基于并行遗传算法的风扇/压气机叶片气动优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数值气动优化设计方法是计算流体力学和数值最优化理论相结合的一种跨学科自动设计方法,它较少地依赖设计人员的经验,能实现多目标优化设计和多设计参数组合优化设计,但是该方法对流场计算精度和计算机速度要求较高,直到近些年,随着计算机技术的发展得以快速发展。
     本文风扇/压气机的数值气动优化设计重点研究四个关键技术:研究耗时少、计算较准确的叶片通道流场数值计算方法;研究具有良好寻优能力的数值最优化方法;利用计算机辅助几何设计技术,研究三维叶片造型的参数化方法;研究以气动性能为目标的多目标函数构建方法。本文编制大量程序源代码实现了上述气动优化设计关键技术,并在此基础上展开下列具体工作:
     研究了叶片通道流场计算方法。针对雷诺平均三维NS方程流场计算耗时较长,本文利用Denton的粘性体积力流场计算方法编制程序,对叶片通道流场进行了仿真计算,大大缩短了流场计算耗时。通过美国NASA 67和37号转子计算算例,探索出该程序经验参数设置规律;并将粘性体积力方法的计算结果与实验数据、NUMECA软件计算结果进行比较,验证了粘性体积力方法的准确性。
     研究了高效率的并行遗传算法。采用实数编码、自适应算子、小生境技术等对基本遗传算法进行改进,提高了搜索效率和全局寻优能力;采用WinSock通讯机制、多线程技术、主从结构体系,实现了基于局域网多台计算机或服务器多CPU并行优化,大幅度缩短了优化时间。
     研究了风扇/压气机三维叶片基于修改量的参数化方法。这里提出了以叶片积叠线、叶片型面、子午面流道和叶片弦长都作为设计变量的多变量组合优化设计思想。在叶片型面参数化中,引入借鉴多重网格法和Beizer递推算法的多层参数化方法,并与遗传算法结合,达到提高寻优效率的目的。为了统一规范积叠线参数化描述,将叶片的弯曲设计、前后掠设计和叶片弦长设计与计算机辅助几何设计方法的三维旋转、平移和缩放建立对应关系,构造叶片参数化方法的矩阵公式。
     本文采用了基于修改量的参数化方法,在优化设计前,需预先给定初始叶片。通过对任意回转面与平面叶栅流动分析,明确了两者流动差别,最终选择基于回转面流动方法进行叶型设计。初始叶片由任意回转面叶型沿径向叠加形成。
     将风扇/压气机优化设计各个关键技术研究形成的模块整合成优化设计软件。软件各模块通过全局变量执行数据传输,既保证了各模块的相对独立,又便于软件编写、调试和功能扩展。软件具有使用简便的用户界面;具有二维、三维叶片并行优化设计功能;并有较丰富的计算结果后处理及结果图形显示能力。多个二维叶型和三维叶片的优化算例验证知:本文软件用来设计高气动性能叶片,设计结果较可靠,设计效率较高,能节约设计成本、缩短设计周期。
Numercial aerodynamic optimization is an interdiscipline automatic design method via computational fluid dynamics and optimization theory. It can implement multi-objective optimization and multi-parameter combinatorial optimization with less dependency on designer’s experience. However, numercial aerodynamic optimization design requires considerable flow field calculation accuracy and computing speed, it has not been developing so fast until recent years with the rapid advancement of computer technology.
     Fan/compressor design using numercial aerodynamic optimization focus on four key technologies: Fan/compressor blade passage flow field numerical method; Numerical optimization method with a good search capability; Parameterization description method of three-dimensional blade shape using Computer Aided Geometric Design Technology; The construction methodology of multi-objective function for aerodynamic performance. Estimated 30K LOC have been coded to implement the aforementioned critical technologies and based on these, the following research is carried out in detail:
     Firstly, fan/compressor flow field calculation procedure based on the distributed body force proposed by Denton is carried out in this thesis, and this method can shorten flow field computing time effectively compared to that based on Reynolds-averaged NS equations. The law of experience parameter setting is explored by NASA Rotor67 and Rotor37 examples. The accuracy of this procedure is verified by comparing the procedure calculation result to the NUMECA calculation results and experiment data.
