaichelvi AV,Cheong SK,et al.Comparison of myeloperoxidase detection by flow cytometry using two different clones of monoclonal antibodies.Malays J Pathol,2004,26(2):111-116
    [162]Breton-Gorius J. The value of cytochemical peroxidase reaction at the ultrastructural level in haemato logy.Histochem J,1980,12(2):127-137
    [163]da Costa M, Ximenes VF, Brunetti IL, Falcao RP, da Fonseca LM. p-Iodophenol- enhanced luminol chemiluminescent assay applied to discrimination between acute lymphoblastic and minimally differentiated acute myeloid (FAB-MO) or acute megakaryoblastic (FAB-M7) leukemias. Hematol J,2004,5(6):496-499
    [164]王永静,陈学良,李颢.毛细管电泳法检测髓过氧化物酶在急性白血病中的表达.中国实用医药杂志,2007,2(10):11-13
    [165]孙朝晖,郭丽媛,张卫云,等。髓过氧化物酶指数在急性白血病鉴别诊断中的应用。现代检验医学,2009,24(4):42-44
    [166]Updike SJ,Hicks GP.The Enzyme Electrode. Nature,1967,214(5092): 986-988
    [167]Campas M, Marty J L. Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Analytica Chimica Acta,2007,605(1):87-93
    [168]Alonso B, Armad P G, Losad J, et al. Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers. Biosensors and Bioelectronics,2004, 19(8):1617-1625
    [169]Llaudet E, Botting Nigel P, Crayston Joe A, et al. A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Biosensors and Bioelectronics,2003,18(1):43-52
    [170]Okuda J, Wakai J, Yuhashi N, et al. Glucose enzyme electrode using cytochrome b562 as an electron mediator. Biosensors and Bioelectronics,2003,18(3): 699-704
    [171]Gobi K V, Mizutani F. Layer-by-layer construction of an active multilayer enzyme electrode applicable for direct amperometric determination of cholesterol. Sensors and actuators B:Chemical,2001,80(2):272-277
    [172]Di J, Bi S, Zhang M. Third-generation superoxide anion sensor based on superoxide dismutase directly immobilized by sol-gel thin film on gold electrode. Biosensors and Bioelectronics,2004,19(5):1479-1486
    [173]Jian F, Qiao Y, Zhuang R. Direct electrochemistry of hemoglobin in TATP film:Application in biological sensor. Sensors and Actuators B,2007,124(2): 413-420
    [174]Polsky R, Harper Jason C, Dirk Shawn M, et al. Diazonium-Functionalized Horseradish Peroxidase Immobilized via Addressable Electrodeposition:Direct Electron Transfer and Electrochemical Detection. Langmuir,2007,23(2):364-366
    [175]Jia J, Wang B, Wu A, et al. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor:Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. Analytical Chemistry,2002,74(9):2217-2223
    [176]Patolsky F, Katz E, Bardea A, et al. Enzyme-Linked Amplified Electrochemical Sensing of Oligonucleotide-DNA Interactions by Means of the Precipitation of an Insoluble Product and Using.Impedance Spectroscopy. Langmuir, 1999,15(11):3703-3706
    [177]Alfonta L, Katz E, Willner I. Sensing of Acetylcholine by a Tricomponent-Enzyme Layered Electrode Using Faradaic Impedance Spectroscopy, Cyclic Voltammetry, and Microgravimetric Quartz Crystal Microbalance Transduction Methods. Analytical Chemistry,2000,72(5):927-935
    [178]Katz E, Alfonta L, Willner I. Chronopentiometry and Faradaic impedance-spectroscopy as methods for signal transduction in immunosensor. Sensor and Actuators B:Chemistry,2001,76(1-3):134-141
    [179]Pavlov V, Willner I, Dishon A, et al. Amplified detection of telomerase activity using electrochemical and quartz crystal microbalance measurements. Biosensors and Bioelectronics,2004,20(5):1011-21
    [180]Alfonta L, Willner I, Throckmorton DJ, et al. Electrochemical and quartz crystal microbalance detection of the cholera toxin employing horseradish peroxidase and GM1-functionalized liposomes. Analytical Chemistry,2001,73(21):5287-95
