基因枪法介导幼胚转NAC-43基因小麦的获得及插入位点的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是我国重要的粮食作物之一,利用植物基因工程技术对小麦进行遗传改良,是改善小麦品质的一个重要的方法之一。小麦遗传改良的重要目标有:增强小麦抗病抗虫和耐逆境的能力,提高小麦产量,改善小麦品质。本研究以8种普通西南小麦品种作为材料,以这些小麦的幼胚作为受体诱导出愈伤组织并且研究愈伤组织的分化及再生,比较各品种间愈伤组织的诱导能力以及愈伤组织的分化再生能力,筛选小麦幼胚适宜组织培养的基因型。经过筛选之后,以小麦品种绵阳11和川农23的幼胚愈伤组织为实验材料,用基因枪法对幼胚诱导的胚性愈伤组织进行遗传转化,将重新构建好的PBI121-NAC-43表达载体转入小麦中,获得转基因植株。并且用TAIL—PCR技术对转基因阳性植株中目的基因的插入位点进行研究并对该技术进行一定的优化。获得的实验结果为:
     1.通过对8种小麦材料进行幼胚愈伤组织的诱导以及分化再生的研究,最后明确了大多数基因型小麦幼胚的愈伤组织诱导能力差别不是很大。而对分化再生及成苗的影响很大。利用剥胚法诱导小麦幼胚诱导出愈伤组织,并且对其进行分化和再生的培养,最终筛选出了出愈率比较高,愈伤组织的质量好,分化的能力比较强以及成苗率最高的绵阳11和川农23两个优良的西南小麦基因型材料。
     2.以PMD19-T-NAC-43为模板,克隆得到NAC-43基因,并将其构建到PBI121表达载体中。利用建立的小麦幼胚遗传转化体系将新构建的插入有NAC-43基因的PBI121表达载体与含有bar基因的PAHC20表达载体共转化入小麦品种绵阳11和川农23中,获得了转基因植株。并对转基因植株进行分子检测,经PCR初步鉴定,以及及回收连接转化测序后对所测序列进行比对证实目的基因NAC-43已转入其中。
     3.根据载体PBI121-NAC-43中左右边界的已知序列(npt和gus基因)分别设汁了3个与其边界距离不等的嵌套的特异性引物,共计6个特异性引物,并按照小麦物种普遍存在的蛋白质保守氮基酸序列设计了三个简并引物,将简并引物与特异引物相互组合,进行TAIL—PCR反应,同时做了这两种引物之间加入量比例的对比研究以及二三次反应中模板稀释倍数的对比研究,从而初步优化了TAIL—PCR技术的操作并对转基因阳性植株中目的基因的插入位点进行了载体的序列分析。
Wheat is one of the important food crops, It is one of the important methods to improve the quality of wheat by Using plant genetic engineering to geneticly improve the wheat.The Important goal of genetic improvement of wheat are enhancing the ability of wheat to insect resistance and stress tolerance, increasing wheat production, improving wheat quality. In this study, using eight kinds of Common Southwest Wheat as materials induce The immature embryo into and different the callus and Finally regenerat into plants. We also Compare to the ability of the induction and differentiation and regeneration between species,in order to screen the bast genotypes what have the bast ability of The Tissue culture. On this basis,using the Callus which come from Improved strains of southwestern wheat-Mianyang 11 and chuannong23-as experimental material, Using particle bombardment to Transduce PBI121-NAC-43 into the wheat and get the transgenic plants. After getting the transgenic plants, we also study the insertion sites which has the target genes in transgenic plants by using TAIL-PCR technique and certainly optimize this technology. The main results obtained are as follows:
     1.Through studing 8 different genotypes of wheat about immature embryos of callus induction,differentiation and regeneration, We find that it is not differentbetween the majority of immature embryos of wheat genotypes callus induction capacity but The Regeneration and Sprouting are On the contrary. using eembryo-isolated method(EI),we induce callus from immature wheat embryos and culture for differentiation and regeneration, Finally,we selecte Mianyang 11 and chuanong 23 as the excellent southwest of wheat genotypes which have the high rate of callus, good callus quality, high capacity of differentiation and high rate of seedling.
