玉米大斑病菌cAMP磷酸二酯酶基因调控病菌发育的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大斑刚毛球腔菌(Setosphaeria turcica (Luttrell)Leonard﹠Suggs,俗称玉米大斑病菌)属子囊菌门毛座腔菌属,由其引起的玉米大斑病是一种严重威胁玉米生产的真菌病害,多发生于全球冷凉地域的玉米产区,常造成严重经济损失。研究表明,cAMP信号转导途径是真菌中普遍存在的细胞外信号跨膜转导途径,对植物病原真菌的形态发生及发育、次生代谢以及致病性等生物进程均起着非常重要的调控作用。本试验利用简并引物PCR法克隆了2个玉米大斑病菌cAMP磷酸二酯酶基因,其中包括1个高亲和力cAMP磷酸二酯酶基因(StH-PDE)和1个低亲和力cAMP磷酸二酯酶基因(StL-PDE)。分别创制StH-PDE和StL-PDE基因敲除突变体,对目的基因进行功能研究,主要研究结果如下:
     1.从玉米大斑病菌基因组中,获得了1个高亲和力cAMP磷酸二酯酶基因和1个低亲和力cAMP磷酸二酯酶基因,分别命名为StH-PDE和StL-PDE。其中,StH-PDE基因DNA全长3208bp,含有6个外显子和5个内含子,cDNA为2898bp,编码965个氨基酸,编码产物计算分子量约为107.16kD;StL-PDE基因DNA全长5054bp,含有5个外显子,4个内含子,cDNA为3089bp,编码1019个氨基酸。上述基因的内含子基本符合GT-AG法则。
     2. StH-PDE编码产物的氨基酸序列与多种病原真菌,如Aspergillus fumigatus、Botrytis cinerea、Metarhizium acridum、Neosartorya fischeri等的H-PDE氨基酸序列相似性在33.12%~36.60%之间,具有保守的Ⅰ型cAMP磷酸二酯酶催化结构域、Ⅰ型cAMP磷酸二酯酶保守位点和依赖金属离子的磷酸水解酶保守“HD”基序(HD motif),但与StL-PDE的相似性仅为20.33%,说明两个基因属于不同的磷酸二酯酶类群。StL-PDE编码产物的氨基酸序列与Trichoderma reesei、 Beauveria bassiana、Colletotrichum higginsianum、Talaromyced stipitatus等病原真菌的L-PDE氨基酸序列相似性为21.98%~23.06%,其中含有L-PDE特有的Ⅱ型cAMP磷酸二酯酶催化结构域。
     3.检测了StH-PDE基因在玉米大斑病菌不同发育时期的表达规律,发现StH-PDE基因在菌丝时期的表达量最高,在孢子萌发时期以及附着胞形成时期次之,在分生孢子发育以及侵染丝形成时期表达量最低。
     4.利用质粒pUCATPH和pBS,根据基因同源重组原理,构建了StH-PDE基因敲除载体。将重组DNA片段通过PEG介导转化玉米大斑病菌原生质体,经潮霉素筛选获得了潮霉素抗性转化子,通过潮霉素磷酸转移酶基因特异性引物及StH-PDE基因特异性引物对转化子进行PCR筛选,得到了9株阳性转化子;对其中3株转化子进行单孢分离,并进行Southern blot及RT-PCR验证,最终获得2株StH-PDE基因缺失突变体菌株△StH-PDE2和△StH-PDE3。对△StH-PDE2和△StH-PDE3突变体进行了功能分析,发现2株突变体菌落颜色呈深黄色,气生菌丝减少,且生长速度较野生型菌株慢;菌丝细胞膨大,细胞分隔变短且表面出现不规则褶皱,细胞壁完整性降低,菌丝细胞外包裹红色分泌物;其次,突变体菌株具产孢缺陷,菌丝可在玻璃纸表面诱导形成附着胞,但附着胞形成过程明显延迟,且穿透玻璃纸的能力降低;再者,突变体菌株细胞内甘油含量升高,抗盐胁迫能力增强,疏水性下降,易出现可湿表型,胞内黑色素含量降低;漆酶及HT-毒素活性没有明显变化;此外,经组织病理学观察发现,突变体菌株能够正常侵入寄主组织,但侵染效能较野生型有所降低。RT-PCR分析表明,StH-PDE基因对细胞壁合成相关基因(CHS、GFA、FKS、GSC、GEL)、微管蛋白基因Tubulin、疏水性调控基因MPG1、水甘油通道蛋白基因FPS以及调控黑色素合成的转录因子基因SMR的表达均有重要的调控作用。
     6.检测了StL-PDE在玉米大斑病菌不同发育时期的表达规律,结果表明,StL-PDE基因在玉米大斑病菌菌丝时期的表达量最高,其次是在孢子萌发时期和附着胞形成时期。
     7.利用相同的基因敲除载体构建策略构建了StL-PDE基因敲除载体,经潮霉素抗性和PCR筛选获得了10个转化子。对其中的△StL-PDE1和△StL-PDE10突变菌株单孢分离,并经Southern blot及RT-PCR验证,明确其为StL-PDE缺失突变体。对△StL-PDE1和△StL-PDE10突变体菌株进行了表型分析,发现突变体气生菌丝较野生型茂密,且生长速度较野生型菌株略快;突变体菌丝出现多分枝现象,分生孢子产量降低,且细胞分隔处表面出现不规则突起,菌丝可在玻璃纸表面诱导产生附着胞,但其穿透玻璃纸的能力较野生型降低;其次,突变菌株细胞内甘油含量积累升高,抗盐胁迫能力增强;胞内黑色素含量减少;漆酶活性显著降低。RT-PCR分析表明,△StL-PDE1、△StL-PDE10突变体中细胞壁合成相关基因(CHS、GFA、FKS、GSC、GEL)、微管蛋白基因Tubulin、疏水性调控基因MPG1和野生型菌株没有明显差异;水甘油通道蛋白FPS表达量略有下调。
     由此得出结论:1)StH-PDE基因在调控玉米大斑病菌菌丝细胞形态建成以及细胞完整性、分生孢子发育、次生代谢、感知营养的能力、胞内黑色素生物合成、应答盐胁迫反应以及致病性等方面均具有重要调控作用;2)StL-PDE在调控玉米大斑病菌分生孢子发育、菌丝附着胞的侵染能力以及胞内漆酶活性等方面具有重要调控作用。3)StH-PDE基因在玉米大斑病菌生长发育过程中担负主要的调控作用,而StL-PDE基因则担负较为次要的调控作用。
Setosphaeria turcica which causing Northern Corn Leaf Blight, is one of importantphytopathogenic fungi, and always results in significant corn yield losses. cAMP signaltransduction pathway is a widespread extracellular signal transduction pathway in fungi,and playes important roles in regulating the growth, morphogenesis, development,secondary metabolism and pathogenicity of phytopathogenic fungi. In this research, twokey enzyme genes of Setosphaeria turcica, involved in cAMP signal transduction pathway,were cloned and named as StH-PDE and StL-PDE respectively. StH-PDE was encodedhigh-affinity cAMP phosphodiesterase and StL-PDE was encoded low-affinity cAMPphosphodiesterase. Functional analysis of StH-PDE and StL-PDE genes were explored bycreating the gene-knockout mutants. Main results in this paper were as follows:
