小麦遗传转化体系建立及高分子量麦谷蛋白14亚基基因的转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上栽培面积最大的重要粮食作物。然而,小麦却是最后一个获得转化成功的重要禾谷类作物。主要原因就是目前常用的转化方法无论是基因枪法还是农杆菌介导法都依赖于组织培养技术,而小麦不同外植体组织培养受基因型影响很大,使其遗传转化集中在少数几种组织培养再生能力较高的品种上,而生产上大面积栽培品种由于再生频率低转化较困难,使得小麦的转基因工作进展缓慢,难以应用于育种实践。随着食品加工业的发展和人民生活水平的提高,对优质面包小麦的需求量日益增加。大量研究表明,小麦高分子量麦谷蛋白亚基(HMW-GS)组成与小麦加工品质密切相关。因此,利用优质高分子量麦谷蛋白亚基基因改良小麦品质具有重要理论及实践意义。
     本研究在克隆了小麦优质HMW-GS 1Bx14基因的基础上对生产上大面积种植的小麦品种组织培养特性进行研究,并利用基因枪和农杆菌转化法对1Bx14基因进行转化,同时对花粉管通道法转化法进行了初步探索,取得以下结果:
     1.对生产上大面积种植的不含1Bx14基因的小麦品种幼穗、幼胚和成熟胚组织培养特性进行研究,分析了不同小麦品种、不同外植体的出愈率及其愈伤组织的分化和再生潜力及其培养条件。结果表明,小麦不同品种和不同外植体愈伤组织诱导率均较高,都在90%以上,且不同品种间差异不大;而愈伤组织分化和植株再生率品种间和不同外植体间均存在很大差异;愈伤组织的诱导、分化和植株的再生是相互独立的,诱导率高并不表明分化率高,分化率高的品种再生率不一定高。同一品种不同外植体,幼胚愈伤组织分化和植株再生率最高,幼穗次之,成熟胚培养效果最差。不同小麦品种幼穗愈伤组织分化率依次为:绵阳19>洛阳8716>小偃107>陕354>小偃22>陕150>郑麦9023>西农88;幼胚分化能力依次为:绵阳19>小偃107>小偃22>郑麦9023>洛阳8716>陕354。成熟胚分化能力依次为:陕354>绵阳19>洛阳8716>小偃107>小偃22>郑麦9023。总体来说,绵阳19和小偃107幼胚、绵阳19和洛阳8716幼穗,以及陕354和绵阳19的成熟胚愈伤组织分化率相对较高,可作为遗传转化的受体材料。其中,绵阳19幼胚愈伤组织再生率最高,且多数为丛生苗,是转化最理想的材料。
     2.以绵阳19幼胚愈伤组织为材料,利用仅含有受控于1Dx2胚乳特异性启动子的1Bx14基因及其3-UTR的线性DNA表达框转化小麦幼胚愈伤组织。共转化小麦幼胚愈伤组织2480块,利用基因池法进行PCR筛选,从1219个转化再生植株中共检测出7株阳性单株,平均转化效率0.28%。7个转基因植株中有4个生长正常,3个植株出现表型变异(A1-14,B2-8和D5-10),表现为植株矮小,仅1~2个分蘖,且分蘖不能成穗,主茎成穗且穗较小,其中B2-8和D5-10未能结实,A1-14开花结实较晚,仅收获3粒种子。对5个正常结实的阳性植株所得的82个转化T1代种子用半粒法进行SDS-PAGE分析,L2、L4和L5三个后代能检测到14亚基的表达,但表达量相对内源高分子量麦谷蛋白亚基较低;转基因植株A1-14的三株T1代植株在大田均表现为雄性不育。初步建立了借助于PCR筛选的无标记转化体系。
     3.构建了胚乳特异性启动子驱动的HMW-GS 1Bx14基因植物表达载体,确立了绵阳19幼胚愈伤组织最适潮霉素筛选浓度50 mg/L,并利用基因枪法进行载体转化。共转化绵阳19幼胚愈伤组织652块,转化后的愈伤组织进行潮霉素筛选,共有11块愈伤组织分化出小植株,移栽后有8株存活,PCR和PCR-Southern结果显示7株为转化阳性植株,Southern杂交结果显示有6株转基因稳定整合,转化效率0.92%。SDS-PAGE结果显示,有三个株系后代中检测到HMW-GS 1Bx14基因表达,但其他亚基都受到了不同程度的抑制。
     4.利用GUS瞬时表达对农杆菌转化体系进行优化,结果表明洛阳8716幼胚愈伤组织对LBA4404的敏感性高于绵阳19。EHA105对于两个品种幼胚愈伤组织侵染率都较LBA4404高。对于绵阳19幼胚愈伤组织,EHA105侵染的最佳参数为OD600 0.8×30 min,LBA4404为OD600 1.0×30 min;对于洛阳8716幼胚愈伤组织,EHA105侵染的最佳参数为OD600 0.8×30 min,LBA4404为OD600 0.8×60 min。利用LBA4404侵染绵阳19幼胚愈伤组织共483块,经潮霉素筛选和PCR分析后得到2株阳性植株;侵染洛阳8716愈伤组织321块,筛选后仅得到1株阳性植株。利用EHA105转化小麦绵阳19幼胚愈伤组织452块,筛选后得到5株阳性植株,侵染洛阳8716愈伤组织315块,得到2株阳性植株,所有处理平均转化率0.61%。
     5.以5个不含高分子量麦谷蛋白14亚基的小麦栽培品种为材料,对花粉管通道法转化条件进行了初步摸索。对转化后代利用基因池法进行PCR分析,结果表明,不同小麦品种不同处理间转化率存在很大差异,平均转化率0.56%。其中陕354处理2的转化率最高,为1.01%,其次为陕354处理4为0.93%。陕893的处理1、处理3和小偃107的处理1转化率也均较高,在0.8%以上。初步证明使用花粉管通道法对小麦进行遗传转化是可行的。
Wheat is one of the most important food crop which is planted widely in the world. However, wheat is the last one of the gramineous crop which was transformed successfully. The main reason is that the transformation mediated by Agrobacterium tumefaciens or microprojectile bombardment depend on tissue culture and regeneration, which is influenced greatly by genotype. Only a few highly regenerated varieties can be transformed, while a large quantity of elite cultivars can not be transformed successfully due to their poor regeneration property. This result in the transformation of wheat develops slowly and can hardly be applied in breeding practice. The development of foodstuffs processing and improvement of living standard have created a great demand for high quality bread-making wheat. The high molecular weight glutenin subunit (HMW-GS) are closely associated with the bread-making quality of wheat flour. Therefore, It is theoretically and practically significant to use genetic transformation of high quality HMW-GS gene to improve wheat quality.
     This investigation, based on the clone of HMW-GS 1Bx14 gene, the plant regeneration system of elite wheat cultivars was studied, and the immature embryo was transformed by Agrobacterium tumefaciens and microprojectile bombardment with the high quality HMW-GS gene 1Bx14. The method of pollen tube pathway was also explored. The major results are as follows:
     1. The callus induction and plant regeneration of immature embryo, immature inflorescences and mature embryo from different common wheat cultivars was investigated. The result showed that the frequency of callus induction was higher than 90 percent and there was no significant difference between explants and varieties. While the frequency of callus differentiation and plantlet regeneration of different wheat Varieties and explants are quite different. Callus induction, differentiation and regeneration were independent, and there was no significant correlation among them. Generally, the callus differentiation and plantlet regeneration frequency of immature embryo was highest, immature inflorescence take second place, and mature embryo is lowest. The frequency of immature inflorescence callus differentiation rank downward in the order Mianyang 19, Luoyang 8716, Xiaoyan107, Shaan354, Xiaoyan22, Shaan150, Zhengmai 9023, Xinong 88. The frequency of immature embryo callus differentiation, from high to low, was Mianyang 19, Xiaoyan107, Xiaoyan22, Zhengmai 9023, Luoyang 8716, Shaan354. The frequency of mature embryo callus differentiation was Shaan354 > Mianyang 19 > Luoyang 8716 > Xiaoyan107 > Xiaoyan22 > Zhengmai 9023. Most of the differentiated callus of Mianyang19 formed multiple shoot clumps and the frequency of regeneration was highest among all the varieties, therefore the immature embryo of Mianyang 19 can be the most ideal explants for transformation.