     2. Using PMD19-T-NAC-43 as template, we clone NAC-43 gene and constructe NAC-43 gene to a new expression vector-PBI121. Then we transforme the PBI121-NAC-43 and PAHC20 which contains the bar gene into mianyangll and chuanong23 to get transgenic wheat.
     3. According to the left and right borders'known sequence of vector PBI121-NAC-43 (npt and gus gene), we severally design 3 nested primers which are varying distances from the border, totaly of 6 specific Primers, and design 3 degenerate primers according to the conserved amino acid sequences of wheat protein. Then we Combinate the degenerate primers and specific primers in various and make the TAIL-PCR reaction. Also we make the Comparative study of the dosage-ratio of the two primers and the template dilution of two or three times in the reaction. Thus we initially optimized TAIL-PCR technology, and study the target gene insertion sites of transgenic plants.
引文
[1]郭岩,张莉,肖岗,等.甜菜碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究,中国科学(C辑),1997,27(2):151-155
    [2]郭北海,张艳敏,李洪杰,等。甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达,植物学报,2000,42(3):279-283
    [3]Singh K, Foley R C,Onachez L.Transcription factors in plant defense and stress response[J].Current Opinion in Plant Biology,2002,5(5):430-436
    [4]Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290 (5499); 2105-2110.
    [5]Gutierrez R A, Green P J, Keegstra K, et al.Phylogenetic profiling of the Arabidopsis thaliana proteome:what proteins distinguish plants from other organsms?[J].Genome Biology,2004,5(8):53.
    [6]Aida M, Ishida T, Fukaki H, et al. Genes involved in organ sep-aration in Arabidopsis, analysis of the cup-shaped cotyledon mutant [J].The Plant Cell,1997,9(6):841-857.
    [7]Ernst H A, Olsen A N, Skriver K, et al.Structure of the cons-erved domain of ANAC.a member of the NAC family of transcription factors [J].Embo.Reports,2004,5(3):297-303.
    [8]Olsen A N, Ernst H A, Leggio L L, et al.NAC transcription factors:structurally distinct, functionally diverse[J].Trendsin Plant Science,2005,10(2):79-87.
    [9]柳展基,邵凤霞,唐桂英。植物NAC转录因子的结构功能及其表达调控研究进展[J]。2007,27(9):1915-1920
    [10]Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes In Oryza sativa and Arabidopsis thaliana[J].DNA Research,2003,10(6):239-247.
    [11]Souer E, Houwelinge NV A, Kloos D, et al.The no apical meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meris-tem and primordial boundaries [J].Cell,1996,85(2):159-170.
    [12]Hibara K, Takada S, Tasaka M. CUC1 gene activates the expression of SAM related genes to induce adventitious shoot for mation [J].Plant J,2003.36(5):687-696.
    [13]Takada S, Hibara K, Ishida T, et al.The CUPSHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation [J]. Development,2001,128(7): 1127-1135.
    [14]Vroemen C W, Mordhorst A P, Albrecht C, et al.The Cup-shaped COTY LE DON3 gene is required for boundary and shoot meristem formationn in Arabidopsis[J].The Plant Cell,2003,15(7):1563-1577.
    [15]Xie Q, Frugis G, Colgan D, et al. Arabidopsis NAC1 transduces auxin signa-1 downstream of TIR1 to promote lateral root development [J]. Genes&Development,2000, 14(23):3024-3036.
    [16]He X J, Mu R L, Cao W H. et al.AtNAC2, a transcription factors downstream of ethylene and auxin signaling pathways is involved in salt stress response and lateral root development[J].Plant J,2005,44(6):903-916.