    [181]Eguchi M, Mikami T, Kurosawa H, et al. Electron microscopic and cytochemical studies of peroxidase-negative acute nonlymphoblastic leukemia. Med Electron Microsc,2001,34(1):61-70
    [1]Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol,1976,33(4):451-458
    [2]Bennett JM, Catovsky D, Daniel MT, et al. The morphological classification of acute lymphoblastic leukemia:concordance among observers and clinical correlations. Br J Haematol,1981,47(4):553-561
    [3]Bennett JM, Catovsky D, Daniel MT, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med,1985,103(4):620-625
    [4]Bennett JM, Catovsky D, Daniel MT, et al. Criteria for the diagnosis of acute leukemia of megakaryocyte lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med,1985,103(3):460-462
    [5]First MIC Cooperative Study Group. Morphologic, immunologic and cytogenetic (MIC) working classification of acute myeloid leukaemias. Cancer Genet Cytogenet,1986,23:189
    [6]Second MIC Cooperative Study Group. Morphologic, immunologic and cytogenetic (MIC) working classification of the acute myeloid leukaemias.Br J Haematol,1988,68(4):487-494
    [7]Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues:report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol,1999,17(12):3835-3849
    [8]Jaffe ES, Harris NL, Stein H et al. World Health Organization classification of tumors:pathology and genetics of tumors of hematopoietic and lymphoid tissues. Lyon:IARC,2001
    [9]Cason JD, Trujillo JM, Estey EH, et al. Peripheral acute leukemia:high peripheral but low-marrow blast count. Blood,1989,74(5):1758-1761
    [10]Cheson BD, Cassileth PA, Head DR, et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol,1990,8(5):813-819
    [11]卞寿庚.白血病.北京:中国医药科技出版社,2003.49-126
    [12]谭齐贤.临床血液学和血液检验.北京:人民卫生出版社.2003.192-200
    [13]Klobusick M, Kusenda J. Babusikova O. Myeloid enzymes profile related to the immunophenotypic characteristics of blast cells from patients with acute myeloid eukemia (AML) at diagnosis, Neoplasma,2005,52(3):211-218
    [14]Eguchi M, Mikami T, Kurosawa H, et al. Electron microscopic and cytochemical studies of peroxidase-negative acute nonlymphoblastic leukemia. Med Electron Microsc,2001,34(1):61-70
    [15]Leong CF, Kalaichelvi AV, Cheong SK, et al. Comparison of myeloperoxidase detection by flow cytometry using two different clones of monoclonal antibodies. Malays J Pathol,2004,26(2):111-116
    [16]Saussoy P, Vaerman JL,. Straemans N, et al. Differentiation of acute myeloid leukemia from B-and T-lineage acute lymphoid leukemias by real-time quantitative reverse transcription-PCR of lineage marker mRNAs. Clin Chem, 2004,50(7):1165-1173
    [17]Ferrari S, Mariano MT, Tagliafico E, et al. Myeloperoxidase gene expression in blast cells with a lymphoid phenotype in cases of acute lymphoblastic leukemia. Blood,1988,72 (3):873-876
    [18]da Costa M, Ximenes VF, Brunetti IL, et al. p-Iodophenol-enhanced luminol chemiluminescent assay applied to discrimination between acute lymphoblastic and minimally differentiated acute myeloid (FAB-MO) or acute megakaryoblastic (FAB-M7) leukemias. Hematol J,2004,5(6):496-499
    [19]da Fonseca LM, Brunetti IL, Rego EM, et al. Characterization of myeloid or lymphoid acute leukemia by a chemiluminescence assay. Comparison with immunocytochemistry using an antimyeloperoxidase antibody. Acta Haematol,1993, 90(1):19-24
    [20]Kricka LJ. Clinical applications of chemiluminescence. Analytical Chimica Acta,2003,500(1):279-286.