     2. In order to improve bread-making quality of flour and produce transgenic plants free of selectable markers, a linear DNA construct consisting of a minimal expression cassette with the HMW-GS 1Bx14 gene was transformed into wheat cultivar Mianyang19 by microprojectile bombardment. The transformants were selected by PCR instead of markers gene. 2480 callus of Mianyang19 was transformed and seven transgenic plants were identified from a total of 1,219 transformants, yielding a transformation frequency of 0.28%. Four of the seven transformants have the normal phenotype, and the other three(A1-14, B2-8 and D5-10)demonstrate phenotypic variation among which two transformants (B2-8 and D5-10) could not form seeds and A1-14 had only 3 seeds. An SDS-PAGE analysis of 82 T1 seeds confirmed that the 1Bx14 gene was expressed in the progenies of three transgenic T1 seeds (L2, L4 and L5), while the expression was weaker than other endogenous subunits. The three T1 progenies of A1-14 were male sterility. it is feasible to obtain marker-free transformants using the linear expression cassette transformation approach coupled with PCR selection.
     3.The plant expression vector of HMW-GS 1Bx14 gene was constructed, and a total of 652 callus of Mianyang 19 immature embryo was transformed by microprojectile bombardment. After selected with hygromycin, 11 callus was differentiated to plantlet and 8 of which survived in greenhouse. The result of PCR and PCR-southern showed that 1Bx14 have been transformed into seven plantlet and the frequency of transformation was 1.07%. Three transgenic plants demonstrated the expression of transgene and the expression of other subunits was suppressed in varying degrees.
     4. The genetic transformation systems of wheat Mediated by Agrobacterium was investigated. The result showed that Luoyang 8716 was more sensitive to Agrobacterium strain LBA4404 than Mianyang 19. For the two varieties, the infection frequency of Agrobacterium strain EHA105 was higher than LBA4404. The optimal procedure to Mianyang was OD600 0.8×30 min and OD600 1.0×30 min for strain EHA105 and LBA4404, respectively. To Luoyang 8716, the Optimum procedure was OD600 0.8×30 min and OD600 0.8×60 min, respectively. Selected by hygromycin and analyzed by PCR, two positive plant was gained from 483 callus of Miangyang 19, and one was got from 321 callus of Luoyang 8716 using Agrobacterium strain LBA4404. Using Agrobacterium strain EHA105,five positive plant was regenerated from 452 callus of Miangyang 19, and two from 315 callus of Luoyang 8716.
     5. The HMW-GS 1Bx14 gene was transformed into five wheat varieties by pollen tube pathway, and transformants were identified by PCR. The result showed that the differences between varieties and treatments were significant, and the average frequency of transformation was 0.56 %. The transformation frequency of Shaan354 by treatment 2 was the highest (1.01%), follow by treatment 4 (0.93%). The frequency of Shaan 893 by treatment 1, treatment 3 and Xiaoyan 107 by treatment 1 was over 0.8%. Therefore it is a potential way to transform wheat by pollen tube pathway.
引文
[1] Hannig E. Zur Physiologie Pflanzicher Embryonen. I. Uber die Kultur von Crucifere-Embryonen ausserhalb des Embryosacks [J]. Bot. Ztg., 1904, 62:45-80.
    [2] Laibach F. Das taubwerden yon bastardsamen und kunstliche Aufzucht fruh absterbender Bastardembryonen [J]. Z Bot., 1925, 17:417-459.
    [3] Shimada T. In vitro culture of wheat: I. Callus formation, organ redifferentiation and single cell culture [J]. Can. Genet. Cytol., 1969, 11: 294-30.
    [4] Shimada T. Plant regeneration from callus induced from wheat embryos [J]. Jpn. J. Genet., 1978,53:371-374.
    [5] Ahloowalia B S. Plant regeneration from callus culture in wheat [J]. Crop Sci., 1982, 22:405-410.
    [6] Ozias-Akins P and Vasil I K. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L.(wheat): evidence for somatic embryogenesis [J]. Protoplasma,1982,110:95-105.
    [7] Ozias-Akins P and Vasil I K. Callus induction and growth from the mature embryo of Triticum aestivum L.(wheat) [J]. Protoplasma, 1983, 115:104-113.
    [8] Shimada T, Yamada T. Wheat plants regenerated from embryo cell cultures [J]. Japanese J. Genet., 1979, 54(5):379-385.
    [9] Agarwal D K, Tiwari S. Effect of genotypes and nutrient media on immature embryo culture of wheat [J]. Indian J. Genet., 1995, 55(1):50-57.
    [10] Sharma D R, Kaur R, Kumar K. Embryo rescue in plants—a review [J]. Euphytica, 1996, 89:325-337.
    [11] Mathias R J, Simpson E S. The interaction of genotype and culture medium on the tissue culture responses of wheat (Triticum aestivum L.) callus [J]. Plant Cell Tiss. Org. Cult., 1986, 7:31-37.
    [12] Sears R G, Dekard E L. Tisue culture variability in wheat: callus induction and plant regeneration [J]. Crop Sci., 1982, 22: 546-550.
    [13] Maddock S E, Lancaster V A, Risiott R, et al. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (Triticum aestivum L.) [J]. J Exp. Bot., 1983, 34:915-926.
    [14]梁竹青,高明尉.不同小麦基因型对体细胞组织培养的反应[J].中国农业科学, 1986, (2):42-48.
    [15]蔡体树,田慧琴,林书康,等.基因型和胚龄对小麦未成熟胚离体培养反应的影响[J].遗传学报, 1989, 16(2):81-88.
    [16]章力建.小麦未成熟胚诱生大量绿苗的研究初报[J].遗传学报,1987,14(3): 175-178.
    [17]王常云,王作全,李晓亮,等.小麦幼胚离体培养育种技术研究[J].麦类作物, 1999, 19(1):14-16.
    [18]安海龙,卫志明,黄健秋.小麦幼胚培养高效成株系统的建立[J].植物生理学报, 2000, 26(6): 532-538.
    [19] Nabors M W, Heyser J W. Long-duration, high frequency plant regeneration from cereal tissue culture [J]. Planta, 1983, 157: 385-39.
    [20] Mathias R, Espinosa S, Robbelon G. A new embryo rescue procedure for interspecific hybridization [J]. Plant Breeding, 1990, 104:258-261.
    [21] Carman J G, Jefferson N E, Campbell W F. Induction of embryogenic Triticum aestivum L. calli. II. Quantification of organic addenda and other culture variable effects [J]. Plant Cell Tiss. Org. Cult.,1987, 10(2): 101-113.
    [22] Papenfuss J M, Carman J G. Enhanced regeneration from wheat callus scultures using dicamba and kinetin [J]. Crop Sci., 1987, 27:1588-593.
    [23]王睿辉,陈耀锋,等.激素对小麦幼胚胚性无性系高频率诱导的影响[J].西北农林科技大学学报(自然科学版), 2001, 29(1): 33-35.
    [24]于晓红,朱祯,等.提高小麦愈伤组织分化频率的因素[J].植物生理学报, 1999, 25(4): 388-394.
    [25]尹钧,任江萍,宋丽,等.小麦不同转基因受体材料的植株再生培养研究[J].麦类作物学报,2004, 24(2):1-4.
    [26]高俊山,叶兴国,马传喜,等.不同组织培养途径对小麦再生能力的研究[J].激光生物学报, 2003, 12(6):406-411.
    [27]吕晓依,王竹林,奚亚军,等.小麦遗传转化受体系统建立的研究[J].西北植物学报, 2007, 27(5): 859-863.
    [28] Chin J C, Scott K J. Studies on the formation of roots and shoots in wheat callus cultures [J]. Ann. Bot., 1977, 41:473-481.
    [29]郑企成,朱门兰,陈文华.八倍体小黑麦单倍性胚性细胞无性系的建立[J].植物学报, 1987, 9(4):367-3723.
    [30]陈梁鸿,王新望,张晓东,等.基因枪转化小麦不同受体的研究[J].华北农学报, 1998, 13(1):1-5.
    [31]林刚,何勇刚,刘勇,等.激素对小麦愈伤组织诱导和植株再生的影响[J].华中科技大学学报(自然科学版), 2004, 32(99):111-113.
    [32]肖梅林,赵世绪.影响小麦幼穗离体培养的几个重要因素的研究[J].北京农业大学学报, 1989, 15(2):147-152.
    [33]刘淖,张琼玉,徐龙珠,等.不同品种小麦幼穗离体培养的研究[J].河南师范大学学报, 1993, (4):65-68.
    [34]曾寒冰.小麦幼穗离体培养的研究—不同基因型的反应[J].东北农学院学报, 1989, 20(3):205-209
    [35]王培,裴翠娟,陈玉蓉.提高小麦幼穗绿苗诱导率的研究[J].河北农业情报, 1989, 25-26.