     Secondly, an advanced genetic algorithm using Real-coded, adaptive operators, niching techniquesis at the basis of Simple Genetic Algorithm has improved the search efficiency and global optimization ability. Then this algorithm is paralleled on the LAN and server through winsock, multi-thread and Client-Server architecture to reduce the time-consuming of optimization.
     Thirdly, a fan/compressor blade parameterization method based on modification is studied including curved/swept stacking line, profile, meridional channel and chord length. In order to improve the optimization convergence rate, a multi-level parameterization algorithm is involved following Multi-Grid Method and Bezier recursive algorithm in this thesis. And corresponding relationships are set up between blade stacking line curved/swept, chord length and translation operation, rotating operation, zoom operation in CAGD.
     Fourthly, in the process of fan/compressor blade numercial aerodynamic optimization, the initial blade is necessary. Analysis and comparisons of revolving surface cascade and plane cascade give their differences, and then the revolving surface cascade is selected to design blade profile. At last, all profiles are stacked together on the radial to form initial blade.
     Finally, the software called OTMBPGA (Optimization of Turbomachinery Blades based on Parallel Genetic Algorithm) is integrated with Genetic Algorithm module, blade parameterization module, grid generation and flow field calculation module and objective fuction setting module. The data exchanges among those modules are convenient by using public memery. And every module is also independent, so it’s easy to maintain, extend software function and program debugging. OTMBPGA has friendly user interface, the functionality of two-dimensional and three-dimensional blade parallel optimization, the capacity of post-processing and graphical display of optimization result. 2D and 3D blade optimization examples verify that the design of the blade with high aerodynamic performance using OTMBPGA are reliable and high-efficiency, it can save design cost and shorten design period.
引文
[1]方昌德.航空发动机百年回顾[J].燃气涡轮试验与研究,2003,16(4):1-5
    [2] Koop W., The Integrated High Performance Turbine Engine Technology (IHPTET) Program[C], 13th International Symposium on Air Breathing Engines, ISABE 97-7175, Sept.7-12, 1997
    [3] Simoneau Robert J., Hudson Dale A., CFD in the context of IHPTET - The Integrated High Performance Turbine Engine Technology Program[C], AIAA-1989-2904
    [4]王如根,高坤华,航空发动机新技术[M],北京,航空工业出版社,2003.12
    [5] Dilip R.B., Joseph Z., Progress in Aero-Engine Technology(1939-2003)[J], AIAA-2003-4412
    [6]张恩和,对我国军用航空发动机发展的思考[J].航空发动机,2001,(3):1-3
    [7]刘大响,程荣辉,世界航空动力技术的现状及发展动向[J].北京航空航天大学学报, 2002, 28(5):490-496
    [8] Merchant A., Kerrebrok J. L., Adamczyk J. J., et al, Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage[C], ASME Paper GT2004–53679
    [9]朱方元,周新海,刘松龄,范非达,轴流跨音速压气机级的气动设计方法[J],西北工业大学学报,1979, (1): 5-25
    [10] Hobson, D. E.,高负荷跨音速涡轮气动设计[J],计算与实验研究(上集), 1977, p96-102