     1. One high-affinity cAMP phosphodiesterase gene (StH-PDE) and one low-affinitycAMP phosphodiesterase gene (StL-PDE) were cloned with the candidate gene cloningstrategy. Among them, the full length DNA and cDNA of StH-PDE and StL-PDE had beenobtained. StH-PDE included3208bp DNA sequence with2898bp coding region andconsisted of6exons and5introns, and its predicted protein contained965aa with amolecular weight of107.16kDa. StL-PDE gene included5054bp and was interrupted byone intron and its ORF of3089bp was encoded1019amino acid residues and wasinterrupted by4intons. All introns were accordance with GT-AG rules.
     2. The low identity for the StH-PDE on nucleic acid level found for the high-affinitycAMP phosphodiesterase from Aspergillus fumigatus, Botryotinia fuckeliana, Metarhiziumacridum, Neosartorya fischeri was between33.12%and36.60%. PPDEase_Ⅰ3’5’ cyclicnucleotide phosphodiesterase, catalytic domain and metal dependent phosphodiesterase,HD/domain, and PDEase_Ⅰ3’5’ cyclic nucleotide phosphodiesterase, conserved site wasfound, whereas high-affinity cAMP phosphodiesterase was20.33%sequence similarity tolow-affinity cAMP phosphodiesterase of S. turcica. It was probable that two genesbelonged to two groups of phosphodiesterase and shared different catalyse substrate. Thelow identity for the StL-PDE on nucleic acid level found for the low-affinity cAMPphosphodiesterase from Trichoderma reesei, Beauveria bassiana, Colletotrichumhigginsianum, Talaromyced stipitatus was between21.98%and23.06%. PDEase_Ⅱ3’5’ cyclic nucleotide phosphodiesterase domain and translation elongation factor EFIB,gamma chain, conserved site was found in StL-PDE.
     3. StH-PDE mRNA expression level was determined in the different developmentstage of S. turcica. The result showed that StH-PDE mRNA expression level was thehighest in mycelium and lowest in conidium and infection hypha.
     4. The StH-PDE gene-disruption vector was constructed based on the genedouble-cross homologous combination theory and PEG-mediated gene transformationsystem. Nine transformants named as△StH-PDE1~△StH-PDE9were screened byhygromycin B and PCR with specific primers corresponding to hygromycinphosphotransferase gene and StH-PDE gene.△StH-PDE2,△StH-PDE3and△StH-PDE8were obtained by Southern blot analysis performed with the DIG-labeled HPHgene and StH-PDE gene as probes respectively. Furthermore, single spore of△StH-PDE2and△StH-PDE3were isolated and verification by RT-PCR. The function analysis wasindicated that mutants were dark yellow, showed different color with the wild type strain.The number of aerial hypha and the growth in mutants was reduced. The cell of hypha wasswollen and the compartmentation of the cell was shorter. The surface of the hypha wasdisplayed irregular lined. The cell wall integrity was destroyed. The red secretion wasadhered on the surface of the hypha. The sporulation defect was showed in mutants, whilehypha could germinated and formed appressorium associating gwith postphonement,furthermore, the penetrate ability on the cellophane surface was declined. Theaccumulation of intra-cellular glycerin content mutants was increased and showedreinforced salt-stress resistance. The hydrophobicity of mutants was impaired andpresented an wettable phenotype. The HT-toxin activity of mutants was resemble with wildtype strain. The pathogenicity test showed that mutants could penetrate on the host, butcouldn’t result in lession. The mRNA expression level of CHS、GFA、FKS、GSC、GEL、Tubulin、MPG1and FPS in mutants was lower than wild type strains in different extent.
