长江口水文、泥沙过程与圆桩冲刷的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要利用ECOMSED模式对长江口及邻近海域的水文、泥沙过程进行三维数值模拟,并结合实测资料分析其水动力、泥沙输运、底床冲淤等特征;然后利用欧拉二相流模型模拟小尺度条件下长江口底床上圆桩周围的水流和泥沙冲刷、输运规律。
     通过资料分析和ECOMSED数值模拟结果比较,我们得出:长江口口门内为非正规半日潮流区,潮流运动形式多为往复流,落潮流占优。落潮流速大于涨潮流速,流速垂向分布从表层到底层递减。悬沙浓度与流速关系密切,一般来说,流速越大,悬沙浓度越高;一个潮周期过程中会出现两次、三次或四次泥沙再悬浮,分别是涨急、落急、涨转落、落转涨时刻;盐水楔结构对粘性与非粘性悬沙浓度的分布起决定性作用,转流时泥沙再悬浮主要是由于这时会出现盐水楔,并形成垂向环流,使床面大量未被固结的泥沙再悬浮,形成峰值。悬浮泥沙垂向分布可分为垂线型,斜线型,抛物线型和L型。流场和底床冲淤变化与水深关系密切:深水区,流速较大,底床冲淤变化也较大。其中,受径流影响区表现为淤积,受潮流影响区表现为冲刷;浅水区基本表现为淤积。
     从模式运行结果和实测资料比较可以看出,该模型可以较好的模拟长江口水流、悬浮泥沙分布与变化;能够再现在径流入海口处,盐水楔结构及其诱生的垂向环流从形成到发展,又到消失的完整过程;也能够展示底床的冲淤变化。对于我们模拟长江口背景流场,了解该区域内水动力变化、悬浮泥沙输运、底床冲淤等有重要意义。
     在欧拉二相流模型对长江口底床上圆桩周围的水流和局部冲刷数值模拟过程中,我们不仅考虑水流和泥沙之间的作用,还引入泥沙颗粒之间的相互影响。模拟结果较合理的展示了圆桩周围的流场类型和底床冲刷变化:在圆桩前方,流速减小并形成垂向涡旋,从而产生局部冲刷;在圆桩两侧,水流加速,挟带上游泥沙向下输送,并在内侧堆积;而在圆桩后面,存在流速分离区。在该分离区内流速很小,并且当流速较大时,会产生回流,形成两个对称的漩涡。流速越大,圆桩前由垂向涡旋引起的局部冲刷就越明显;而当底床泥沙粒径变小时,泥沙临界起动流速变小,底床也更容易被冲刷。悬浮泥沙浓度分布受流场的影响,并且当粒径小而流速大时,能悬浮到更高的深度。
In this paper, we use the ECOMSED model to simulate the flow and sediment transport in the Yangtze River estuary and the adjacent area. At meantime, we fully analyze and discuss the survey data. The following conclusions are obtained throughout the work: it is non-formal shallow semidiurnal tide in the estuary. The ebb tide is much stronger than the flood tide, and the velocities decrease along the depth. The distribution of suspended sediment concentration is associated with the velocity. The concentration becomes higher when the velocity increases. The sediment can be resuspended four times during one tidal period at most. Two times happen at the maximum velocity time of ebb tide and flood tide separately, and the other two happen during the current turning periods. There will be a saline-water intrusion front during the current turning period, and this is the cause of the sediment re-suspension. The vertical distribution of suspended sediment concentration can be divided into four patterns: beeline, diagonal line, parabola and L-shaped. The flow pattern and bed change are associated with the water depth. The velocity is bigger and the bed change higher where the water is deep. The sediment deposits at the riverine current area and suspends at the tidal current. The sediment generally deposits at shallow water.
     Comparing the simulate results with the survey data, we conclude that the model can simulate the flow pattern, sediment transportation, salinity distribution and bed change properly. It is of great significance to us to understand the Yangtze River estuary.