    [36] Eapen S, Rao P S. Plant regeneration from immature inflorescence callus cultures of wheat-rye and triticale[J]. Euphytica, 1985, 34:153-159.
    [37]李书平,刘世强.小麦离体培养若干相关因素的研究[J].辽宁农业科学,1998, 5:20-23.
    [38]任江萍,尹钧,师学珍,等.小麦转基因再生植株培养体系的优化[J].华北农学报, 2003, 18(1):22-25.
    [39]吉前华,任正隆.影响小麦幼穗组织培养特性基因的染色体定位[J].麦类作物学报, 2004, 24(3):1-4.
    [40]刘建平,夏晶,胡道芬.冬小麦幼穗培养几个因素的研究[J].北京农业科学, 1993, 11(1): 22-24.
    [41]舒理慧.小麦不同发育时期的幼穗对离体培养的反应[J].科学通报, 1982(14):15-19.
    [42]刘瑞凝,谢一鸣,余素芹.冬、春小麦幼穗离体培养的比较研究[J].北京农业大学学报, 1986, 12(4): 435-438.
    [43]王培,裴翠娟,陈玉蓉.冬小麦幼穗不同发育期不同穗段离体培养的效应.华北农学报, 1990, 5(1):28-32.
    [44]何勇刚,林刚,刘曼西,等.小麦不同生理状态的幼穗和幼胚盾片与诱导分化能力关系的研究[J].武汉植物学研究, 2001, 19(5): 363-368.
    [45] Altpeter F, Vasil V, Srivastava V, et al. A celerated production of transgenic wheat (Triticums aestivumL.) plants [J]. Plant Cell Rep., 1996, 16:12-17.
    [46]颜昌敬,黄建华,赵庆华,等.小麦幼穗培养一步成苗和提高分化率的研究[J].中国农业科学, 1985, (3): 11-15.
    [47]刘淖,张琼玉,徐龙珠,等.不同品种小麦幼穗离体培养的研究.河南师范大学学报, 1993, (4):65-68.
    [48]李雪梅,刘熔山.小麦幼穗胚性愈伤组织诱导及分化过程中内源激素的作用[J].植物生理学通讯, 1994, 30(4): 255-260.
    [49]权军利,刘正全,陈耀锋,等.蔗糖与激素对小麦幼穗体细胞无性系形成及生长特性的影响研究[J].西北植物学报, 1999, 19(6):87-91.
    [50]刘香利,刘缙,郭蔼光,等.小麦幼穗的离体培养及影响因素研究[J].西北农林科技大学学报(自然科学版), 2007, 35(2):79-82.
    [51]张晓东,李冬梅,徐文英,等.利用基因枪法将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株[J].遗传, 1998, 2(增刊):560-564.
    [52]赵林姝,刘录祥,王晶,等.小麦不同外植体离体培养及转化效率的比较研究[J].麦类作物学报, 2006, 26(1):26-30.
    [53] Eapen S and Rao P S. Plant regeneration from callus cultures of durum and emmer wheat [J]. Plant Cell Rep., 1982, (1):215-218.
    [54] Bartk T and Sagi F. A new, endosperm-supported callus induction method for wheat(Triticum aestivum L.)[J], 1990, Plant Cell Tiss. Org. Cult., 22: 37-41.
    [55] ?zgen M, Turet M, ?zcan S, Sancak C. Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes[J]. Plant Breeding, 1996, 115:455–458.
    [56]廖祥儒,杜建芳,王俊霞,等.预处理对小麦成熟胚愈伤组织形成的影响[J].河北大学学报(自然科学版), 1999, 19:41-44.
    [57]柳建军,于洪欣,冯兆礼.小麦成熟胚愈伤组织诱导及分化的研究[J].山东农业大学学报, 1996, 27(4): 451-456.
    [58]梁静静,吕德彬,陈军营,等.不同基因型对小麦成熟胚愈伤组织诱导及植株再生的影响[J].河南农业大学学报, 2003, 37(2):107-114.
    [59]蔡体树,田慧琴,林书康,等.基因型和胚龄对小麦未成熟胚离体培养反应的影响[J].遗传学报, 1989, 16(2):81-88
    [60] ?zgen M, Turet M, Altinok S, et al. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivum L.) genotypes[J]. Plant Cell Rep., 1998, 18(3-4):331-335.
    [61] ?zgen M, Türet M, Avci1 M. Cytoplasmic effects on the tissue culture response of callus from winter wheat mature embryos [J]. Plant Cell Tiss. Org. Cult., 2001, 64:81–84.
    [62] Dudits D, Emet N G, Haydu Z. Study of callus growth and organ formation in wheat (Triticurn aestivum) tissue cultures[J]. Can. J. Bot., 1975, 53:957-963.
    [63] Chin J C, Scott K J. Studies on the formation of roots and shoots in wheat callus culture[J]. Ann. Bot. 1977, 41:473-48l.
    [64] O'Hara, J F, Street, H E. Wheat callus culture: the initiation, growth and organogenesis of callus derived from various explant sources[J]. Ann. Bot., 1978, 42, 1029-1038.
    [65] Ozias-Akins P, Vasil I K. Callus induction and growth from the mature embryo of Triticum aestivum(Wheat)[J]. Protoplasma, 1983, 115:104-113
    [66]曹新有,李春莲,余玲,等.小麦成熟胚愈伤组织诱导及分化研究[J].西北植物学报, 2006, 26(11): 2276-2280.
    [67]伍碧华,郑有良,骆建明.小麦组织培养体细胞胚胎的次生胚状体发生研究[J].西南农业学报, 2005, 18(4): 373-377.
    [68]吴丽芳,李红,宋道军,等.低能离子束介导江绿色荧光蛋自基因导入小麦的研究[J].南京农业大学学报, 2000, 23(3): 17-20.
    [69] Delporte F, Mostade O, Jacquemin J M. Plant regenerationthrough callus initiation from thin mature embry of ragments of wheat[J]. Plant Cell Tiss. Org. Cult., 2001, 67: 73–80.
    [70] Tibor B and Ferenc S. A new, endosperm-supported callus induction method for wheat (Tdticum aestivum L.)[J]. Plant Cell Tiss. Org. Cult., 1990, 22:37-41.
    [71] Filippov M, Dmitry M, Darya V, et al. The effect of auxins, time exposure to auxin and genotypes on somatic embryogenesis from mature embryos of wheat[J]. Plant Cell Tiss. Org. Cult., 2006, 84:213-222.
    [72] Delporte F, Li S, Jacquemin J. Calluses initiated from thin mature embryo fragments are suitable targets for wheat transformation as assessed by long-term GUS expression studies [J]. Plant Cell Tiss. Org. Cult., 2005,80: 139-149.
    [73]丁莉萍,高莹,李圣纯,等.基因枪介导小麦成熟胚遗传转化的影响因素[J].武汉植物学研究, 2007, 25(3):217-221.
    [74]徐涛,赵宝存,葛荣朝,等.利用基因枪法将Tagsk1基因导入敏盐小麦成熟胚愈伤组织提高其耐盐性的研究[J].生物工程学报, 2006, 22(2):211-214.
    [75]刘文轩.我国小麦花药培养研究概况与展望[J].国外农学:麦类作物, 1990, (5):43-45.
    [76]欧阳俊闻,胡含,庄家骏.小麦花粉植株的诱导及其后代的观察[J].中国科学(B辑), 1973, 1:72-82.
    [77]朱至清,王敬驹,孙敬三,等.小麦花粉植株的诱导及其形态发生过程的研究[J].植物学报, 1973, 15(1):1-11.
    [78]胡含,郡子英,贾双娥.小麦花粉愈伤组织植株体细胞染色体的变异[J].遗传学报, 1978, 5(1):23-30.
    [79]胡道芬,袁振东,汤云莲.植物细胞工程—冬小麦花培新品种京花号的育成[J].中国科学(B辑), 1986, 3:283-292.
    [80] Saidi N, Cherkaoui S, Chlyah A. Embryo formation and regeneration in Triticum turgidum ssp. durum anther culture[J]. Plant Cell Tiss. Org. Cult., 1997, 51(1):27-33.
    [81]张艳敏,郭北海.小麦花药培养的基因型差异与杂交组合配制[J].华北农学报, 2002, 17(2):16-19.
    [82]刘建平,刘学馨,魏秀玲.冬小麦常用亲本以及配组一代花药培养力的研究[J].华北农学报, 1997, 12(4):17-22.
    [83]黄承彦,颜挺进,张存良.不同世代小麦花药培养的遗传效应分析[J].作物学报, 1991, 17(4):304-309.
