叶栅尾迹涡系变迁数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混流式水轮机中水流绕流叶片或叶栅时产生水流分离,分离的尾迹形成较复杂的漩涡,通常产生于导叶后部、转轮流道及叶片的出口处。这些涡列会经历产生、向下游迁移的过程中变大至最后消亡的变化过程。
     导叶出口的尾迹涡系容易引起固定导叶、活动导叶及叶片的共振,甚至可能激发周围局部水流的共振,造成不同程度的破坏,同时,随着涡系的下移,会造成尾水管入口水流条件的恶化,进而加剧尾水管涡带的压力脉动,影响机组运行的稳定性和整机效率。因此有必要对叶栅尾迹涡系的变迁进行研究。
     本文以HLA351-LJ-170模型机的导水机构和转轮部分为对象建立了三维实体模型,用非结构化网格划分了计算域网格。采用Realizableκ-ε湍流模型和SIMPLEC算法进行了若干工况的三维定常计算,并设置滑移网格面,利用RNGκ-ε湍流模型和PISO算法进行了若干工况的导水机构、转轮一级动静干涉的三维非定常计算,通过定常计算和非定常计算得到了计算域内压强、速度分布及速度矢量图,以图形方式揭示了叶栅尾迹涡系的变化过程。
When water flows through the Francis turbine's blades or vane cascade,it will be separated, and forming many complex swirl. Vortex usually come from the rear of guide vanes, runner and the export part of runner blades. The vortex will go through a process of generation, migration to downstream and demise finally.
     Vortices exported from guide vane may easily lead the resonance of vanes, guide vanes and blades, and may even stimulate the resonance of local flow around, resulting in varying degrees of damage to water-turbine. At the same time, the vortex going down, will deteriorate flow conditions of entrance of the draft tube,and increase the pressure pulsation of draft tube,also affect the stability and efficiency of water-turbine. Therefore, it is necessary to research the changes of vortex exported from the vane cascade.
     In this paper, a three-dimensional solid model of the distributor and runner of HLA351-LJ-170 model water-turbine is established and computed field was meshed by nonstructural grid. Realizableκ-εturbulence model and SIMPLEC algorithm are used to do three-dimensional steady calculations under a number of conditions,after setting a moving mesh surface, RNGκ-εturbulence model and the PISO algorithm are used to do distributor-runner interaction three-dimensional unsteady calculations under a number of conditions. The distribution of static pressure, velocity in computed field and velocity vector diagram was obtained, the pictures reveal the change process of the vortices exported from the vane cascade.
引文
[1]张超.水电能资源开发利用[M].北京:化学工业出版社,2005.
    [2]王福军.计算流体力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [3]吴玉林,刘树红,钱忠东.水利机械计算流体动力学[M].北京:中国水利水电出版社,2007.
    [4]刘世锦.加快西部水电开发[M].北京:中国水利水电出版社,2007.
    [5]刘树红,吴玉林.水利机械流体力学基础[M].北京:中国水利水电出版社,2007.
    [6]戴会超,槐文信,吴玉林,等.水利水电工程水流精细模拟理论与应用[M].北京:科学出版社,2006.
    [7]梁武科,罗兴錡,吴广宽.混流式水轮机叶片自由曲面的延展[J].水力学报,2003(5):69-73
    [8]侯祎华,齐学义,常一乐.基于PRO/E的水轮机转轮三维造型[J].排灌机械,2006,24(1):14-16
    [9]何士华,张立翔,武亮.混流式水轮机转轮口十片的自由曲面构造[J].水力发电,2005,31(3):54-55
    [10]曾永忠,陈波,陈果.混流式水轮机转轮叶片三维造型的研究[J].农机化研究,2008(7):36-37
    [11]刘树红,邵奇,杨建明等.原型水轮机的非定常湍流计算和尾水管压力脉动分析[J].水力发电学报,2005,24(1):74-78
    [12]李金伟,刘树红,周大庆.混流式水轮机飞逸暂态过程的三维非定常湍流数值模拟[J].水力发电学报,2009,28(1):178-182
    [13]黄剑峰,张立翔,王文全等.混流式水轮机全流道三维非定常流场数值模拟[J].水电能源科学,2009,27(1):155-158
    [14]黄剑峰,张立翔,王文全.混流式水轮机全流道三维非定常湍流场的动态大涡模拟[J].中国农村水利水电,2009(1):101-106
    [15]黄剑峰,姚激,武亮.混流式水轮机全流道三维流场数值模拟[J].中国农村水利水电,2008(7):112-115
    [16]郑莹,刘小兵,曾永忠.混流式水轮机全流道三维数值模拟[J].山东农业 大学学报(自然科学版),2009,40(1):124-128
    [17]刘宇,杨建明,戴江.混流式水轮机三维非定常湍流计算[J].水力发电学报,2004,23(4)
    [18]刘宇,吴玉林,张梁.混流式原型水轮机的三维湍流计算[J].水力发电学报,2003(3):101-106
    [19]刘波,曹志鹏,蔡元虎等.叶栅流场尾迹中非定常涡系的数值模拟[J].西北工业大学学报,2005,23(5):562-566
    [20]曾永忠.混流式水轮机三维非定常湍流流动及压力脉动的数值模拟[D].成都:西华大学,2004.