     A three dimension Eulerian two-phase numerical model for the simulation of flow pattern and local scour around a pier is presented, too. Both flow-particle and particle-particle interactions are considered in the model. The results show that the velocity field and local scour around the pier is reasonable. In front of the pier, the velocity decreases and forms a vortex which induces the scour hole. At both sides of the pier, the velocities accelerate, and laminated load is accumulated nearby. Behind the pier, there is a separation zone with two symmetrical eddies when the inflow velocity is about 1.1 m/s. In this separation zone, velocity magnitude is the least, and local scour around the pier is the weakest, even deposit happens for a long run.
     The scour hole around the pier is more evident at higher velocity because of the vortex formed in front of the pier. The bed is easier to scour when the grain size is small, because the critical stress of bed is small. The sediment concentration is associated with velocity, and the sediment could be suspended to a higher layer when the grain size is small and the velocity is high.
引文
[1] Br?rs, B., 1999. Numerical modeling of flow and scour at pipelines. J. Hydr. Eng.,125: 511-523.
    [2] Burban P.Y., Xu Y., McNeil J., Lick W. 1990.Settling Speeds of Flocs in Fresh and Sea Waters. Journal of Geophysical Research, 95(C10):18213-18220
    [3] Cheng, N. S., 1997. Simplified Settling Velocity Formula for Sediment Particle, ASCE J. Hydr. Engr., 123, 149-152.
    [4] Gailani J., Ziegler C. K., Lick W. 1991. The Transport of Sediments in the Fox River. Journal of Great Lakes Research, 17, 479-494.
    [5] Hsu, T., Jenkins, JT. and Liu, LF., 2001. Modeling of sediment transport-a two-phase flow approach. Proceedings of the 4th conference on coastal dynamics, Lund Sweden, pp 578–587.
    [6] HydroQual Inc. 2002. A Primer for ECOMSED. Mahwah, New Jersey.
    [7] Krone R.B. 1962. Flume Studies of the Transport of Sediment in Estuarial Processes. Final Report, Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California, Berkeley.
    [8] Liang, D., Cheng, L. and Li, F., 2005. Numerical modeling of flow and scour below a pipeline in currents. Part II. Scour simulation. Coast. Eng., 52: 43-62.
    [9] Li Guibai. Flocculation sediment of high—turbidity waters. Water Research, 1991, 25(9): 1137-1143.
    [10] Li sihai, Yun caixing. 2006. Coastal Current Systems and the Movement and Expansion of Suspended Sediment form Changjiang River Estuary. Marine Science Bulletin, 18(1):22-33.
    [11] Roulund, A., 2000. Three-dimensional numerical modelling of flow around a bottom-mounted pile and its application to scour. Ph.D. thesis, Department of Hydrodynamics and Water Resources, Technical University of Denmark.
    [12] Roulund, A., Sumer, B.M., Freds?e, J. and Michelsen, J. 2005. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech., 534: 251–401.
    [13] Shi Z. 2004. Behaviour of fine suspended sediment at the North passage of the Changjiang Estuary, China Journal of Hydrology, 293: 180–190.
    [14] Shi Z., Ren L.F., Chen J.Y. and Zhang S.Y. 1997. Acoustic imaging of cohesivesediment resuspension and reentrainment in the Changjiang Estuary, East China Sea. Geo-Marine Letters, 17:162 -168.
    [15] Van LEUSSEN W.1988. Aggregation of particle settling velocity of mud flocs: a review. DRONKERS J, Van LEUSSEN, ed. Physical Processes in Estuaries [M]. New York. Springer—Verlag 347-403.
    [16] Van Rijn L.C. 1984. Sediment transport, part II: suspended load transport. Journal of Hydraulic Engineering. 110(11): 1613-1638.
    [17] Van Rijn L.C. 1993.Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications, Amsterdam, the Netherlands.
    [18] Wanker, R., Goekler, G. and Knoblauch, H., 2002. Numerical modeling of sedimentation utilizing a Euler/Euler approach. First international conference on computational methods in multiphase flow, Orlando, Florida, 327–336.