    [84]徐龙珠,薛建平,石灵.基因型对小麦花药培养的影响[J].河南师范大学学报(自然科学版), 1992, (2):100-103.
    [85]王培,陈玉蓉.冬小麦的不同生育条件对其花粉植株诱导率的影响[J].遗传学报, 1980,7(1):64-71.
    [86] Orshinsky B R, Sadasivaiah R S. Effect of plant growth conditions, plating density, and genotype on the anther culture response of soft white spring wheat hybrids[J]. Plant Cell Rep., 1997, 16(11):758-762.
    [87] Mentewab A, Sarrafi A. Influence of genotype and cold pretreatment on the production of embryoids and their regeneration in tetraploid and hexaploid wheats[J]. Journal of Genetics and Breeding, 1997, 51(1):59-62.
    [88] Foroughi-Wehr B and Zeller F J. In vitro microspore reaction of different German wheat cultivars [J]. Theor. Appl. Genet., 1990, 79(1): 77-80.
    [89]裴翠娟,胡含,刘成华.影响小麦花培诱导因素的研究[J].作物学报, 1988, 14(1) :36-38.
    [90] Zamani I, Gouli-Vavdinoudi E, Kovacs G. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids[J]. Plant Breeding, 2003, 112(4):315-317.
    [91] Folling L, and Olesen A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment[J]. Plant Cell Rep., 2001, 20: 629-636.
    [92] Cistu′e L, Soriano M, Castillo A M, et al. Production of doubled haploids in durum wheat (Triticum turgitum L.) through isolated microspore culture[J]. Plant Cell Rep., 2006, 25(4): 257-264.
    [93]隋新霞,樊庆琦,李根英,等.小麦花药培养研究进展[J].麦类作物学报, 2005, 25(4):127-131.
    [94] Harris R, Wright M, Byrne M, et al. Callus formation and plantlet regeneration from protoplasts derived from suspension cultures of wheat (Triticum aestivum L.)[J]. Plant Cell Reports, 1988, 7: 337-340.
    [95]王海波,李问辉,孙勇如.小麦原生质体培养—高频率细胞团形成及植株再生[J].中国科学(B辑), 1989, (8):828-835.
    [96] Vasil V, Redway F A, Vasil I K. Regeneration of plants from embryogenic suspension culture protoplasts of wheat (Triticum aestivum L.)[J]. J. Biotechnol., 1990, 8:429-434.
    [97]郭光沁,夏光敏,李忠谊,等.小麦原生质体再生细胞直接形成体细胞胚和再生植株[J].中国科学(B辑), 1990, (9): 3970-3974.
    [98]朱根发,葛台明,余毓君,等.小麦原生质体培养与植株再生的研究[J].华中农业大学学报, 1995, 14(4): 315-321.
    [99]余舜武,朱永生,余毓君,等.快速建立胚性细胞系悬浮系的培养程序初探[J].华中农业大学学报, 2001, 20(4): 325-328.
    [100] He D G, Mouradov A, Yang Y M, et al. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts[J]. Plant Cell Rep., 1994, 14:192-196.
    [101]郭光沁,许智宏,卫志明,等.用PEG法向小麦原生质体导入外源基因获得转基因植株[J].科学通报, 1993, 38(13):1227-1231.
    [102] Vasil V, Castillo A M, Fromm M E. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos[J]. J. Biotechnol., 1992, 10:668-674.
    [103] Vasil V, Srivastava V, Castillo A M. Rapid production of transgenic wheat plant by direct bombardment of cultured immature embryos[J]. J. Biotechnol., 1993, 11:1153-1158.
    [104] Weeks I T, Anderson O D, Blechl A E, et al. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.)[J]. plant physiol., 1993, 102:1077-1084.
    [105] Beeker D, Brettsehneider R, Lorz H. Fertile transgenic wheat from mieroProjectile bombardment ofscutellar tissue[J]. Plant J., 1994, 299-307.
    [106] Barro F, Cannell M E, Lazzeri P A, et al. The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants[J]. Theor. Appl. Genet., 1998, 97: 684-695.
    [107] Rasco-Grunt S, Riley A, Barcelo P, et al. Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues[J]. Plant Cell Rep., 1999, 19:118-127.
    [108] Cannell M E, Doherty A, Lazzeri P A, et al. A population of wheat and tritordeum transformants showing a high degree of marke gene stability and heritability[J]. Theor. Appl. Genet. 1999, 99:772-784.
    [109] Rasco-Grunt S, Riley A, Cannell M E, et al. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment[J]. J. Exp. Bot., 2001, 52:865-874.
    [110] Pellegrineschi A, Brito R M, Velazquez L, et al. The effect of pretreatment with mild heat and drought stresses on the explant and biolistic transformation frequency of three durum wheat cultivars[J]. Plant Cell Rep., 2002, 20: 955-960.
    [111]杜立群,李银心,麻密,等.小麦生长点转化法初报[J].植物学报, 1996, 38(11): 921-924.
    [112] Bliffeld M, Mundy J, Potrykus I, et al. Genetic engineering of wheat for increased resistance to powdery mildew disease[J]. Theor. Appl. Genet., 1999, 98: 1079-1086.
    [113] Zhang L, Rybczynski J J, Langenberg W G, et al. An efficient wheat transformation procedure: transformed calli with long-term morphogenic potential for plant regeneration[J]. Plant Cell Rep., 2000, 19:241-250.
    [114] Anand A, Zhou T, Trick H N, et al. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum[J]. J Exp. Bot., 2003, 54:1101-1111.
    [115] Takumi S and Shimada T. Production of trangenic wheat through particle bombardment of scutellar tissue: frequency is influenced by culture duration[J]. J Plant Physiol., 1996, 149:418-423.
    [116] Nehra N S, Chibbar R N, Leung N et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues from microprojectile bombardment with two distinct gene constructs [J]. Plant J., 1994, 5:285-297.
    [117]赵虹,李名扬,裴炎,等.用基因枪法将抗除草剂基因导入小麦栽培品种的研究[J].植物学通报, 2002, 19 (4):457-461.
    [118] Zhou H, Arrowsmith J W, Fromm1 M E, et al. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation[J]. Plant Cell Rep., 1995, 15:159-163
    [119] Varshney A, Altpeter F. Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.) [J]. Mol. Breeding, 2001, 8:295-309.
    [120]夏光敏,陈惠民,郭光沁,等.微弹射击将大麦黄矮病毒外壳蛋白基因转入小麦获可育植株[J].山东大学学报(自然科学版), 1996, 31(1):94-101.
    [121]徐琼芳,李连城,马有志,等.用天花粉蛋白基因转化小麦获得转基因植株[J].遗传, 2001, 23(2):135-137.
    [122]成卓敏,吴茂森,夏光敏,等.应用基因枪法获得抗大麦黄矮病毒转基因小麦[J].植物病理学报, 2000, 30(2):116-121.
    [123] Leckband G, Lorz H. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance[J]. Theor. Appl. Genet., 1998, 96:1004-1012.
    [124] Chen W P, Gu X, Liang G H,et al.Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker[J]. Theor. Appl. Genet., 1998, 97:1296-1306.
    [125] Chen W P,Chen P D,Liu D J,et al. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene[J]. Theor. Appl. Genet., 1999, 99:755-760.
    [126] Bieri S,Potrykus I, Futterer J. Expression of active barley seed ribosome-inactivating protein in transgenic wheat[J]. Theor. Appl. Genet., 2000, 100:755-763.
    [127] Mackintosh C A, Garvin D F, Radmer L E, et al. A model wheat cultivar for transformation to improve resistance to Fusarium Head Blight[J]. Plant Cell Rep., 2006, 25:313-319.
    [128] Balconi C, Lanzanova C, Conti E, et al. Fusarium head blight evaluation in wheat transgenic plants expressing the maize b-32 antifungal gene[J]. Eur. J. Plant Pathol., 2007, 117:129-140.
    [129] Sivamani E, Bahieldinb A, Wraith J M, et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene [J]. Plant Sci., 2000, 155: 1-9.
    [130]郭北海,张艳敏,李洪杰,等.甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达.植物学报, 2000, 42(3): 279-283.
    [131] Wang J W, Yang F P, Chen X Q, et al. Induced expression of DREB transcriptional factor and study on its physiological effects of drought tolerance in transgenic wheat [J]. Acta. Genetica. Sinica., 2006, 33(5):468-476.
    [132] Vendruscoloa E C G, Schusterb I, Pileggic M, et al. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat[J]. J Plant Physiol., 2007, 164:1367-1376.