    [11] Karadimas G.,高负荷跨音速涡轮气动设计[J],计算与实验研究(上集), 1977, p103-112
    [12]刘卫,沈孟育,平面叶栅跨音速流动的正、反混合问题[J],空气动力学报1987, 5(3): 244-250
    [13] Greg W. Burgreen and Oktay Baysal, Aerodynamic shape optimization using preconditioned conjugate gradient methods[J], AIAA-93-3322
    [14] Shlomo Ta’asan, Trends in aerodynamics design and optimization: A mathematical viewpoint[C], AIAA-95-1731
    [15] Dadone A. and Grossman B., Progressive optimization of inverse fluid dynamic design problems[J], AIAA-97-1848
    [16] van Leer B., Towards the ultimate conservative difference scheme V., A second-order sequel to Godunov’s method[J], J. of Comp. Phy., Vol (32), pp101-136, 1979
    [17] Jameson A., Schemidt W. and Turkel E., Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[C], AIAA-81-1259
    [18] Woodward P. and Colella P., The numerical simulation of two-dimensional fluid flow with strong shocks[J], J. of Comp. Phy., Vol(54), pp115-173, 1984
    [19] Jameson A., Successes and challenges in computational aerodynamics[C], AIAA-87-1184
    [20] Bonhaus D. L., Wornom S. F., Comparison of two Navier-Stokes codes for attached transonic wing flows[J], J. Aircraft, Vol(29), pp101-107, 1992
    [21] MacCormack R. W., A perspective on a quarter century of CFD research[C], AIAA paper, AIAA-93-3291
    [22]傅德薰,流体力学数值模拟[M],北京,国防工业出版社,1993
    [23] Deconinck H., Roe Philip L. and Struijs K., A multidimensional generalization of Roe’s flux difference splitter for the Euler equations[J], Computers Fluid, Vol(22), No.2/3 pp215-222, 1993
    [24] Slotnik J. P., Kandula M., Buning P. G., Navier-Stokes simulation of the space shuttle launch vehicle flight transonic flowfield using a large Scale Chimera grid system[C], AIAA-94-1860
    [25] Huynh H. T., Accurate upwind schemes for the Euler equations[C], AIAA-95-1737
    [26] Norbert C. Bissinger, CFD Support for Scramjet Design and Testing[C], AIAA-99-4956
    [27] Gogoi A., Rao K.V.L., Performance Evaluation of MultiStage Fans using CFD[C], AIAA-2002-3538
    [28] Hishida M., Fujiwara T. and Ito S., A CFD Analysis of Wave Interaction in a Multi-Tube PDE[C], AIAA 2007-1175
    [29]刘宝杰,邹正平,严明,刘火星,宁方飞,张永新,徐力平,蒋浩康,陈懋章.叶轮机计算流体动力学技术现状与发展趋势[J],航空学报,2002,23(5):394-404
    [30]陈海生,谭春青,叶轮机械内部流动研究进展[J],机械工程学报,2007,43(2):1-12
    [31] Wu C. H, A general theory of three-dimensional flow in subsonic and supersonic turbo-machines of axial-, radial-, and mixed-flow types[C], ASME Paper, 50-A-79, 1950
    [32] CHIMA R. V., Development of an Explicit Multigrid Algorithm for Quasi-Three Dimensional Viscous Flows in Turbomachinery[J], AIAA-86-0032
    [33] John J. A. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design [J], J.Turbomach. April 2000, Vol.122, Issue 2, 189-217
    [34] Comte A., Ohayon G. and Papailiou K.D., A Method for then Calculation of Wall layers inside the Passage of a Compressor Cascade with and without Tip learance[C], ASME Paper No.81-GT-168, 1981
    [35] Dunham J., A New Method to Predicting Boundary Layers in Axial Compressor[J], Journal ofMechanical Engineering Science, Vol.7, pp413-425, 1993