    [19] Yeganeh, A., Gotoh, H., and Sakai, T., 2000. Applicability of Euler–Lagrange coupling multiphase-flow model to bed-load transport under high bottom shear. J. Hydr. Res., 38: 389–398.
    [20] Yen, C., Lai, J.S. & Chang, W.Y. 2001 Modeling of 3D flow and scouring around circular piers. Proc. Natl. Sci. Counc. ROC(A), 25, 17-26.
    [21] Zhao, Z. H. and Fernando, H. J. S., 2007. Numerical simulation of scour around pipelines using an Euler-Euler coupled two-phase model. Environ Fluid Mech, 7: 121-142.
    [22]曹振轶,胡克林. 长江口二维非均匀悬沙数值模拟[J].泥沙研究, 2002(6):66-73.
    [23]陈邦林,吴玲,邱佩英. 长江口南港南槽地区悬输质絮凝机理研究[A]. 长江河口动力过程和地貌演变[C]. 上海:上海科学技术出版社, 1988. 276—282.
    [24]陈虹,李大鸣. 三维潮流泥沙运动的一种数值模拟[J].天津大学学报,1999,32 (5): 574-579.
    [25]陈国祥,陈界仁,沙捞·巴里. 三维泥沙数学模型的研究进展.水利水电科技进展,1998, 18(1): 13-18.
    [26]陈启明,仇玉芹,陈邦林等.长江口悬浮物和沉积物的物相分析[J].华东师范大学学报(自然科学版), 2001, (1): 77-83.
    [27]陈庆强,孟翊,周菊珍等. 长江口细颗粒泥沙絮凝作用及其制约因素研究[J]. 海洋工程, 2005, 23(1): 74-82.
    [28]陈沈良,张国安,杨世伦等. 长江口水域悬沙浓度时空变化与泥沙再悬浮[J].地理学报, 2004, 59(2): 260-266.
    [29]丁平兴, 胡克林,孔亚珍等. 长江河口波-流共同作用下的全沙数值模拟[J]. 海洋学报, 2003, 25(5): 113-124.
    [30]丁平兴,史峰岩. 波—流共同作用下的三维悬沙扩散方程[J]. 科学通报,1999,44(12):1339-1342
    [31]窦希萍,李来,窦国仁. 长江口全沙数学模型研究[J]. 水利水运科学研究, 1999(2): 256-263.
    [32]高建华,汪亚平,潘少明等. 长江口悬沙动力特征与输运模式[J]. 海洋通报 2005, 24(5): 8-15.
    [33]关许为,陈英祖. 长江口泥沙絮凝静水沉降动力学模式的试验研究[J]. 海洋工程, 1995, 13(1):46-50.
    [34]关许为,陈英祖,杜心慧. 长江口絮凝机理的试验研究[J]. 水利学报, 1996 (6): 70-74.
    [35]郭志刚,杨作升,范德江等.长江口泥质区的季节性沉积效应[J]. 地理学报, 2003, 58(4): 591-597.
    [36]黄长红,郑许为. 长江口泥沙絮凝问题研究综述[J]. 水利科技,2001, (4): 4-5.
    [37]黄永健. 长江口挖槽自然回淤的计算[J]. 泥沙研究, 1997, (2): 69-73.
    [38]蒋国俊,姚炎明,唐子文. 长江口细颗粒泥沙絮凝沉降影响因素分析[J]. 海洋学报, 2002, 24(4): 51-57.
    [39]金鹰,王义刚,李宇. 长江口粘性细颗粒泥沙絮凝试验研究[J]. 河海大学学报 2002, 30(3): 61-63.
    [40]李云驹,常庆瑞,杨晓梅等. 长江口悬浮泥沙的 MODIS 影像遥感监测研究[J].西北农林科技大学学报(自然科学版), 2005, 33(4): 117-121.
    [41]茅志昌,潘定安,沈焕庭. 长江河口悬沙的运动方式与沉积形态特征分析[J]. 地理研究, 2001, 20(2): 170-177.