     5. StL-PDE mRNA expression level was determined in the different developmentstage of S. turcica. The result showed that StH-PDE mRNA expression level was thehighest in mycelium and lower in spore germination and appressorium formation.
     6. The StL-PDE gene replacement vector was also constructed based on the samestrategy as StH-PDE. StL-PDE transformants named△StL-PDE1and△StL-PDE10wereisolated and verificated by PCR、southern blot and RT-PCR. The function analysis ofmutants exhibited increased aerial hypha formation and second-infect hypha branching,reduced conidiation, lower penetration ability on the cellophane surface, enhancedaccumulation of intra-cellular glycerin content, reinforced salt-stress resistance, reducedmelanin content and declined laccase activity. The PT-PCR analysis indicated that mRNAexpression level of CHS、GFA、FKS、GSC、GEL、Tubulin and MPG1was no differencein the wild type and mutant strains. Only the mRNA expression level of FPS displayed a little declined in the mutant strains.
     The above results can summarize the function of these genes:1) StH-PDE gene wasinvolved in cell wall integrity, sporulation, second metabolism, sense to nutrition, melaninbiosynthesis, salt-stress resistant and pathogenicity in S. turcica respectively.2) StL-PDEgene played an important role in the regulation of sporulation, penetration ability of thehypha and laccase activity in Setosphaeria turcica.3)StH-PDE gene might have apredominant role and StL-PDE gene played a secondary role in the regulation of growthand development n S. turcica.
引文
[1] Houslay M D, Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity[J]. TrendsBiochem Sci,1997,22(6):217-224.
    [2] Demirbas D, Ceyhan O, Wyman A R, et al. A fission yeast-based platform for phosphodiesterase inhibitorHTSs and analyses of phosphodiesterase activity[J]. Handb Exp Pharmacol,2011,2(4):135-149.
    [3]孙淑琴,温雷蕾,董金皋.玉米大斑病菌的生理小种及交配型测定[J].玉米科学,2005,13(4):112-113.
    [4] Degefu Y, Lohtander K, Paulin L. Expression patterns and phylogenetic analysis of two xylanase genes(htxyl1and htxyl2) from Helminthosporium turcicum, the cause of northern leaf blight of maize[J].Biochimie,2004,86(2):83-90.
    [5]张秀霞,高增贵,周晓锟,等.东北地区玉米大斑病菌生理分化研究[J].华北农学报,2012,27(3):227-230.
    [6]陈刚.玉米大斑病菌[Exserohilum turcicum(Pass)Leonard et Suggs]生理小种2号的分布与防治[J].玉米科学,1993,(1):65-66.
    [7]李勇,潘顺法,白金铠,等.玉米大斑病菌〔Exserohilum turcicum(Pass.)Leonard et Suggs〕生理小种鉴定结果初报[J].植物病理学报,1982,(1):63-66.
    [8]李林.玉米大斑病菌生理小种鉴定初报[J].山东农业科学,1995,(2):25-28.
    [9]姜晶春,藩顺法,尹志.玉米大斑病菌生理小种鉴定续报[J].吉林农业科学,1991,(1):46-48.
    [10]高金欣,吕淑霞,高增贵,等.东北地区2009年玉米大斑病菌生理小种鉴定与动态分析[J].玉米科学,2011,(3):138-140.
    [11]浦子钢.黑龙江省西部地区玉米大斑病菌生理小种鉴定及生物学特性分析[J].黑龙江农业科学,2012,(1):45-50.
    [12]张小飞,李晓,崔丽娜,等.西南地区玉米大斑病菌生理小种鉴定[J].玉米科学,2012,(4):143-148.
    [13]桂秀梅,董金皋,侯晓强.中国2001年玉米大斑病菌生理小种鉴定[J].河北农业大学学报,2003,26(4):11-13.
    [14]安鑫龙,郑晓莲,董金皋.玉米大斑病长蠕孢生理小种的遗传变异[J].微生物学通报,2002,29(2):53-56.
    [15]李晓,杨晓蓉,何文凤,等.玉米大斑病生理小种组成变异研究[J].西南农业大学学报,1999,(1):37-39.
    [16]邓福友,董金皋,李利平.玉米大斑病菌Ht-毒素在玉米品种抗病性鉴定中的应用[J].河北农业大学学报,1995,(4):12-15.
    [17]董金皋,周宗山,李正平.玉米大斑病菌HT-毒素组分Ⅱ的化学结构[J].植物病理学报,2000,30(2):186-187.
    [18]张利辉,刘云惠,董金皋,等.玉米大斑病菌特异性毒素组分的分离与纯化[J].植物病理学报,2003,33(1):67-71.
    [19] Xu J R. Map kinases in fungal pathogens[J]. Fungal Genet Biol,2000,31(3):137-152.