    [133]徐琼芳,李连城,陈孝,等.基因枪法获得GNA转基因小麦植株的研究[J].中国农业科学, 2001, 34(1):58.
    [134] Altpeter F, Diaz I, McAuslane H, et al. Increased insect resistance in transgenicwheat stably expressing trypsin inhibitor CMe [J]. Mol. Breeding, 1999, 5:53-63.
    [135]傅荣昭,曹光诚,马江生,等.用基因枪法将人工雄性不育基因导入小麦的研究初报[J].遗传学报, 1997, 24(4):358-361.
    [136]李艳红,肖兴国,赵广荣,等.将新的人工雄性不育基因导入小麦栽培品种的研究初报[J].农业生物技术学报, 1999, 7(3):255-258.
    [137] Blechl A E, Anderson O D. Expression of a novel high-molecular-weigh glutenin subunit gene in transgenic wheat[J]. Nat. Biotechnol., 1996, 14(7):875-879.
    [138] Altpeter F, Vasil V, Srivastava V, et al. Integration and expression of the high-moLecularr-weight glutenin subunit lAxl gene into wheat[J]. Nat. Biotechnol., 1996, 14:1155-1159.
    [139] Barro F, Rooke L, Fekes F, et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties [J].Nat. Biotechnol., 1997,15:1295-1299.
    [140] Masci1 S, Ovidio R D, Scossa F, et al. Production and characterization of a transgenic bread wheat line over-expressing a low-molecular-weight glutenin subunit gene[J]. Mol. Breeding, 2003,12:209-222.
    [141]陈梁鸿,王新望,张晓东,等.小麦编码高分了量谷蛋白亚基基因的转化[J].作物学报, 1999, 25(4):437-440.
    [142] Meng C, Chen X Q, Ling R Q, et al. Expression of lysine-richprotein gene and analysis of lysine content in transgenic wheat[J]. Chinese Sci. Bull., 2004, 49(19): 2053-2057.
    [143] Shi N N, He G Y, Li K X, et al. Transferring a gene expression cassette lacking the vector backbone sequences of the lAxl high molecular weight glutenin subunit into two chinese hexaploid wheat genotypes[J]. Agricultural Sciences in China, 2007, 6(4):381-390.
    [144] Potrykus I. Gene transfer to cereals: an assessment [J]. J. Biotechnol., 1990, (8):535-542.
    [145] Woolston C J, Barker R, Gunn H, et al. Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA [J]. Plant Mol. Biol., 1988, 11:35-43.
    [146] Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens[J]. Plant Physiol, 1997, 115(3): 971-980.
    [147]夏光敏,李忠谊.根癌农杆菌介导的小麦转基因植株再生[J].植物生理学报, 1999, 25(1): 22-28.
    [148] Peters N R, Ackerman S, Davis E A. A Modular Vector for Agrobacterium- mediated transformation of wheat[J]. Plant Mol. Biol. Rep., 1999, 17:323-331.
    [149]叶兴国, Shirley Sato,徐惠君,等.小麦农杆菌介导转基因植株的稳定获得和检测[J].中国农业科学, 2001, 34(5): 469-474.
    [150]黄益洪,周因平,叶兴国,等.农杆菌介导法获得小麦转基因植株的研究[J].作物学报, 2002, 28(4):510-515.
    [151]王永勤,肖兴国,张爱民.农杆菌介导的小麦遗传转化几个影响因素的研究[J].遗传学报, 2002, 29(3):260-265.
    [152] Khanna H K, Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium[J]. Plant Cell Rep., 2003, 21:429-436.
    [153] Hu T, Metz S, Chay C,et al. Agrobacterium mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection [J]. Plant Cell Rep., 2003, 21:1010-1019.
    [154] Wu H, Sparks C, Amoah B,et al. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat[J]. Plant Cell Rep., 2003, 21:659-668.
    [155]秦余香,赵双宜,支大英,等.根癌农杆菌介导大麦Mlo反义基因转化小麦[J].山东大学学报(理学版), 2004, 39(5):102-111.
    [156]叶兴国,王艳丽,康乐,等.农杆菌敏感小麦基因型的筛选及其转化[J].作物学报, 2005, 31(12):1552-1556.
    [157]王艳丽,叶兴国,刘艳鹏,等.农杆菌敏感小麦基因型的筛选研究[J].麦类作物学报, 2005, 25(6):6-10.
    [158]叶兴国,程红梅,徐惠君,等.转几丁质酶和β-1,3-葡聚糖酶双价基因小麦的获得和鉴定[J].作物学报, 2005, 31(5): 583-586.
    [159]李加瑞,赵伟,李全梓,等. Waxy基因的RNA沉默使转基因小麦种子中直链淀粉含量下降[J].遗传学报, 2005, 32(8): 846-854.
    [160] Zhao T J, Zhao S Y, Chen H M, et al. Transgenic wheat progeny resistant to powdery mildewgenerated by Agrobacterium inoculum to the basal portion of wheat seedling[J]. Plant Cell Rep., 2006, 25:1199-1204.
    [161] Wu H X, Doherty A, Jones H D. Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var.durum) using additional virulence genes[J]. Transgenic Res., 2007, (1):106-109.
    [162]李卫,郭光沁,郑国.根癌农杆菌介导遗传转化研究的若干新进展[J].科学通报, 2000, 45(8):798-807.
    [163]梁雪莲,孙毅,郭平毅,等.农杆菌转化小麦幼胚获得转bar基因再生植株[J].华北农学报, 2003, 18(1):12-16.
    [164]黄其满,刘伟华,孙辉,等.农杆菌介导的转谷氨酰胺合成酶基因小麦的抗除草剂特性研究[J]. 2005,植物生态学报, 2005, 29(2):338-344.
    [165]薛哲勇,支大英,夏光敏,等.根癌农杆菌介导AtNHX1基因转化小麦[J].山东大学学报(理学版), 2003, 38(1):106-109.
    [166]薛哲勇,贺晨霞,孙松,等.农杆菌介导的胆碱脱氢酶基因(betA)转化小麦及影响转化效率的因素[J]. 2004, 39(3): 104-110.
    [167] Razzaq A,张艳敏,赵和,等.通过基因枪和农杆菌介导用BADH基因转化小麦[J].华北农学报, 2005, 20(5): 1-9.
    [168]叶兴国, Shirley Sato,徐惠,等. BCL、RIP细胞凋亡基因向小麦中的导入和赤霉病抗性鉴定[J].作物学报, 2005, 31(11):1389-1393.
    [169] Yan F, Zheng Y Y, Zhang W W, et al. Obtained transgenic wheat expressing pac1 mediated by Agrobacterium is resistant against barley yellow dwarf virus-GPV[J]. Chinese Sci. Bull., 2006, 51: 2362-2368.
    [170]支大英,徐春晖,薛哲勇.农杆菌介导AFP1基因转化小麦获得转基因植株[J].山东农业科学, 2004, 3:14-19.
    [171] ZHOU G Y, WENG J, ZENG Y. Introduction of exogenous DNA into cotton embryos[J]. Method Enzymol., 1983, 101:433-481.
    [172]周文麟,倪建福,等.外源C4作物DNA导入小麦的研究[J].作物学报, 1992, 18 (6):418-423.
    [173]成卓敏,何小源,陈彩层,等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株[J].自然科学进展—国家重点实验室通讯, 1993, 3(6):560-564.
    [174]曾君祉,王东江,吴有强,等.用花粉管途径获得小麦转基因植株[J].中国科学(B辑), 1993, 23(3): 256-261.
    [175]刘根齐,张孔恬,林世兰,等.外源DNA导入小麦及其在育种上的应用[J].遗传学报, 1994, 21(6):463-467.
    [176]阎新甫,刘文轩,王胜军,等.抗白粉病大麦DNA导入普通小麦的研究[A].农业分子育种研究进展[C].北京:中国农业科技出版社, 1993, 69-75.
    [177]李忠杰,孙光祖,王广金,等.辐照外源DNA导入小麦诱变效果初探[J].核农学通报, 1995, 16(1):1-4.
    [178]李忠杰,孙光祖,王广金,等.辐照外源DNA导入小麦诱变效果的研究—D3代变异及遗传分析[J].核农学通报, 1997, 18(5): 201-204.
    [179]曾君祉,吴有强,王东江,等.花粉管通道法转化的植株后代遗传表现及转化机理的探讨[J].科学通报, 1998, 43(6):561-566.
    [180]黄承彦,楚秀生,杨平平,等.外源DNA导入技术培育抗旱耐盐小麦新品种[J].山东农业科学, 2000, (4):4-6.