    [21]Roda A, Pasini P, Mirasoli M, et al. Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol,2004,22(6):295-303
    [22]Tan S, Wang G, Peng M, et al. Detection of myeloperoxidase activity in primary leukemic cells by an enhanced chemiluminescent assay for differentiation between acute lymphoblastic and non-lymphoblastic leukemia. Clin Chim Acta,2009, 403(1-2):216-218
    [23]Jennings CD, Foon KA. Recent advances in flow cytometry:application to the diagnosis of hematologic malignancy. Blood,1997,90(8):2863-2892
    [24]Creutzig U, Harbott J, Sperling C, et al. Clinical significance of surface antigen expression in children with acute myeloid leukemia:results of study AML-BFM-87. Blood,1995,86(8):3097-3108
    [25]Harris NL, Jaffe ES, Diebold J, et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues:report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol,1999,17(12):3835-3849
    [26]Belov L, de la Vega O, dos Remedios CG, et al. Immunophenotyping of leukemias using a cluster of differentiation antiody microarray. Cancer Res,2001, 61(11),4483-4489
    [27]Belov L, Huang P, Barber N, et al. Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics,2003,3(6): 2147-2154
    [28]Belov L, Huang P, Chrisp JS. et al. Screening microarrays of novel monoclonal antibodies for binding to T-, B- and myeloid leukaemia cells. Journal of Immunological Methods,2005,305(1):10-19
    [29]Belov L, Mulligan SP, Barber N, et al. Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray. Br J Haematol,2006,135(2):184-197
    [30]谭三勤,王光平,蒋健晖,等.白血病细胞酶联免疫酶催化银沉积于插指电极阵列电化学免疫分析新方法.高等学校化学学报.2009,30(12):2371-2375
    [31]Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst,1960,25:85-109
    [32]Rowley JD. Letter:a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature,1973,243 (5405):290-293
    [33]Lin XH, Wu P, Chen W, et al. Electrochemical DNA biosensor for the detection of short DNA species of Chronic Myelogenous Leukemia by using methylene blue. Talanta,2007,72(2):468-471
    [34]Chen J, Zhang J, Wang K, et al. Electrochemical biosensor for detection of BCR/ABL fusion gene using locked nucleic acids on 4-aminobenzenesulfonic acid-modified glassy carbon electrode. Anal Chem,2008,80(21):8028-8034
    [35]Chen J, Zhang J, Huang L, et al. Hybridization biosensor using 2-nitroacridone as electrochemical indicator for detection of short DNA species of chronic myelogenous leukemia. Biosens Bioelectron,2008,24(3):349-355
    [36]Lin XH, Wan HY, Zhang YF,et al. Studies of the interaction between Aloe-emodin and DNA and preparation of DNA biosensor for detection of PML-RAR alpha fusion gene in acute promyelocytic leukemia. Talanta,2008,74(4):944-950
    [37]Wei N, Chen J, Zhang J, et al. An electrochemical biosensor for detection of PML/RARA fusion gene using capture probe covalently immobilized onto poly-calcon carboxylic acid modified glassy carbon electrode. Talanta,2009, 78(4-5):1227-1234
    [38]Lina L, Chen J, Lin Q, et al. Electrochemical biosensor based on nanogold-modified poly-eriochrome black T film for BCR/ABL fusion gene assay by using hairpin LNA probe. Talanta,2010,80(5),2113-2119
    [39]Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science,1999, 286(5439):531-537
    [40]Virtaneva K, Wright FA, Tanner SM, et al. Expression profiling reveals fundamental biological differences in acute yeloid leukemia with isolated trisomy 8 and normal cytogenetics. Proc atl Acad Sci USA,2001,98(3):1124-1129
    [41]Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet,2002, 30(1):41-47
    [42]Schoch C, Kohlmann A, Schnittger S, et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002,99(15):10008-10013
    [43]Debernardi S, Lillington DM, Chaplin T, et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer,2003,37(2):149-158
    [44]Kohlmann A, Schoch C, Schnittger S, et al. Molecular characterization of acute leukemias by use of microarray technology. Genes Chromosomes Cancer 2003;37(4):396-405
    [45]Vey N, Mozziconacci MJ, Groulet-Martinec A, et al. Identification of new classes among acute myelogenous leukaemias with normal karyotype using gene expression profiling. Oncogene,2004,23(58):9381-91
    [46]Haferlach T, Kohlmann A, Schnittger S, et al. AML M3 and AML M3 variant each have a distinct gene expression signature but also share patterns different from other genetically defined AML subtypes. Genes Chromosomes Cancer, 2005,43(2):113-127
    [47]Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood, 2005,106(4):1189-1198