    [21]党小建.水轮机导叶流固耦合振动特性计算[D].西安:西安理工大学,2004.
    [22]王琪.并行环境下混流式水轮机非定常流动及补气的数值研究[D].西安:西安理工大学,2008.
    [23]黄虎.混流式水轮机全流道三维非定常湍流流动及压力脉动的数值模拟[D].成都:西华大学,2005.
    [24]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
    [25]高忠信,唐澍,梁贺志.水轮机固定导叶和活动导叶后的卡门涡频率研究[J].中国水利水电科学研究院学报,2005,3(1):22-26
    [26]温正,石良辰,任毅如.FLUENT流体计算应用教程[M].北京:清华大学出版社,2009.
    [27]刘宇,吴玉林,张梁等.混流式原型水轮机的三维湍流计算[J].水力发电学报,2003(3):101-106
    [28]刘宇,吴伟章,吴玉林等.混流式模型水轮机全流道三维定常湍流计算[J].大电机技术,2003(3):38-42
    [29]黄剑锋,曹良.混流式水轮机全流道三维定常湍流数值计算[J].水科学与工程技术,2007(5):49-51
    [30]王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M].长沙:国防科技大学出版社,2000.
    [31]钟日铭.Pro/ENGINEER野火版3.0三维设计[M].北京:机械工业出版社,2006.
    [32]韩占中,王敏,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [33]J.G.I. Hellstrom, B.D. Marjavaara and T.S. Lundstrom. Parallel CFD simulations of an original and redesigned hydraulic turbine draft tube. Advances in Engineering Software,2007,38(5):338-344
    [34]Ruofu Xiao, Zhengwei Wang and Yongyao Luo. Dynamic Stresses in a Francis Turbine Runner Based on Fluid-Structure Interaction Analysis. Tsinghua Science & Technology,2008,13(5):587-592
    [35]Zhong-dong QIAN, Jian-dong YANG, Wen-xin HUAI. Numerical simulation and analysis of pressure pulsation in francis hydraulic turbine with air admission. Journal of Hydrodynamics,,2007,19(4):467-472
    [36]Christopher B. Cook, Marshall C. Richmond, John A. Serkowski. Observations of velocity conditions near a hydroelectric turbine draft tube exit using ADCP measurements. Flow Measurement and Instrumentation,2007,18(3):148-155
    [37]Lin LI, Xiu-yun QIU, Sheng JIN. Weakly swirling turbulent flow in turbid water hydraulic separation device. Journal of Hydrodynamics,2008,20(3):347-355
    [38]Z.W. Wang, Y.Y. Luo, L.J. Zhou. Computation of dynamic stresses in piston rods caused by unsteady hydraulic loads. Engineering Failure Analysis,2008,15(1):28-37
    [39]Ye-xiang XIAO,Feng-qin HAN,Jing-lin ZHOU.Numerical prediction of dynamic performance of Pelton turbine. Journal of Hydrodynamics,2007,19(3):356-364
    [40]A.H.Alexopoulos,D.Maggioris,C.Kiparissides.CFD analysis of turbulence non-homogeneity in mixing vessels:A two-compartment model.Chemical Engineering Science,2002,57(10):1735-1752
    [41]A.Thakker,T.S.Dhanasekaran.Experimental and computational analysis on guide vane losses of impulse turbine for wave energy conversion. Renewable Energy, 2005,30(9):1359-1372
    [42]Fu-jun WANG, Xiao-qin LI, Jia-mei MA. Experimental Investigation of Characteristic Frequency in Unsteady Hydraulic Behaviour of a Large Hydraulic Turbine. Journal of Hydrodynamics,2009,21(1):12-19
    [43]Xavier Escaler, Eduard Egusquiza, Mohamed Farhat. Detection of cavitation in hydraulic turbines. Mechanical Systems and Signal Processing,2006,20(4):983-1007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700