    [17]Zhong R Q. Demura T, Ye Z H. et al. A NAC domain transcription factor is a key regulator of secondary wall synthesis in fibers of Arabidopsis[J].The Plant Cell.2006,18 (11):3158-3170.
    [18]Nobutaka M, Akira I.Hiroyuki Y, et al. NAC transcription factors,NST1 and NST3,are key regulators of the formation of secondary walls in woody tissues of Arabidopsis[J].The Plant Cell,2007,19:270-280
    [19]Sablowski R W, Meyerowitz E M. A homolog of NOAPICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA [J]. Cell,1998,92: 93-103
    [20]Guo Y F. Gan S S. At NAP, a NAC family transcription factor, has an important role in leaf senescence[J]. Plant J,2006,46(4):601-612.
    [21]Hu H H, Dai M Q, Yao J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc. Nat1. Acad. Sci.USA,2006,103(35):12987-12992.
    [22]Lu P I, Chen N Z. An R, et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J].Plant Molecular Biology,2007,63(2):289-305.
    [23]Tran L S, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought res-ponsive Ciselement in the early responsive to dehydration stress promoter [J].Plant Cell,2004,16 (9):2481-2498.
    [24]Miki F, Yasunari F, Kyonoshin M, et al.A dehydration-induced NAC pritein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal,2004, 39:863-876
    [25]Hu H H,Jun Y,Yu J F,et al.Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J].Plant Mol Biol,2008,10:1007.
    [26]Delessert C. Kazan K, Wilsom L W, et al. The transcription factor ATAF2 represses the expression of pathogenesis reated genes in Arabidopsis[J].The Plant Journal,2005, 43(5):745-757.
    [27]Xie Q, Andres P S, Guo H H,et al.Grab proteins,novel members of the NAC domain family,isolated by their interaction with a geminivirus protein[J].Plant Molecular Biology,1999,39:647-656
    [28]Hegedus D, Yu M,Bal Dwin D, et al.Molecular characterization of Brassicanapus NAC domain transcriptional active-tors induced in response to biotic and abiotic stress[J].Plant Molecular Biology,2003,53(3):383-397.
    [29]刘万代,尹钧,任江萍,转基因技术在小麦遗传改良中的应用,中国农学通报,2006,22(7)69-73
    [30]Vasil V,Castillo A M,Frommm M E.Vasil IK.Herbicide resistant fertile transgenic wheat plant obtained by micro-projectile bombardment of regenerable embryogenic callus [J].Bio/Technology,1992,10(6):667-674
    [31]Becker D,Brettschneider R,Lorz H. Fertile transgenic wheat from micro-projectile bombardment of scutellar tissue [J].The Plant Journal,1994,5(2):299-307
    [32]Nehra N S,Chibbar N,Leung K,et al. Self-fertile transformation of wheat mediated by Agrobacterium tumefaciens [J]. Plant Physiol,1997,(115):971-980
    [33]肖兴国,张爱民,聂秀玲。转基因小麦的研究进展与展望[J]。农业生物技术学报,2000,8(2):113-116
    [34]徐琼芳,李连城,陈孝,等。基因枪法获得GNA转基因小麦植株的研究[J]。中国农业科学,2001,34(1):5—8
    [35]庞俊兰,徐惠君,杜丽璞,等。土传花叶病毒外壳蛋白基因导入小麦的研究[J]。中国农业科学,2002,35(7):738—742
    [36]叶兴国,徐惠君,杜丽璞,等。小麦遗传转化几个因素的研究[J]。中国农业科学,2001,34(1):128-132
    [37]杜立群,李银心,麻密,等。小麦生长点转化法初报[J]。植物学报,1996,38(11):921—924
    [38]张新梅,徐惠君,杜丽璞,等。共转化法剔除转基因小麦中Bar基因[J]。作物学报,2004,30(]):26-30
    [39]Mooney P A,Good P B,Dennis E S,et al.Agrobacterium tumefaciens genetransfer into wheat tissues [J]. Plant Cell Tissue Organ Culture,1991,(25):209-218
    [40]Cheng M, Joyce E F, Pang S Z,et al.Genetic transformation of wheat mediated by Agrobacterium tumefaciens [J].Plant Physiol,1997,(155):971-980
    [41]夏光敏,李忠谊。根癌农杆菌介导的小麦转基因植株再生[J]。植物生理学报,1999,25(1): 22—28
    [42]叶兴国,Shirley Sato,徐惠君,等。小麦农杆菌介导转基因植株的稳定获得和检测[J]。中国农业科学,2001,34(5):469—474
    [43]叶兴国,程红梅,徐惠君,等。转几丁质酶和β—1,3葡聚糖酶双价基因小麦的获得和鉴定[J]。作物学报,2005,31(5):583—586
    [44]魏松红,张艳贞,曹远银,等。小麦基因转化研究进展[J]。沈阳农业大学学报,2002,33(4):301-304
    [45]刘学春,彭清才,宋哲,等。外源DNA导入小麦引起后代形状变异的研究[J]。山东农业科学,2002,(2):19-22.