    [36] Patankar S. V., Spalding D. B., A Calculation Procedure for Heat, Mass and Momentum transfer in Three Dimensional Parabolic Flows[J], Heat and Mass Transfer, 1972, 15: 1787-1806
    [37] Denton J. D., A time marching method for two- and three-dimensional blade to blade flows[J], R. & M. No. 3775, 1974
    [38] Horlock J. H., Denton J. D., A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective[J], Journal of Turbomechinery, Vol.127, pp5-13, 2005
    [39] Pullan G., Denton J. D., Curtis E., Improving the Performance of a Turbine With Low Aspect Ratio Stators by Aft-Loading[J], Journal of Turbomechinery, Vol.128, pp492-499, 2006
    [40] Rosic B., Denton J. D., Pullan G., The Importance of Shroud Leakage Modeling in Multistage Turbine Flow Calculations[J], Journal of Turbomechinery, Vol.128, pp699-707, 2006
    [41] MacCormack R. W., The effect of viscosity in hypervelocity impact catering[J], AIAA-69-345, 1969
    [42] Chima R. V., Strazisar A. J., Comparison of two and three dimensional flow computations with laser anemometer measurements in a transonic compressor rotor[C], ASME Paper, 82-GT-302, 1982
    [43] McDonald P. W. et al, A comparison between measured and computed flow fields in a transonic compressor rotor[C], ASME Paper, 71-GT-89, 1971
    [44] Ni R. H., Bogoian J., Prediction of 3D multi-stage turbine flow field using a multiple grid Euler solver[J], AIAA-89-0203
    [45] Jennions I. K., Turner M.G., Three-dimensional Navier-Stokes computations of transonic fan flow using an explicit flow solve and an implicit k-e solver[J], Journal of Turbomachinery, 1993, 115(2): 261-272
    [46] Cedar R. D., Holmes D. G., The calculation of the three-dimensional flow through a transonic fan including the effects of blade surface boundary layers, part-span shroud, engine splitter and adjacent blade rows[C], ASME Paper, 89-GT-325, 1989
    [47] Turner M. G., Jennions I. K., An investigation of turbulence modeling in transonic fans including a novel implementation of an implicit k-e turbulence model[J], Journal of Turbomachinery, 1993, 115(2):249-260
    [48]杨策,将滋康,索近生,时间推进方法在叶轮机械内部流体计算中的进展[J],力学进展,2000,30(1):83-94
    [49] Briley W. R. and McDonald H., Analysis and Computation of Viscous Subsonic Primary and Passage Flows[C], ASME Paper 85-GT-110, 1985
    [50] Gorski J. J. and Govindan T. R., Computation of Turbulent Shear Flows in cascades, AIAA Journal Vol.23, No.5, 1985
    [51] Denton J.D., The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines [J], Journal of Turbomachinery, 1992,114(1): 18-26
    [52] Dawes W.N., Unsteady Flow and Loss Production in Centrifugal and Axial Compressor Stages[C], Von Karmaa Institute for Fluid Mechanics Lecture Series, 1994
    [53] Ruprecht A., Bauer C., Gentner C., Lein G., Parallel Computation of Stator-Rotor Interaction in an Axial Turbine[C], ASME PVP Conference, CFD Symposium, Boston, 1999