    [20] Rosenblad M A, Zwieb C, Samuelsson T. Identification and comparative analysis of components fromthe signal recognition particle in protozoa and fungi[J]. BMC Genomics,2004,5(1):5.
    [21] Schmoll M. Assessing the relevance of light for fungi implications and insights into the network ofsignal transmission[J]. Adv Appl Microbiol,2011,76(2):72-78.
    [22] Mendgen K, Hahn M, Deising H. Morphogenesis and mechanisms of penetration by plant pathogenicfungi[J]. Annu Rev Phytopathol,1996,3(4):367-386.
    [23] Warwar V, Dickman M B. Effects of Calcium and Calmodulin on Spore Germination and AppressoriumDevelopment in Colletotrichum trifolii[J]. Appl Environ Microbiol,1996,62(1):74-79.
    [24] Lengeler K B, Davidson R C, D'Souza C, et al. Signal transduction cascades regulating fungaldevelopment and virulence[J]. Microbiol Mol Biol Rev,2000,64(4):746-785.
    [25] Choi Y E, Xu J R. The cAMP signaling pathway in Fusarium verticillioides is important for conidiation,plant infection, and stress responses but not fumonisin production[J]. Mol Plant Microbe Interact,2010,23(4):522-533.
    [26] Schumacher J, Kokkelink L, Huesmann C, et al. The cAMP-dependent signaling pathway and its role inconidial germination, growth, and virulence of the gray mold Botrytis cinerea[J]. Mol Plant MicrobeInteract,2008,21(11):1443-1459.
    [27] Zou H, Fang H M, Zhu Y, et al. Candida albicans Cyr1, Cap1and G-actin form a sensor/effectorapparatus for activating cAMP synthesis in hyphal growth[J]. Mol Microbiol,2010,75(3):579-591.
    [28] Kubler E, Mosch H U, Rupp S, et al. Gpa2p, a G-protein alpha-subunit, regulates growth andpseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism[J]. J BiolChem,1997,272(33):20321-20323.
    [29] Kulkarni R D, Dean R A. Identification of proteins that interact with two regulators of appressoriumdevelopment, adenylate cyclase and cAMP-dependent protein kinase A, in the rice blast fungusMagnaporthe grisea[J]. Mol Genet Genomics,2004,270(6):497-508.
    [30] Pandey A K, Jain P, Podila G K, et al. Cold induced Botrytis cinerea enolase (BcEnol-1) functions as atranscriptional regulator and is controlled by cAMP[J]. Mol Genet Genomics,2009,281(2):135-146.
    [31] Martinez-Espinoza A D, Ruiz-Herrera J, Leon-Ramirez C G, et al. MAP kinase and cAMP signalingpathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungusUstilago maydis[J]. Curr Microbiol,2004,49(4):274-281.
    [32] Kronstad J W, Hu G, Choi J. The cAMP/Protein Kinase A Pathway and Virulence in Cryptococcusneoformans[J]. Mycobiology,2011,39(3):143-150.
    [33] Freitas F Z, de Paula R M, Barbosa L C, et al. cAMP signaling pathway controls glycogen metabolismin Neurospora crassa by regulating the glycogen synthase gene expression and phosphorylation[J].Fungal Genet Biol,2010,47(1):43-52.
    [34] Alaamery M A, Hoffman C S. Schizosaccharomyces pombe Hsp90/Git10is required for glucose/cAMPsignaling[J]. Genetics,2008,178(4):1927-1936.
    [35] Brakhage A A, Liebmann B. Aspergillus fumigatus conidial pigment and cAMP signal transduction:significance for virulence[J]. Med Mycol,2005,43(1):75-82.
    [36] Liebmann B, Gattung S, Jahn B, et al. cAMP signaling in Aspergillus fumigatus is involved in theregulation of the virulence gene pksP and in defense against killing by macrophages[J]. Mol GenetGenomics,2003,269(3):420-435.
    [37] Adachi K, Hamer J E. Divergent cAMP signaling pathways regulate growth and pathogenesis in the riceblast fungus Magnaporthe grisea[J]. Plant Cell,1998,10(8):1361-1374.
    [38] Mitchell T K, Dean R A. The cAMP-dependent protein kinase catalytic subunit is required forappressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea[J]. Plant Cell,1995,7(11):1869-1878.
    [39] Klimpel A, Gronover C S, Williamson B, et al. The adenylate cyclase (BAC) in Botrytis cinerea isrequired for full pathogenicity[J]. Mol Plant Pathol,2002,3(6):439-450.
    [40] Gold S, Duncan G, Barrett K, et al. cAMP regulates morphogenesis in the fungal pathogen Ustilagomaydis[J]. Genes Dev,1994,8(23):2805-2816.
    [41] Gold S E, Brogdon S M, Mayorga M E, et al. The Ustilago maydis regulatory subunit of acAMP-dependent protein kinase is required for gall formation in maize[J]. Plant Cell,1997,9(9):1585-1594.
    [42] Binder U, Oberparleiter C, Meyer V, et al. The antifungal protein PAF interferes with PKC/MPK andcAMP/PKA signalling of Aspergillus nidulans[J]. Mol Microbiol,2010,75(2):294-307.