    [46]奚亚军,路明。小麦转基因技术的研究现状及在育种中的应用[J]。中国农学通报,2002,18(3):55—58
    [47]李娜,焦浈,谷运红,等。小麦组织培养研究进展[J]。河南农业科学,2005,(8): 11—14
    [48]魏松红,曹远银。小麦转化受体体系的建立—小麦幼胚组织培养研究[J]。沈阳农业大学学报,2005,36(1):21—24
    [49]任正隆。黑麦种质导入小麦及其在小麦育种中的利用方式[J]。中国农业科学,1991,24(3):18-25
    [50]朱晋云,许玉娟,杨丽萍,等。小麦组织培养再生系统及农杆菌介导的转基因技术研究[J]。植物遗传资源学报,2008,9(1):84—89.
    [51]姜晓东。基因枪法获得Phs-r转基因小麦植株的研究[J]。山西农业科学,2007,35(12): 10-11
    [52]唐宗祥,任正隆,张怀琼,等。小麦新品种R59成熟胚的组织培养初报[J]。四川农业大学学报,2001,19(4):398-399
    [53]赵化冰,马峙英,赵宏。小麦转基因方法的回顾、比较与展望[J]。河北农业大学学报,2002,25::5—7
    [54]刘旭,李玲。植物NAC转录因子的研究进展[J]。生命科学研究,2008,12(4):297-302
    [55]刘录祥,赵林妹,梁欣欣,等。基因枪法获得逆境诱导转录因子DREB1A转基因小麦的研究[J]。中国生物工程杂志,2003,23(11):53—56
    [56]Arnold,C., Hodgson,I.J.,.Vectorette PCR:a novel approach to genomic walking. PCR Methods 1991.1,29-42.
    [57]Carraro, D.M.,et al.,. PCR-assisted contig extension:stepwise strategy for bacterial genome closure. Biotechniques 2003,34,626-632.
    [58]Haselkorn, R,et al.,. The Rhodobacter capsulatus genome. Photosynth.Res.2001,70, 43-52.
    [59]Huang, G., Zhang, L., Birch, R.G., Rapid amplification and cloning of Tn5 flanking fragments by inverse PCR. Lett. Appl. Microbiol.2000,31,149-153.
    [60]Jones, D.H., Winistorfer, S.C., Genome walking with 2-to 4-kb steps using panhandle PCR. PCR Methods 1993., Appl.2,197-203.
    [61]Levano-Garcia, J., Verjovski-Almeida, S., da Silva, A.C.R., Mapping transposon insertion sites by touchdown PCR and hybrid degenerate primers. Biotechniques 2005.,38, 225-229.
    [62]Lindahl T., Instability and decay of the primary structure of DNA. Nature 362, 709-715.
    [63]Liu, Y. G., Whittier, R.F.,1995. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 1993,25,674-681.
    [64]Min, H., Guo, H., Xiong, J., Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroides. Febs Lett.2005,579,808-812.