    [42]庞重光,王凡,白学志等. 夏、冬两季长江口及邻近海域悬浮物的分布特征及其沉积量[J]. 海洋科学, 2003, 27(12): 31-35.
    [43]沈焕庭等.长江河口物质通量[M]. 北京:海洋出版社, 2001. 14-28
    [44]沈焕庭, 潘安定. 长江河口最大混浊带[M]. 北京:海洋出版社, 2001: 15-89.
    [45]史峰岩,朱首贤,朱建荣等,杭州湾、长江口余流及其物质输运作用的模拟研究 I. 杭州湾、长江口三维联合模型[J]. 海洋学报,2000, 22(5):1-12
    [46]时钟. 长江口细颗粒泥沙过程[J]. 泥沙研究, 2000, (6): 72-81.
    [47]时钟,陈伟民. 长江口北槽最大浑浊带泥沙过程[J]. 泥沙研究, 2000(1): 28-39.
    [48]时钟,凌鸿烈. 长江口细颗粒悬沙浓度垂向分布[J]. 泥沙研究, 1999, (2): 59-64
    [50]时钟,周洪强. 长江口北槽口外悬沙浓度垂线分布的数学模拟[J]. 海洋工程, 2000, 18(3): 57-62.
    [51]万新宁,李九发,沈焕庭.长江口外海滨悬沙分布及扩散特征[J] .地理研究, 2006, 25(2): 294-302.
    [52]王爱军,汪亚平,高 抒等. 长江口枯季悬沙粒度与浓度之间的关系[J]. 海洋科学进展, 2005, 23(2): 159-167.
    [53]王初, 贺宝根. 长江河口潮滩悬浮泥沙输移规律研究进展[J]. 上海师范大学学报(自然科学版), 2003, 32(2): 96-100.
    [54]王元叶,何青,程江等. 长江口床沙质与冲泻质划分的初步研究[J]. 泥沙研究, 2004(1): 43-49.
    [55]吴加学,张叔英,任来法. 长江口北槽抛泥流速和悬沙浓度时空分布观测[J]. 海洋科学, 2003, 25(4): 91-103.
    [56]吴月英,彭立功. 长江口悬沙动力特征与输运模式[J]. 泥沙研究,2005(1): 26-32.
    [57]徐健益,陶学为,方良田等. 长江口南支非均匀沙垂向分层的数学模型[J]. 泥沙研究, 1995, (2): 74-79.
    [58]于东生. 江口泥沙输移分析[J]. 水运工程, 2006, 385(2): 59-64.
    [59]于东生,田淳,严以新. 长江口悬沙含量垂向分布数值模拟[J]. 水利水运工程学报, 2004, (1): 35-40.
    [60]张志忠. 长江口细颗粒泥沙基本特性研究[A]. 全国泥沙基本理论研究学术讨论会论文集[C], 北京:中国建材工业出版社, 1992: 369—375.
    [61]张志忠,阮文杰,蒋国俊. 长江口动水絮凝沉降与拦门沙淤积的关系[J]. 海洋与湖沼, 1995, 26(6): 632- 638.
    [62]张志忠,王允菊,徐志刚. 长江口细颗粒泥沙絮凝若干特性探讨[A]. 第二次河流泥沙国际学术讨论会论文集[C].北京:水利电力出版社.1983: 274—285.
    [63]赵棣华,谭仁忠,谭维炎. 长江口南支河段悬移质含沙量计算模型[J]. 泥沙研究, 1990, (2): 54-62.
    [64]周济福,王涛,李家春等. 径流与潮流对长江口泥沙输运的影响[J]. 水动力学研究与进展, 1999, (1): 90-100.
    [65]朱首贤,丁平兴,史峰岩等. 杭州湾、长江口余流及其物质输运作用的模拟研究 II. 冬季余流及其对物质的输运作用[J]. 海洋学报,2000, 22(6):1-12
    [66]左书华,李九发,万新宁等.长江河口悬沙浓度变化特征分析[J]. 泥沙研究, 2006, (3): 68-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700