    [48]Schoch C, KernW, Kohlmann A, et al. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalances and a specific gene expression profile. Genes Chromosomes Cancer, 2005,43(3):227-238
    [49]Neben K, Schnittger S, Brors B, et al. Distinct gene expression patterns associated with FLT3- and NRAS-activating mutations in acute myeloid leukemia with normal karyotype. Oncogene,2005,24(9):1580-1588
    [50]Bullinger L, Rucker FG, Kurz S, et al. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood,2007,110(4): 1291-300
    [51]Haferlach T, Kohlmann A, Bacher U, et al. Gene expression profiling for the diagnosis of acute leukaemia. Br J of Cancer,2007,96(4),535-540
    [52]Wouters BJ, Jorda MA, Keeshan K, et al. Distinct gene expression profiles of acute myeloid/T-lymphoid leukemia with silenced CEBPA and mutations in NOTCH1. Blood,2007,110(10):3706-3714
    [53]Willman CL. Has gene expression profiling improved diagnosis, classification, and outcome prediction in AML? Best Pract Res Clin Haematol,2008, 21(1):21-28
    [54]Kohlmann A, Kipps TJ, Rassenti LZ, et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics:the Microarray Innovations in Leukemia study prephase. Br J Haematol, 2008,142(5):802-807
    [55]Murati A, Gervais C, Carbuccia N, et al. Genome profiling of acute myelomonocytic leukemia:alteration of the MYB locus in MYST3-linked cases. Leukemia,2009,23 (1):85-94
    [56]Roel GW, Verhaak Bas J. Wouters, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica.2009, 94(1):131-134
    [57]Lagos-Quintan M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs. Science,2001,294(5543):853-858.
    [58]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell,2004,116(2):281-297
    [59]Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res,2004, 32(Database issue):D109-D111
    [60]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005,120(1):15-20
    [61]Georgantas RW, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control. Proc Natl Acad Sci USA,2007,104(8):2750-2755
    [62]Hatfield S, Ruohola-Baker H. microRNA and stem cell function. Cell Tissue Res,2008,331(1):57-66
    [63]Matsubara H, Takeuchi T, Nishikawa E, et al. Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene,2007,26(41):6099-6105
    [64]Carleton M, Cleary MA, Linsley PS. MicroRNAs and cell cycle regulation. Cell Cycle,2007,6(17):2127-2132
    [65]Gauthier BR, Wollheim CB. MicroRNAs: 'ribo-regulators'of glucose homeostasis. Nat Med,2006,12(1):36-38
    [66]Hagan JP, Croce CM. MicroRNAs in carcinogenesis. Cytogenet Genome Res,2007,118(2-4):252-259
    [67]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature,2007,449(7163):682-688.
    [68]Sassen S, Miska EA, Caldas C. MicroRNA:implications for cancer. Virchows Arch,2008,452(1):1-10
    [69]Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature,2005,435(7043):834-838
    [70]Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA,2004, 101(32):11755-11760
    [71]Lawrie CH, Soneji S, Marafioti T, et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer,2007,121(5):1156-1161
    [72]Ramkissoon SH, Mainwaring LA, Ogasawara Y, et al. Hematopoietic-specific microRNA expression in human cells. Leuk Res,2006,30(5): 643-647
    [73]Debernardi S, Skoulakis S, Molloy G, et al. MicroRNA miR-181a correlates with morphological sub-class of acute myeloid leukaemia and the expression of its target genes in global genome-wide analysis. Leukemia,2007,21(5):912-916
    [74]Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci USA,2007,104(50):19971-19976
    [75]Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med,2008, 358(18):1919-19128
    [76]Garzon R, Garofalo M, Martelli MP, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci USA,2008,105 (10):3945-3450
    [77]Jpnqen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood, 2008, 111(10):5078-5085
    [78]Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA, 2008,105(40):15535-15540
    [79]O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med,2008,205(3):585-594
    [80]Garzon R, Volinia S, Liu CG, et al, MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood,2008,111(6): 3183-3189
    [81]Zhang H, Luo XQ, Zhang P, et al. MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One,2009,4(11):e7826
    [82]Wang Y, Li Z, He C, et al. MicroRNAs expression signatures are associated with lineage and survival in acute leukemias. Blood Cells, Molecules, and Diseases, 2010,44 (3):191-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700