    [54] Thomas W.V., Bernard B., Heinz E.G., Time-Accurate Three-Dimensional Navier-Stokes Analysis of One-and-One-Half Stage Axial-Flow Turbine[J], Journal of Propulsion and Power, 2000, Vol.16 No.2 (327-335)
    [55] Rai M. M., Three dimensional Navier-Stokes simulation of turbine rotor-stator interaction[J], Journal of Propulsion and Power, 1989,5(3): 307-319
    [56] Jamson A., Time dependent calculations using multigrid with applications to unsteady flows past airfoils and wings[G]. AIAA Paper, 91-1596
    [57] Gbadebo S. A., Cumpsty N. A., Hynes T. P., Three-Dimensional Separations in Axial Compressors[R], Journal of Turbomachinery, ASME GT2004-53617, 2004
    [58] Blazek J., Aerodynamic shape optimization of turbomachinery cascades[J], AIAA-97-2131
    [59] Hong Hu, Sensitivity derivatives of a rotor CFD code via automatic differentiation[J], AIAA-98-4724
    [60] Baysal O., Eleshaky M.E., Aerodynamic sensitivity analysis methods for the compressible Euler equations[J], J. of Fluid Engineering, 1991, 113: 681-688
    [61] Elbanna H. M. and Carlson L. A., Determination of aerodynamic sensitivity coefficients based on the transonic small perturbation formulation[J], J. of Aircraft, Vol(27), No.6: 507-515, 1990
    [62] Pandya M.J., Baysal O., Three-dimensional viscous ADI algorithm and strategies for shape optimization[J],AIAA-97-1853
    [63] Reuther J., Jameson A., Aerodynamic shape optimization of wing and wing-body configurations using control theory[C], AIAA-95-0123
    [64] Jameson A., Optimum aerodynamic design using CFD and control theory[J],AIAA-95-1729
    [65] Jameson A., Pierce N. A. and Martinelli L., Optimum aerodynamic design using the Navier-Stokes Equations[J], AIAA-97-0101
    [66] Baysal O., Ghayour K., Continuous adjoint sensitivities for general cost functions on unstructured meshes in aerodynamic shape optimization[J], AIAA-98-4904
    [67] Stéphane Burguburu, Arnaud le Pape, Improved aerodynamic design of Turbomachinery bladings by numerical optimization[J], Aerospace Science and Technology 7 (2003) 277–287
    [68] Yongsheng Lian, Meng-Sing Liou, Multi-objective Optimization of a Transonic Compressor Blade using Evolutionary Algorithm[J], AIAA-2005-1816
    [69] S. S. Ra著,祁载康,万耀青,梁嘉玉等译,工程优化原理及应用[M],北京,北京理工大学出版社,1990
    [70]周明,孙树栋,遗传算法原理及应用[M],北京,国防工业出版社,2001
    [71] Holland. H. J, Adaptation in Nature and Artificial Systems[M], MIT Press, 1992
    [72] Oyama A., Liou M.S., and Obayashi S., High-Fidelity swept and leaned rotor blade design optimization using evolutionary algorithm [C]. AIAA-2003-4091
    [73] Benini E., Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor[C], AIAA-2003-4090
    [74] Li Jun, Liu Lijun, Feng Zhenping, Multi-object Optimization of a Centrifugal Impeller using Evolutionary Algorithms[J],机械工程学报(英文版), 2004, 17(3): 389-393
    [75] Giguere, Philippe, Selig, Michael S, Blade geometry optimization for the design of wind turbine rotors[J], AIAA-2000-0045
    [76]脱伟,熊劲松,周盛等,遗传算法在多级压气机气动优化设计中的应用[J],航空动力学薄,2007,22(2): 305-309
    [77]樊会元,王尚锦,席光,透平机械叶片的遗传优化设计[J],航空学报,1999, 20(1): 47-51
    [78]童彤,丰镇平,跨音速透平叶栅多目标优化设计[J],航空动力学报,1999, 14(1): 7-10