    [43] Parrill A L, Wanjala I W, Pham T C, et al. Computational identification and experimentalcharacterization of substrate binding determinants of nucleotide pyrophosphatase/phosphodiesterase7[J].BMC Biochem,2011,12:65.
    [44] Srinivas N R. Substrate-specific pharmacokinetic interaction between endothelin receptor antagonistsand phosphodiesterase-5inhibitors--assembling the clues[J]. Br J Clin Pharmacol,2009,67(4):475-477.
    [45] Richter W, Unciuleac L, Hermsdorf T, et al. Identification of substrate specificity determinants in humancAMP-specific phosphodiesterase4A by single-point mutagenesis[J]. Cell Signal,2001,13(3):159-167.
    [46] Brown K M, Lee L C, Findlay J E, et al. Cyclic AMP-specific phosphodiesterase, PDE8A1, is activatedby protein kinase A-mediated phosphorylation[J]. FEBS Lett,2012,586(11):1631-1637.
    [47] Krahe T E, Wang W, Medina A E. Phosphodiesterase inhibition increases CREB phosphorylation andrestores orientation selectivity in a model of fetal alcohol spectrum disorders[J]. PLoS One,2009,4(8):e6643.
    [48] Bessay E P, Blount M A, Zoraghi R, et al. Phosphorylation increases affinity of the phosphodiesterase-5catalytic site for tadalafil[J]. J Pharmacol Exp Ther,2008,325(1):62-68.
    [49] Lim J, Pahlke G, Conti M. Activation of the cAMP-specific phosphodiesterase PDE4D3byphosphorylation. Identification and function of an inhibitory domain[J]. J Biol Chem,1999,274(28):19677-19685.
    [50] Rich T C, Fagan K A, Tse T E, et al. A uniform extracellular stimulus triggers distinct cAMP signals indifferent compartments of a simple cell[J]. Proc Natl Acad Sci U S A,2001,98(23):13049-13054.
    [51] Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated ratneonatal cardiac myocytes[J]. Science,2002,295(5560):1711-1715.
    [52] Jurevicius J, Fischmeister R. cAMP compartmentation is responsible for a local activation of cardiacCa2+channels by beta-adrenergic agonists[J]. Proc Natl Acad Sci U S A,1996,93(1):295-299.
    [53] Gamanuma M, Yuasa K, Sasaki T, et al. Comparison of enzymatic characterization and geneorganization of cyclic nucleotide phosphodiesterase8family in humans[J]. Cell Signal,2003,15(6):565-574.
    [54] Pampal A, Ozen I O, Demirogullari B, et al. Apart from the other members of PDE inhibitors' family,enoximone does not enhance renal ischemic reperfusion injury: the effects of enoximone on renalischemia reperfusion[J]. Ren Fail,2009,31(10):971-976.
    [55] Obernolte R, Bhakta S, Alvarez R, et al. The cDNA of a human lymphocyte cyclic-AMPphosphodiesterase (PDE IV) reveals a multigene family[J]. Gene,1993,129(2):239-247.
    [56] Singh B, Lesher G Y, Pluncket K C, et al. Novel cAMP PDE III inhibitors:1,6-naphthyridin-2(1H)-ones[J]. J Med Chem,1992,35(26):4858-4865.
    [57] Zhao H, Quilley J, Montrose D C, et al. Differential effects of phosphodiesterase PDE-3/PDE-4-specificinhibitors on vasoconstriction and cAMP-dependent vasorelaxation following balloon angioplasty[J].Am J Physiol Heart Circ Physiol,2007,292(6):2973-2981.
    [58] Shakur Y, Holst L S, Landstrom T R, et al. Regulation and function of the cyclic nucleotidephosphodiesterase (PDE3) gene family[J]. Prog Nucleic Acid Res Mol Biol,2001,66:241-277.
    [59] Charlie N K, Thomure A M, Schade M A, et al. The Dunce cAMP phosphodiesterase PDE-4negativelyregulates G alpha(s)-dependent and G alpha(s)-independent cAMP pools in the Caenorhabditis eleganssynaptic signaling network[J]. Genetics,2006,173(1):111-130.
    [60] Shakur Y, Fong M, Hensley J, et al. Comparison of the effects of cilostazol and milrinone oncAMP-PDE activity, intracellular cAMP and calcium in the heart[J]. Cardiovasc Drugs Ther,2002,16(5):417-427.
    [61] Birnbaum Y, Castillo A C, Qian J, et al. Phosphodiesterase III inhibition increases cAMP levels andaugments the infarct size limiting effect of a DPP-4inhibitor in mice with type-2diabetes mellitus[J].Cardiovasc Drugs Ther,2012,26(6):445-456.
    [62] Xu H G, Li Z R, Wang H, et al. Intermittent Cyclic Mechanical Tension-induced Down-regulation ofEctonucleotide Pyrophosphatase Phosphodiesterase1Gene Expression is Mainly Dependent onTGF-beta1in End-plate Chondrocytes[J]. Orthop Surg,2013,5(1):40-45.
    [63] Tsai L C, Beavo J A. Regulation of adrenal steroidogenesis by the high-affinity phosphodiesterase8family[J]. Horm Metab Res,2012,44(10):790-794.