    [181]牟红梅,刘树俊,周文娟,等.慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析[J].遗传学报, 1999, 26(6):634-642.
    [182]候文胜,郭三堆,路明.利用花粉管通道法将cryIa基因导入小麦[J].作物学报, 2003, 29(6):806-809.
    [183]郭宝太,夏连胜,区咏梅,等. GUS与天花粉蛋白由花粉管导入小麦的研究[J].莱阳农学院学报, 1996, 13(1):1-4
    [184]吴茂森,田苗英,陈彩层,等.通过花粉管途径将BYDV-GPV株系缺失复制酶基因导入小麦[J].农业生物技术学报, 2000, 8(2): 125-127.
    [185]李忠杰.转基因抗白粉病小麦植株的选育研究初报[J].麦类作物学报, 2000, 20(2):13-16.
    [186]王立新,孟荣华,郭仁俊,等.应用花粉管通道法进行小麦抗白粉病基因的研究初[J].农业技术生物学报, 2001, 9(3): 265-268.
    [187]唐凤兰,张晓余,王广全,等.利用花粉管通道法向小麦中导入麦谷蛋白高分于量优质亚基基因的研究初报[J].黑龙江农业科学, 2002,(3):l-2.
    [188]刘香利,刘缙,郭蔼光,等.小麦高分子量麦谷蛋白14亚基基因的花粉管通道法转[J].西北农林科技大学学报(自然科学版), 2008, 36(1):121-124.
    [189]奚亚军,林拥军,张启发,等.利用花粉管通道法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究[J].作物学报, 2004, 30(6): 608-612.
    [190]陈升,罗忠训,胡学俊.花粉管通道法研究(I)——影响试验颖花结实率的几个因素[J].湖北大学学报(自然科学版), 1991, 13(4): 385-387.
    [191] Lorz H, Baker B, Schell J. Gene transfer to cereal cells mediated by protoplast transformation[J]. Mol. Gen. Genet., 1985, 199:178-192.
    [192] Miiller E, Liirz H, Liitticke S. Variability of transgene expression in clonal cell lines of wheat[J]. Plant Sci., 1996, 114: 71-82.
    [193] Zhou H, Stiff C M, Konzak C F. Stably transformed callus of wheat by electroporation-induced direct gene transfer[J]. Plant Cell Rep., 1993, 12: 612-616.
    [194] Sorokin A P, Ke X Y, Chen D F, et al. Production of fertile transgenic wheat plants via tissue Electroporation[J]. Plant Sci., 2000, 156: 227–233.
    [195]奚亚军,张启发,林拥军,等.利用农杆菌浸种法将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究[J].中国农业科学, 2004, 37(8): 1235-1238.
    [196] Razzq A,张艳敏,杨帆,等.小麦茎生长点转化研究初报[J].华北农学报, 2005, 20(1):17-22.
    [197] Weir B, Wang M, Upadhyaya N, et al. Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a cisual marker[J]. Aust. J Plant Physiol., 2001, 28:807-818
    [198] Hess D, Dressler K, Nimmrichter R. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat(Triticum aestivum L.)[J]. Plant Sci., 1990, 72: 233-244.
    [199]何道一,李中存,王洪刚.农杆菌介导的小麦活体转化[J].中国农业科学, 2003, 36(12):1437-1441.
    [200]王宏芝,魏建华,李瑞芬.农杆菌介导的小麦生殖器官的整体转化[J].中国农业科技导报, 2004, 6(3):22-26.
    [201] Bietz J A, Wall J S. Identity of high molecular weight gliadin and ethanol soluble glutenin of wheat: relation to gluten structure[J]. Cereal Chem., 1980, 57: 415-421.
    [202] Ng P K W, Bushuk W. Statistical relationships between high molecular weight subunits of glutenin and bread-making quality of Canadian-grown wheats[J]. Cereal Chem., 1988, 65(5):408-413.
    [203] Shewery P R, Arthur S T, Forde J, et al. The classification and nomenclature of wheat gluten proteins: A reassessment[J]. J. Cereal Sci., 1986, 4:97-106.
    [204] Payne P I, Law C N, Mudd E E. Control by homoeologous group I chromosomes of the High-Molecular-Weight subunit of glutenin, a major protein of wheat endosperm[J]. Theor. Appl. Genet., 1980, 58:113-120.
    [205] Payne P I. Structure and genetical studies on the High-Molecular-Weight subunit of wheat glutenin. Theor. Appl. Genet., 1981, 60: 229-236.
    [206] Payne P I, Lawrence G J. Catalogue of alleles for the complex gene loci,Glu-A1,Glu-B1,and Glu-D1 which code for High-Molecular-Weight subunits of glutenin in hexaploid wheat[J]. Cereal Res. Commun., 1983, 11:29-35.
    [207] Shewery P R, Halford N G, Tatham A S. High molecular weight subunits of wheat glutenin[J]. J. Cereal Sci., 1992, 15: 105-120.
    [208] Payne P I, Corfield K G, Blackman J A. Identification of a high molecular weight subunit of glutenin whose presence correlates with bread-making quality in wheat of related pedigree[J]. Theor. Appl. Genet., 1979, 55:153-159.
    [209] Payne P I, Corfield K G, Holt L M, et al. Correlation between the inheritance of certain High-Molecular-Weight subunits of glutenin and bread-making quality in progenies of six crosses of bread-making quality in progenies of six crosses of bread wheat[J]. J. Sci. Food Agri., 1981, 32:51-60.
    [210] Payne P I, Nightingale M A, Kyattiger A F. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties[J]. J. Sci. Food Agric., 1987, 40: 51~65.
    [211]王瑞,宁锟.一些优质小麦及其杂种后代高分子量麦谷蛋白亚基组成与面包品质之关系[J].西北农业学报, 1995, 4: 25-30.
    [212]宋建民,吴祥云,刘建军,等.小麦品质的麦谷蛋白亚基评定标准研究[J].作物学报, 2003, 29(6): 829-834.
    [213]张学勇,庞斌双,游光霞,等.中国小麦品种资源Glu-1位点组成概况及遗传多样性分析[J].中国农业科学, 2002, 35(11): 1302-1310.
    [214]李硕碧,单明珠,李必远.陕西省小麦资源高子分量谷蛋白亚基组成研究[J].西北农林科技大学学报(自然科学版), 2002, 30(4):1-5.
    [215]高翔,雷玲,董剑,等.小麦高分子量谷蛋白亚基效应的比较研究[J].西北植物学报, 2005, 25(12): 2443-2446.
    [216] Deng Z Y, Tian J C, SUN G X. Influence of high molecular weight glutenin subunit substitution on rheological behaviour and bread-baking quality of near-isogenic lines developed from Chinese wheats[J]. Plant Breeding, 2005, 124:428-431.
    [217]邓志勇,赵会贤,范三红,等.高分子量麦谷蛋白14和15亚基的纯化、N-末端序列及部分生化特性研究[J].遗传学报, 2001, 28(1): 46-51.
    [218]郭蔼光,范三红,赵惠贤.小麦高分子量麦谷蛋白14亚基基因核酸序列及应用[P].专利编号: ZL021145792, 2005.
    [219] Shewry P R, Sayanova O, Tatham A S et al. Structure, assembly and targeting of wheat storage proteins. J. Plant Physiol., 1995, 145:620-625.
    [220] Halford N G, Ford J, Anderson O D, et al. The nucleotide and deduced amino acid sequences of a HMW glutenin subunit gene from chromosome 1B of bread wheat (Triticum aestivum L.) and comparison with those of genes from chromosome 1A and 1D[J]. Theor. Appl. Genet., 1987, 75: 117-126.
    [221] Shewry P R, Tatham A S. Disulphide bonds in wheat gluten proteins[J]. J. Cereal Sci., 1997, 25: 207-227.
    [222] Halford N G, Field JM, Blair H, et al. Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat(Triticum aestivum L.)indicates quantitative effects on grain quality[J]. Theor. Appl. Genet., 1992, 83: 373-378.
    [223] Anderson O D, Greene F C. The characterization and comparative analysis of high molecular weight glutenin genes from genomes A and B of a hexaploid bread wheat[J]. Theor. Appl. Genet., 1989, 77: 689-700.
    [224] Li W, Wan Y, Liu Z, et al. Molecular characterization of HMW glutenin subunit allele 1Bx14: further insights into the evolution of Glu-B1-1 alleles in wheat and related species[J]. Theor. Appl. Genet., 2004, 109:1093-1104.