    [79]李军,丰镇平,沈祖达,透平跨音速叶栅正反混合问题优化设计的研究[J],动力工程,1998, 18(1): 19-23
    [80]童彤,丰镇平,基于遗传算法的透平级多目标优化设计[J],工程热物理学报,2000, 21(5): 576-578
    [81] Lampart P., Yershov S., Direct Constrained Computational Fluid Dynamics Based Optimization of Three-Dimensional Blading for the Exit Stage of a Large Power Steam Turbine[J], ASME Paper 2003, 125: 385-390
    [82] Egartner W., Working range optimization for turbine and compressor blading[J], Journal ofComputational and Applied Mathematics, 2000, 120: 59-65
    [83] Tiow W. T., Yiu K. F. C. and Zangeneh M., Application of simulated annealing to inverse design of transonic turbomachinery cascades[J], J. power and Energy, 2002, 216: 59-73
    [84]周正贵,压气机叶片自动优化设计[J],航空动力学报,2002, 17(3): 305-308
    [85]袁亚湘,孙文瑜著,最优化理论与方法[M],北京,科学出版社,1997
    [86]周正贵,高亚音速压气机叶片的优化设计[J],推进技术,2004, 25(1): 58-61
    [87] Belik L., Secondary Flow in Blade Cascade on Axial Turbomachines and the Possibility of Reducing its Unfavourable Effects, 2nd International JSME Symposium of Fluid Machinery and Fluidics. Tokyo, 1972, 41-49
    [88]吴国华等,压气机修型叶栅的实验研究[J],航空动力学报,1993, 8(4): 155-157
    [89]邹正平,赵令德,陈懋章,叶轮机叶片的三维造型及其对叶片气动负荷的影响[J],航空动力学报,1998, 13(3): 12-17
    [90]蒋洪德,朱斌,徐星仲,叶轮机械数值计算与设计方法进展及其在汽轮机中的应用[J],工程热物理学报,1998, 19(4): 433-438
    [91]彭泽琰,刘刚,航空燃气轮机原理[M],北京,国防工业出版社,2000
    [92] Peich M. E., Zaryankim A. E., Method of Increasing the Efficiency of Turbine Stage With Short Blades[J], A. E. I. Tranlation, No.2816, 1960
    [93] Kopper F. C., Milano R. and Vonco M., Experimental Inverstigation of Endwall profiling in a turbine vane cascade[J], AIAA Journal, 1981, 19(8): 1033-1040
    [94] Boletis E., Effect of Tip End-Wall Cutouring on the Three Dimensional Field in an Annular Turbine Vozzle Guide Vane[C], Part1: Experimental Investigation, ASME Paper No.85-GT-71, 1985
    [95] Warner R. E., Tran M. H., Recent Development to Improve High-Pressure and Intermediate-Pressure Turbine Efficiency, Imech EC287/87, 1987
    [96] Ahn C. S., Kim K. Y., Aerodynamic design optimization of a compressor rotor with Navier-Stokes analysis[J], proceedings of the institution of mechanical engineers, Part A-Journal of Power and Energy, 2003, 217(2):179-184
    [97] Lakshminarayana B., Murthy K. N., Laser-Doppler Velocimeter Measurement of Annulus Wall Boundary Layer Development in a Compressor Rotor[J], J. of Turbomachinery, 1988, 100(3): 337-385
    [98] Peng Zeyan, Wu Gouhua, Yan Ming, et al, An Experimental Investigation of Technologies of Endwall Flow Control in a Compressor Plane Cascade[C], AIAA-91-2005
    [99] Wennerstrom D. R., Hearsey R. M., The Design of an Axial Compressor Stage for a Total Pressure Ratio of 3 to 1, AD7277001, 1971
    [100]王仲奇,韩万今等,在二维涡轮叶栅中叶片倾斜对控制二次流损失机理的探讨[C],中国工程热物理学会,热机气动热力学学术会议,No.872064, 1987
    [101] Wang Zhongqi, Han Wanjin, Xu Wenyuan, An Experimental Investigation into the Influence of Diameter-Blade Height Rations on Secondary Flow Losses in Annular Cascades with Leaned Blades[C], ASME Paper 97-GT-131, 1987