    [64] Patel V, Banu N, Malhotra O P, et al. Plasma cAMP and cAMP-phosphodiesterase (PDE) levels incancer patients before and after surgery[J]. Indian J Cancer,1981,18(3):181-184.
    [65] Lichtner R, Haarmann W. Antimetastatic action of RX-RA69, a new potent PDE-inhibitor in the Lewislung carcinoma of the mouse[J]. Prog Clin Biol Res,1982,89:131-141.
    [66] Racca S, Squillario P, Carozzi S, et al. Effects of medroxyprogesterone acetate (MPA) onphosphodiesterase (PDE) activity in DMBA-induced rat mammary tumours[J]. Pharmacol Res,1989,21(1):101-102.
    [67] Kitabchi A E, Wilson D B, Sharma R K. Steroidogenesis in isolated adrenal cells of rat. II. Effect ofcaffeine on ACTH and cyclic nucleotide-induced steroidogenesis and its relation to cyclic nucleotidephosphodiesterase (PDE)[J]. Biochem Biophys Res Commun,1971,44(4):898-904.
    [68] Manganiello V C, Degerman E. Cyclic nucleotide phosphodiesterases (PDEs): diverse regulators ofcyclic nucleotide signals and inviting molecular targets for novel therapeutic agents[J]. ThrombHaemost,1999,82(2):407-411.
    [69] Kwak H J, Nam J Y, Song J S, et al. Discovery of a novel orally active PDE-4inhibitor effective in anovalbumin-induced asthma murine model[J]. Eur J Pharmacol,2012,685(1-3):141-148.
    [70] Porst H, Hell-Momeni K, Buttner H. Chronic PDE-5inhibition in patients with erectile dysfunction-atreatment approach using tadalafil once-daily[J]. Expert Opin Pharmacother,2012,13(10):1481-1494.
    [71] Higashiyama M, Hokari R, Kurihara C, et al. Indomethacin-induced small intestinal injury isameliorated by cilostazol, a specific PDE-3inhibitor[J]. Scand J Gastroenterol,2012,47(8-9):993-1002.
    [72] Wilson D, Tutulan-Cunita A, Jung W, et al. Deletion of the high-affinity cAMP phosphodiesteraseencoded by PDE2affects stress responses and virulence in Candida albicans[J]. Mol Microbiol,2007,65(4):841-856.
    [73] Swinnen J V, Joseph D R, Conti M. Molecular cloning of rat homologues of the Drosophilamelanogaster dunce cAMP phosphodiesterase: evidence for a family of genes[J]. Proc Natl Acad Sci US A,1989,86(14):5325-5329.
    [74] Sakamoto Y, Tanaka N, Ichimiya T, et al. Structural comparison analysis of2H phosphodiesterasefamily proteins[J]. Nucleic Acids Symp Ser (Oxf),2007,5(1):447-448.
    [75] Kobayashi T, Gamanuma M, Sasaki T, et al. Molecular comparison of rat cyclic nucleotidephosphodiesterase8family: unique expression of PDE8B in rat brain[J]. Gene,2003,319:21-31.
    [76] Conti M, Jin S L. The molecular biology of cyclic nucleotide phosphodiesterases[J]. Prog Nucleic AcidRes Mol Biol,1999,6:31-38.
    [77] Bauer-Siebenlist B, Meyer F, Farkas E, et al. Effect of Zn...Zn separation on the hydrolytic activity ofmodel dizinc phosphodiesterases[J]. Chemistry,2005,11(15):4349-4360.
    [78] Thomas J, Rigden D J, Cronan J E. Acyl carrier protein phosphodiesterase (AcpH) of Escherichia coli isa non-canonical member of the HD phosphatase/phosphodiesterase family[J]. Biochemistry,2007,46(1):129-136.
    [79] Yakunin A F, Proudfoot M, Kuznetsova E, et al. The HD domain of the Escherichia coli tRNAnucleotidyltransferase has2',3'-cyclic phosphodiesterase,2'-nucleotidase, and phosphatase activities[J].J Biol Chem,2004,279(35):36819-36827.
    [80] Sultan S Z, Pitzer J E, Boquoi T, et al. Analysis of the HD-GYP domain cyclic dimeric GMPphosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferi[J]. InfectImmun,2011,79(8):3273-3283.
    [81] Zhang K Y, Card G L, Suzuki Y, et al. A glutamine switch mechanism for nucleotide selectivity byphosphodiesterases[J]. Mol Cell,2004,15(2):279-286.
    [82] Jin S L, Swinnen J V, Conti M. Characterization of the structure of a low Km, rolipram-sensitive cAMPphosphodiesterase. Mapping of the catalytic domain[J]. J Biol Chem,1992,267(26):18929-18939.
    [83] Ma P, Wera S, Van Dijck P, et al. The PDE1-encoded low-affinity phosphodiesterase in the yeastSaccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling[J]. MolBiol Cell,1999,10(1):91-104.
    [84] Matviw H, Li J, Young D. The Schizosaccharomyces pombe pde1/cgs2gene encodes a cyclic AMPphosphodiesterase[J]. Biochem Biophys Res Commun,1993,194(1):79-82.