    [225] Anderson O D, Yip R E, Halford N G, et al. Nucleotide sequences of two high-molecular-weight glutenin subunit genes from the D-genome of a hexaploid bread wheat Triticum aestvum L. cv Cheyenne[J]. Nucleic Acids Res., 1989, 17: 461-462.
    [226] Sugiyama T, Rafalski A, Peterson D, et al. A wheat HMW glutenin subunit gene reveals a highly repeated structure[J]. Nucleic Acids Research, 1985, 13(24): 8729-8737.
    [227] Thompson R D, Bartels D, Harberd N P. Nucleotide sequence of a gene from chromosome 1D of wheat encoding a HMW glutenin subunit[J]. Nucleic Acids Research, 1985, 13(19):6833-6846.
    [228] Forde J, Malpica J M, Halford N G, et al. The nucleotide sequence of a HMW glutenin subunit gene located on chromosome 1A of wheat (Triticum aestivum L.)[J]. Nucleic Acids Research, 1985, 13(19): 6817-6832.
    [229] Shimoni Y, Blechl A E, Anderson O D, et al. A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat[J]. J. Biol. Chem., 1997, 13, 272(24): 15488-95.
    [230] He G Y, Rooke L, Steele S, et al. Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality[J]. Mol. Breeding, 1999, 5:377-386.
    [231] Rooke L, Barro F, Tatham A S, et al. Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes[J]. Theor. Appl. Genet., 1999, 99:851–858
    [232] Rooke L, Békés F, Fido R, et al. Overexpression of a gluten protein in transgenic wheat results in greatly increased dough Strength[J]. J. Cereal Sci., 1999, 30: 115–120.
    [233] Alvarez M L, Guelman S, Halford N G, et al. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits[J]. Theor. Appl. Genet., 2000, 100: 319-327.
    [234] Alvarez M L, Gomez M, Carrillo J M, et al. Analysis of dough functionality of flours from transgenic wheat[J]. Mol. Breeding, 2001, 8:103-108.
    [235] Barro F, BarcelóP, Lazzeri P A, et al. Field evaluation and agronomic performance of transgenic wheat[J]. Theor. Appl. Genet., 2002, 105:980-984.
    [236] Barro F, BarcelóP, Lazzeri P A, et al. Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes[J]. Mol. Breeding, 2003, 12: 223-229.
    [237] Barro F, BarcelóP, Lazzeri P A, et al. Functional properties and agronomic performance of transgenic tritordeum expressing high molecular weight glutenin subunit genes 1Ax1 and 1Dx5[J]. J. Cereal Sci., 2003, 37: 65-70.
    [238] He G Y, Jone H D, Ovidio D, et al. Expression of an extended HMW subunit in transgenic wheat and the effect on dough mixing properties[J]. J. Cereal Sci., 2005, 42: 225-231.
    [239] Bregitzer P, Blechl A E, Fiedler D, et al. Changes in high molecular weight glutenin subunit composition can be genetically engineered without affecting wheat agronomic performance[J]. Crop Sci., 2006, 46(4):1553-1563.
    [240] Blechl A, Lin J, Nguyen S, et al. Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance[J]. J. Cereal Sci., 2007, 45:172-183.
    [241] Gadaleta A, Blechl A E, Nguyen S, et al. Stably expressed D-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties[J]. Mol. Breeding, 2008, 22:267-279.
    [242] Rakszegi M, Pastori G, Jones H D, et al. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene[J]. J. Cereal Sci., 2008, 47:310-32.
    [243] Rakszegi M, Bekes F, Lang L,et al. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit[J]. J. Cereal Sci., 2005, 42:15-23.
    [244] Yue S J, Li H, Li Y W, et al. Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference[J]. J. Cereal Sci., 2008, 47:153-161.
    [245] Kumpatla S P, Teng W M, Buchholz W G, et al. Epi-genetic transcriptional silencing and 5-azacytidine reactivation of complex transgenic in rice[J]. Plant Physiol., 1997, 115:361-373.
    [246] Dieguez M J, Vaucheret H, Paszkowski J, et al. Cytosine methylation at CG and CNG sites is not a prerequisite for the initiation of transcriptional gene silencing in plants, but it is required for its aintenance[J]. Mol. Gen. Genet., 1998, 259(2):207-215.
    [247] Assaad F F, Turker K L, Singer E R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis[J]. Plant Mol. Biol., 1993, 22(6):1067-1085.
    [248] Matzke A J, Neuhuber F, Park Y D, Ambros P Fet al. Homology-dependant gene silencing in transgenic plants: epistatic loci contain multiple copies of methylated transgenes[J]. Mol. Gen. Genet., 1994, 244: 219-299.
    [249] Iglesias V A, Moscone E A, Papp I, et al. Molecular and cytogenetic analysis of stably expressional transgene loci in tobacco[J]. Plant Cell, 1997, 9:1251-1264.
    [250] Mol J N M, Stuitje A. Genetic manipulation of floral pigmentation genes[J]. Plant Mol. Biol., 1989, 13: 287-294.
    [251] Dougherty W G, Parks T D. Transgenes and gene suppression: telling us something new?[J]. Curr. Opin. Cell Bio1., 1995, 7:399-405.
    [252] Hamilton A, Baulcombe D C. A species of small antisense RNA in posttranscriptional gene silencing in plants[J]. Science, 1999, 286: 950-952.
    [253] Cogoni C, Macino G. Conservation of transgenic-induced posttranscriptional gene silencing in plants and fungi[J]. Trends Plant Sci, 1997, 2:438-443.
    [254] Han K H, Ma C P, Strauss S H. Matrix attachment regions (MARs) enhance transformation frequency and transgenic expression in polar[J]. Transgenic Res., 1997, 6: 415-420.
    [255] Lichtenstein M, Kein G, Cedar H, et al. B-cell-specific demethylation: A novel role for the intronic chain enhance sequence[J]. Cell, 1994, 1: 913-923.
    [256] Weissmann S, Feldman M, Gressel J. Hypothesis: Transgene establishment in wild relatives of wheat can be prevented by utilizing the Ph1 gene as a senso stricto chaperon to prevent homoeologous recombination[J]. Plant Sci., 2008, 175(3): 410-414.
    [257] Jordan M C. Green fluorescent protein as a visual marker for wheat transformation[J]. Plant Cell Rep., 2000, 19: 1069-1075.
    [258] Huber M, Hahn R, Hess D. High transformation frequencies obtained from a commercial wheat (Triticum aestivum L. cv.‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection[J]. Mol. Breeding, 2002, 10:19-30.
    [259] Weeks J T, Koshiyama K Y, Maier-Greiner U,et al. Wheat transformation using cyanamide as a new selective agent[J]. Crop Sci., 2000, 40:1749-1754.
    [260] Wright M, Dawson J, Dunder E, et al. Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker[J]. Plant Cell Rep., 2001, 20:429-436.
    [261] Gadaleta A, Giancaspro A, Blechl A, et al. Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation[J]. J. Cereal Sci., 2006, 43: 31-37.
    [262] Komari T, Hiei Y, Saito Y, et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers[J]. Plant J., 1996, 10:165-174.
    [263]贾力,吴茂森,张文蔚,等.大麦黄矮病毒单双价外壳蛋白基因植物表达载体构建及小麦遗传转化[J].农业生物技术学报, 2001, 9 (1): 23-27.
    [264]张新梅,徐惠君,杜丽璞,等.共转化法剔除转基因小麦中的bar基因[J].作物学报, 2004, 30(1): 26-30.
    [265] Permingeat H R, Alvarez M L, Cervigni G D L, et al. Stable wheat transformation obtained without selectable markers[J]. Plant Mol. Biol., 2003, 52: 415-419.
    [266] Dutt M, Li Z T, Dhekney S A, et al. A co-transformation system to produce transgenic grapevines free of marker genes[J]. Plant Sci., 2008, 175 (3): 423-430.
    [267] Cluster P D, Odell M, Metzlaff M, et al. Details of T-DNA structural organization from a transgenic Petunia population exhibiting cosuppression[J]. Plant Mol. Biol., 1996, 32: 1197-1203.
    [268] Buck D S, Wilde D C, Montagu V M, et al. T-DNA vector backbone sequences are frequentlyintegrated into the genome of transgenic plants obtained by Agrobacterium-mediated transformation[J]. Mol. Breed., 2000, 6: 459-468.
    [269] Makarevitch I, Svitashev S K, Somers D A. Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment[J]. Plant Mol. Biol., 2003, 52: 421-432.
    [270] Wu H X, Sparks C A, Jones H D. Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation[J]. Mol. Breeding, 2006, 18:195-208.