    [102] Kawai T., Adachi T., Shinoki S., Secondary Flow and Losses in a Turbine Cascade Equipped with Endwall Boundary Fence (Influence of Fence Position)[C],日本机械学会论文集(B篇), 1988, 54(505): 2492-2497
    [103] Kawai T., Shinoki S., Adachi T., Optimization of Endwall Boundary Layer Fence in Controlling Secondary Flow in a Turbine Cascade[C],日本机械学会论文集(B篇), 1988, 54(508): 3432-3439
    [104]胡骏,吴铁鹰,曹人靖,航空叶片机原理[M],北京,国防工业出版社,2006
    [105] Eyi S., Lee K.D., Turbomachinery Blade Design Via Optimization[C], AIAA-2000-0740
    [106]陈波,袁新,基于NURBS三维造型的粘性气动最优化设计技术[J],工程热物理学报,2005, 26(5): 764-766
    [107] Denton J. D. and Xu L., The Exploitation of 3D Flow in Turbomachinery Design[R], VKI LS 1999.02
    [108] Gummer V., Wenger U. and Kau H.-P., Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors[C], ASME Paper, 2001, 123: 40-48
    [109]卢金铃,席光,祁大同,三元叶轮子午流道和叶片的优化方法[J],西安交通大学学报,2005, 39(9): 1021-1025
    [110]丁伟,刘波,曹志鹏,陈云永,基于多目标遗传算法的多级轴流压气机优化设计[J],推进技术,2006, 27(3): 230-233
    [111]衣同训,姜勇,索沂生,多重网格法求解轴流压力机内部流场[J],应用力学学报,2001, 18(3): 96-99
    [112]衣同训,姜勇,张晓峰等,新的多重网格法求解离心压气机内部流场[J],航空动力学报,2000, 15(3): 260-262
    [113]杨策,蒋滋康,索沂生等,用粘性体积力方法计算高速离心压气机叶轮内部流场[J],航空动力学报,1999, 14(1): 11-14
    [114]杨策,蒋滋康,索沂生等,用粘性体积力方法计算轴流叶轮机械内部流场[J],应用力学学报,2000, 17(4): 40-44
    [115]卢新根,轴流压气机转子内流数值模拟及叶顶间隙泄漏分析,[硕士学位论文],西安,西北工业大学,2004.03
    [116] Denton J. D., The Use of a Distributed Body Force to Simulate Viscous Effects in 3D Flow Calculations ASME Paper, 1986, 119(2): 256-262
    [117]刘超群,多重网格及其在计算流体力学中的应用[M],北京,清华大学出版社,1995, 1-64
    [118] Anthony J. S., Jerry R. W., Michael D. H. et al, Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor [R], NASA Technical paper 2879, 1989
    [119] De Jong K. A., An Analysis of the Behavior of a Class of Genetic Adaptive System, Ph.D Dissertation, University of Michigan, 1975, No.76-9381
    [120] Goldberg D. E., Genetic Algorithms in Search, Optimization and Machine Learning[M], Addison-Wesley, 1989
    [121] Davis L. D., Handbook of Genetic Algorithms[M], Van Nostrand Reinhold, 1991
    [122]陈国良等,遗传算法及其应用[M],北京,人民邮电出版社,1996
    [123]毕义明,李景文,遗传算法及其军事应用[M],北京,解放军出版社,1998
    [124]金菊良,丁晶,遗传算法及其在水科学中的应用[M],成都,四川大学出版社,2000
    [125]熊信银,吴耀武,遗传算法及其在电力系统中的应用[M],武汉,华中科技大学出版社,2002
    [126]王小平,曹立明,遗传算法——理论、应用与软件实现[M],西安,西安交通大学出版社,2002
    [127]余俊,廖道训,最优化方法及其应用[M],武汉,华中工学院出版社,1984
    [128]张小华,江国和,沈荣瀛,一种自适应伪并行改进遗传算法[J],华东船舶工业学院学报,2005, 19(3): 65-69
    [129]袁晓辉,袁艳斌,王乘等,一种新型的自适应混沌遗传算法[J],电子学报,2006, 34(4): 708-712
    [130]王成栋,张优云,基于实数编码的自适应伪并行遗传算法[J],西安交通大学学报,2003, 37(7): 707-710
    [131] Cavicchio D. J., Adaptive Search Using Simulated Evolution, Ph.D Dissertation, University of Michigan, 1970
    [132] Goldberg D. E., Richardson J., Genetic Algorithms with Sharing for Multimodal Function Optimization[C], In: Proc. of 2th Int. Conf. on Genetic Algorithms, Lawrence ErlbaumAssociates, 1987, 41-49
    [133]陈国良,并行计算——结构、算法、编程[M],北京,高等教育出版社,1999
    [134]施法中,计算机辅助几何设计与非均匀有理B样条[M],北京,高等教育出版社,2001
    [135] Miller.G.R Shock Losses in Transonic Compressor Balde Rows. ASME Journal of Engineering for Power, 1961, 83: 235-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700