    [85] Balhadere P V, Talbot N J. PDE1encodes a P-type ATPase involved in appressorium-mediated plantinfection by the rice blast fungus Magnaporthe grisea[J]. Plant Cell,2001,13(9):1987-2004.
    [86] Hicks J K, Bahn Y S, Heitman J. Pde1phosphodiesterase modulates cyclic AMP levels through a proteinkinase A-mediated negative feedback loop in Cryptococcus neoformans[J]. Eukaryot Cell,2005,4(12):1971-1981.
    [87] Mitsuzawa H. Responsiveness to exogenous cAMP of a Saccharomyces cerevisiae strain conferred bynaturally occurring alleles of PDE1and PDE2[J]. Genetics,1993,135(2):321-326.
    [88] Namy O, Duchateau-Nguyen G, Rousset J P. Translational readthrough of the PDE2stop codonmodulates cAMP levels in Saccharomyces cerevisiae[J]. Mol Microbiol,2002,43(3):641-652.
    [89] Park J I, Grant C M, Dawes I W. The high-affinity cAMP phosphodiesterase of Saccharomycescerevisiae is the major determinant of cAMP levels in stationary phase: involvement of differentbranches of the Ras-cyclic AMP pathway in stress responses[J]. Biochem Biophys Res Commun,2005,327(1):311-319.
    [90] Hu Y, Liu E, Bai X, et al. The localization and concentration of the PDE2-encoded high-affinity cAMPphosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomycescerevisiae[J]. FEMS Yeast Res,2010,10(2):177-187.
    [91] Hoffman C S. Glucose sensing via the protein kinase A pathway in Schizosaccharomyces pombe[J].Biochem Soc Trans,2005,33(1):257-260.
    [92] Jung W H, Warn P, Ragni E, et al. Deletion of PDE2, the gene encoding the high-affinity cAMPphosphodiesterase, results in changes of the cell wall and membrane in Candida albicans[J]. Yeast,2005,22(4):285-294.
    [93] Bahn Y S, Staab J, Sundstrom P. Increased high-affinity phosphodiesterase PDE2gene expression ingerm tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production andpromotes virulence of Candida albicans[J]. Mol Microbiol,2003,50(2):391-409.
    [94] Zhang H, Liu K, Zhang X, et al. Two phosphodiesterase genes, PDEL and PDEH, regulate developmentand pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae[J]. PLoS One,2011,6(2): e17241.
    [95] Ramanujam R, Naqvi N I. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexualand pathogenic differentiation in Magnaporthe oryzae[J]. PLoS Pathog,2010,6(5): e1000897.
    [96] Agarwal C, Aulakh K B, Edelen K, et al. Ustilago maydis phosphodiesterases play a role in thedimorphic switch and in pathogenicity[J]. Microbiology,2013.
    [97] Tellez-Inon M T, Glikin G C, Torres H N. Cyclic nucleotide phosphodiesterase activities in Neurosporacrassa[J]. Biochem J,1982,203(3):611-616.
    [98] Polya G M, Brownlee A G, Hynes M J. Enzymology and genetic regulation of a cyclicnucleotide-binding phosphodiesterase-phosphomonoesterase from Aspergillus nidulans[J]. J Bacteriol,1975,124(2):693-703.
    [99] Wang L, Griffiths K, Jr., Zhang Y H, et al. Schizosaccharomyces pombe adenylate cyclase suppressormutations suggest a role for cAMP phosphodiesterase regulation in feedback control of glucose/cAMPsignaling[J]. Genetics,2005,171(4):1523-1533.
    [100] Tellez-Inon M T, Ulloa R M, Glikin G C, et al. Characterization of Neurospora crassa cyclic AMPphosphodiesterase activated by calmodulin[J]. Biochem J,1985,232(2):425-430.
    [101] Agarwal C, Schultz D J, Perlin M H. Two phosphodiesterases from Ustilago maydis share structuraland biochemical properties with non-fungal phosphodiesterases[J]. Front Microbiol,2010,1(127.
    [102] Javahery R, Khachi A, Lo K, et al. DNA sequence requirements for transcriptional initiator activity inmammalian cells[J]. Mol Cell Biol,1994,14(1):116-127.
    [103] Lo K, Smale S T. Generality of a functional initiator consensus sequence[J]. Gene,1996,182(1-2):13-22.
    [104]曹志艳,贾慧,朱显明,等. DHN黑色素与玉米大斑病菌附着胞膨压形成的关系[J].中国农业科学,2011,44(5):925-932.
    [105]刘云惠,张利辉,董金皋.高效液相色谱对玉米大斑病菌毒素的分离与制备[J].河北大学学报(自然科学版),2005,25(5):503-506.
    [106] Bashyal B M, Chand R, Kushwaha C, et al. Association of melanin content with conidiogenesis inBipolaris Sorokiniana of barley (Hordeum vulgare L.)[J]. World Journal of Microbiology andBiotechnology,2010,26:309-316.
    [107]曹志艳,藏金萍,贾慧,等.玉米大斑病菌漆酶活性测定及基因片段的克隆[J].华北农学报,2011,(2):76-80.
    [108] Elorza M V, Rico H, Sentandreu R. Calcofluor white alters the assembly of chitin fibrils inSaccharomyces cerevisiae and Candida albicans cells[J]. J Gen Microbiol,1983,129(5):1577-1582.