    [271] Matzke M A, Matzke A J M, Eggleston W B. Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci., 1996, 1: 382-388.
    [272] Muller A E, Kamisugi Y, Gruneberg R, et al. Palindromic sequences and ACT-rich DNA elements promote illegitimate recombination in Nicotiana tabacum[J]. J. Mol. Biol., 1999, 291: 29-46.
    [273] UzéM, Potrykus I, Sautter C. Single-stranded DNA in the genetic transformation of wheat (Triticum aestivum L.): Transformation frequency and integration pattern[J]. Theor. Appl. Genet., 1999, 99: 487-495.
    [274] Yoo S Y, Bomblies K,Yoo S K, et al. The 35S promoter used in a selectable marker gene of a plant transformation vector affects the expression of the transgene[J]. Planta, 2005, 221: 523-530.
    [275] Fu X D, Duc L T, Fontana S, et al. Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns[J]. Transgene Res., 2000, 9:11-19.
    [276] Yao Q, Cong L, He G Y, et al. Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency[J]. Mol. Bio.l Rep., 2007, 34:61-67.
    [277] Gadaleta A, Giancaspro A, Blechl A E, et al. A transgenic durum wheat line that is free of marker genes and expresses 1Dy10[J]. J. Cereal Sci., 2008, 48(2):439-445
    [278] Dale E C, Ow D W. Gene transfer with subsequent removal of the selection gene from the host genome[J]. Proc. Natl. Acad. Sci., 1991, 88:10558-10562.
    [279] Russel S H, Hoppes J L, Odell J T. Directed excision of a transgene from the plant genome [J]. Mol. Gen. Genetic., 1992, 234:49-59.
    [280] Song H Y, Ren X S, Si J, et al. Construction of marker-free GFP transgenic tobacco by Cre/lox site-specific recombination system[J]. Agricultural Sciences in China, 2008, 7(9):1061-1070.
    [281] Zuo J Q, Niu Q W, Mouer S G, et al. Chemical-regulated, site-specific DNA excision in transgenic plants[J]. Nat. Biotechnol., 2001, 19: 157-161.
    [282] Yuan Y, Liu Y J, Wang T . A new Cre/lox system for deletion of selectable marker gene[J]. Acta Botanica Sinica, 2004, 46 (7): 862-866.
    [283] Liu H K, Chao Y G, Wei Zh M , et al. Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants[J]. Plant Sci., 2005,168: 997-1003.
    [284] Hoff T, Schnorr K M, Mundy J. A recombinase-mediated transcriptional induction system in transgenic plants[J].Plant Mol. Biol., 2001, 45: 41-49.
    [285] Zhang W, Subbarao S, Addae P, et al. Cre/lox mediated marker gene excision in transgenic maize (Zeamays L.) plants[J]. Theor. Appl. Genet., 2003, 107: 1157-1168.
    [286] Wang Y, Chen B, Hu Y, et al. Inducible excision of select able marker gene from transgenic plantsby the cre/lox site-specific recombination system [J]. Transgenic Res., 2005, 14(5): 605-614.
    [287] Cuellar W, Gaudin A, Solorzano D. Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato[J]. Plant Mol. Bio., 2006, l62: 71-82.
    [288] ZHang Y, Li H, Ouyang B, et al. Chemical-induced auto excision of selectable markers in elite tomato plants trans formed with a gene conferring resistance to lepidopteran insects[J]. Biotechnol. Lett., 2006, 28 (16): 1247-253.
    [289] Ma B G, Duan X Y, Zhang L X, et al. Salicylic acid-induced autoexcision of the nptⅡmarker gene in elite tomato plants transformed with a stilbene synthase gene[J]. J. Biotechnol.,2008,136:236-246.
    [290] Li Z, Xiang A, Moon B P, et al. A Cre/loxP-mediated self-activating gene excision system to produce marker gene free transgenic soybean plants[J]. Plant Mol. Biol., 2007, 65: 329-334.
    [291] Kopertekh L, Jüttner G, Schiemann J. Site-specific recombination induced in transgenic plants by PVX virus vector expressing bacteriophage P1 recombinase [J]. Plant Sci., 2004, 166: 485–492.
    [292]林忠平,陈杨坚,倪挺,等.采用两套定位重组系统删除特定外源基因的方法[J].中国, CN1392260 [P]. 2003-01-22.
    [293] Luo K, Duan H, Zhao D, et al. GM-gene-deletor: fused loxP-FRT recognition sequences dramatic-ally improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants[J]. Plant Biotechnol. J., 2007, l5: 263-227.
    [294] Lyznik L A, Rao K V, Hodges T K. FLP-mediated recombination of FRT sites in the maize genome[J]. Nucleic Acids Res., 1996, 24: 3784-3789.
    [295] Vega J M, Yu W, Han F, et al. Agrobacterium-mediated transformation of maize (Zea mays) with Cre-lox site specific recombination cassettes in BIBAC vectors[J]. Plant Mol. Biol., 2008, 66: 587-598.
    [296] Hoa T T C, Bong B B, Huq E, et al. Cre/lox site-specific recombination controls the excision of a transgene from the rice genome[J]. Theor. Appl. Genet., 2002, 104(4): 518-525
    [297] Hu, Q, Halina K H, Kimberly N V, et al. FLP recombinase-mediated site-specific recombination in rice[J]. Plant Biotechnol. J. 2008, 6(2):176-188.
    [298] Srivastava V, and Ow D W. Biolistic mediated site-specific integration in rice[J]. Mol. Breeding, 2002, 8(4): 345-349.
    [299] Srivastava V, Anderson O D, OW D W. Single-copy transgenic wheat generated through the resolution of complex integration patterns[J]. Proc. Natl. Acad. Sci., 1999, 96: 11117–11121.
    [300] Goldbrough A P, Lastrella C N, Yoder J I. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato[J]. Nat. Biotechnol., 1993, 11:1286–1292.
    [301] Zubko E, Scutt C, Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes[J]. Nat. Biotechnol., 2000, 18:442-445.
    [302] Mullins M G, Tang F C, Facciotti D. Agrobacterium mediated genetic transformation of grapevines: Transgenic plants of Vitis rupestris Scheele and buds of Vitus vinifera L.[J]. Nat. Biotechnol., 1990, 8:1041–1045.
    [303] Vain P, McMullen M D, Finer J J. Osmotic treatment enhances particle bombardment mediated transient and stable transformation of maize[J]. Plant Cell Rep., 1993, 12:84-88.
    [304]郭向荣,方红曼,李安生,等.甘露醇预处理方式、方法对大麦花粉植株再生的影响[J].农业生物技术学报, 1999, 7(4):321-324.
    [305]刘伟华,李文雄,胡尚连,等.小麦组织培养和基因枪轰击影响因素探讨[J].西北植物学报, 2002, 22: 602-610.
    [306]奚亚军,范学科,侯文胜,等.小麦遗传转化中潮霉素适宜筛选浓度的研究[J].西北农林科技大学学报(自然科学版), 2003, 31(1):39-42.
    [307] Kohli A, Leech M, Vain P, et al. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots[J]. Proc. Natl. Acad. Sci., 1998, 95: 7203–7208
    [308] Nakayama C, Adachi N, Koyama H. Bleomycin enhances integration of transfected DNA into a human genome[J]. Mutation Res., 1998, 409:1–10.
    [309]刘庆法,唐克轩,叶建明等.农杆菌介导小麦遗传转化条件的研究.复旦学报(自然科学版)[J], 1998, 37(4): 569-572.
    [310] Jefferson R A, Kavanagh T A, Bevan M V. GUS fusion:β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants[J]. EMBO J., 1987, 1987, 6: 3901-3907.
    [311] UzéM, Potrykus I, Sautter C. Factors influencing T-DNA transfer from Agrobacterium to precultured immature wheat embryos (Triticum aestivum L.)[J]. Cereal Res. Com., 2000, 28(1-2):17-23.
    [312] Guo G M, Maiwald F, Lorenzen P, et al. Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens[J]. Cereal Res. Com., 1998, 26(1):15-22.
    [313]奚亚军,候文胜,张启发,等.卡那霉素在转基因小麦后代筛选中的应用研究[J].西北农业学报, 2002, 11(3):17-20.
    [314]徐子勤, Becker D, Lorz H.通过卡那霉素选择体系再生可育小麦转基因植株[J].自然科学进展, 2001, 11(5):486-491.
    [315]刘凡,王国英,曹鸣庆.农杆菌介导的植物原位转基因方法研究进展[J].分子植物育种, 2003, 1(1): 108-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700