    [109] Roncero C, Duran A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: invivo activation of chitin polymerization[J]. J Bacteriol,1985,163(3):1180-1185.
    [110] Tamas M J, Luyten K, Sutherland F C, et al. Fps1p controls the accumulation and release of thecompatible solute glycerol in yeast osmoregulation[J]. Mol Microbiol,1999,31(4):1087-1104.
    [111] Hedfalk K, Bill R M, Mullins J G, et al. A regulatory domain in the C-terminal extension of the yeastglycerol channel Fps1p[J]. J Biol Chem,2004,279(15):14954-14960.
    [112]曹志艳(2006)玉米大斑病菌黑色素性质与功能研究[硕士]:保定;河北农业大学.
    [113] Cabib E, Roh D H, Schmidt M, et al. The yeast cell wall and septum as paradigms of cell growth andmorphogenesis[J]. J Biol Chem,2001,276(23):19679-19682.
    [114] Kraus P R, Fox D S, Cox G M, et al. The Cryptococcus neoformans MAP kinase Mpk1regulates cellintegrity in response to antifungal drugs and loss of calcineurin function[J]. Mol Microbiol,2003,48(5):1377-1387.
    [115] Jeon J, Goh J, Yoo S, et al. A putative MAP kinase kinase kinase, MCK1, is required for cell wallintegrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae[J]. Mol Plant Microbe Interact,2008,21(5):525-534.
    [116] Molina L, Kahmann R. An Ustilago maydis gene involved in H2O2detoxification is required forvirulence[J]. Plant Cell,2007,19(7):2293-2309.
    [117] Lin C H, Yang S L, Chung K R. The YAP1homolog-mediated oxidative stress tolerance is crucial forpathogenicity of the necrotrophic fungus Alternaria alternata in citrus[J]. Mol Plant Microbe Interact,2009,22(8):942-952.
    [118] Chi M H, Park S Y, Kim S, et al. A novel pathogenicity gene is required in the rice blast fungus tosuppress the basal defenses of the host[J]. PLoS Pathog,2009,5(4): e1000401.
    [119] Jones D L, Petty J, Hoyle D C, et al. Transcriptome profiling of a Saccharomyces cerevisiae mutantwith a constitutively activated Ras/cAMP pathway[J]. Physiol Genomics,2003,16(1):107-118.
    [120] Bernard M, Latge J P. Aspergillus fumigatus cell wall: composition and biosynthesis[J]. Med Mycol,2001,39(1):9-17.
    [121] Campos J M, Zusman D R. Regulation of development in Myxococcus xanthus: effect of3':5'-cyclicAMP, ADP, and nutrition[J]. Proc Natl Acad Sci U S A,1975,72(2):518-522.
    [122] Studt L, Humpf H U, Tudzynski B. Signaling Governed by G Proteins and cAMP Is Crucial for Growth,Secondary Metabolism and Sexual Development in Fusarium fujikuroi[J]. PLoS One,2013,8(2):e58185.
    [123] Mukherjee M, Mukherjee P K, Kale S P. cAMP signalling is involved in growth, germination,mycoparasitism and secondary metabolism in Trichoderma virens[J]. Microbiology,2007,153(6):1734-1742.
    [124] Thorsen M, Di Y, Tangemo C, et al. The MAPK Hog1p modulates Fps1p-dependent arsenite uptakeand tolerance in yeast[J]. Mol Biol Cell,2006,17(10):4400-4410.
    [125] Mollapour M, Piper P W. Hog1mitogen-activated protein kinase phosphorylation targets the yeastFps1aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid[J]. Mol Cell Biol,2007,27(18):6446-6456.
    [126] Tamas M J, Karlgren S, Bill R M, et al. A short regulatory domain restricts glycerol transport throughyeast Fps1p[J]. J Biol Chem,2003,278(8):6337-6345.
    [127] Chiang Y M, Meyer K M, Praseuth M, et al. Characterization of a polyketide synthase in Aspergillusniger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin andnaphtho-gamma-pyrone[J]. Fungal Genet Biol,2011,48(4):430-437.
    [128] Lee J K, Jung H M, Kim S Y.1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitorsincrease erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase[J].Appl Environ Microbiol,2003,69(6):3427-3434.
    [129] Yamada N, Motoyama T, Nakasako M, et al. Enzymatic characterization of scytalone dehydrataseVal75Met variant found in melanin biosynthesis dehydratase inhibitor (MBI-D) resistant strains of therice blast fungus[J]. Biosci Biotechnol Biochem,2004,68(3):615-621.
    [130] Garcia-Martinez J, Adam A L, Avalos J. Adenylyl cyclase plays a regulatory role in development, stressresistance and secondary metabolism in Fusarium fujikuroi[J]. PLoS One,2012,7(1): e28849.
    [131] Grosse C, Heinekamp T, Kniemeyer O, et al. Protein kinase A regulates growth, sporulation, andpigment formation in Aspergillus fumigatus[J]. Appl Environ Microbiol,2008,74(15):4923-4933.
    [132] Lee Y H, Dean R A. cAMP Regulates Infection Structure Formation in the Plant Pathogenic FungusMagnaporthe grisea[J]. Plant Cell,1993,5(6):693-700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700