    [65]Myrick, K.V., Gelbart, W.M., Universal fast walking for direct and versatile determination of flanking sequence. Gene 2002,284,125-131.
    [66]Ochman, H., GeRer, A.S., Hartl, D.L.,. Genetic applications of an inverse polymerase chain reaction. Genetics 1988,120,621-623.
    [67]Parker, J.D., Rabinovitch, P.S., Burmer, G.C., Targeted gene walking polymerase chain reaction. Nucleic Acids Res.1991,19,3055-3060.
    [68]Forman M A,DUSH M K,Martin G R.Rapid production of full-length cDNA race t-ranscripts; amplification using a single gene specific oligonucletide prime[J].Proe Natl Acad Sci USA,1988,85:8998-9002
    [69]Ohara,Dorir R L,Gilbert.One-sided polymerase chain reaction:the amplification of cDNA[J].Proc Natl Acad Sci USA,1989,86:5673-5677
    [70]罗丽娟,施季森。一种DNA侧翼序列分离技术TAIL—PCR[J]。南京林业大学学报,2003,27{4}:87—90
    [71]Liu Yao—Guang,Robert F Whltter.Thermal asymmetric interlaced PCR:automatable amplification and sequencing of inscrt end frag ment from P1 and YAC clones for chromosome walking[J].Gellomics,1995,25:674-681
    [72]Liu Yao—Guang,Huang Ning.Efficient amplification of insert end sequences from bacterial artificial chronmsome clones by thermal asymmetric interlaced PCR[J].Plant Molecular Biology Reporter,1998,16(2):175-181.
    [73]Liu Yao Gnang, Norihiro Mitsukawn, Teruko Oosumi,Robert F Wittier. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR[J]. The Plant Journal.1995,8(3):457-463.
    [74]Terauchi R, Kahl G. Rapid isolation of promoter sequences by TAIL— PCR:the 5'-flanking retgions of Pat and Pgi genes from Yams(Dioscorea)[J]. Mol Gen Genet,2000, 263:554-560
    [75]应革,武威,何朝族。 TAIL—PCR方法快速分离XCC致病相关基因序列[J]。生物工程学报,2002,18(2):182-185
    [76]Pfeifer, G.P., Steigerwald, S.D., Mueller, P.R., Wold, B., Riggs, A.D., Genomic sequencing and methylation analysis by ligation mediated PCR.Science 1989,246, 810-813.
    [77]Haitao Guo, Jin Xiong. A specific and versatile genome walking technique[J]. Gene, 2006,381:18-23
    [78]柳建军,于洪欣,冯兆礼。小麦成熟胚愈伤组织诱导及分化的研究[J]。山东农业大学学报,1996,27(4):451—456。
    [79]Ozgen M,Turet M,Altynok S,and Sancak C,1998,Efficient callus induction and plant regeneration from mature embryo culture of winter wheat (Triticum aestivun L.) genotypes,Plant Cell Rep.,18(3-4):331-335.
    [80]唐宗祥,张怀琼,张怀渝,等。2,4-D、KT对小麦成熟胚愈伤组织形成、分化的影响[J]。四川农业大学学报,2004,22(3):203—205
    [81]Bi R M,Kou M,Chen L G,et al.Plant regeneration through callus initiation from mature embryo of Triticum[J].Plant Breeding,2007,126:9-12.
    [82]Delporte F, Mostade O, Jacquemin J M.Plant regeneration through callus initiation from thin mature embryo fragments of wheat. [J].Plant Cell Tiss.Org.Cult,2001,67:73-80.
    [83]Sharma V K,Hnsch R,Mendel R R.Influence of picloram and thidiazuron on high frequency plant regeneration in elite cultivars of wheat with long-term retention of morphogenecity usingmeristematic shoot segments[J].Plant Breeding,2005,124:242-246.
    [84]毕瑞明,王洪刚。二倍体、四倍体小麦成熟胚组织培养研究初报[J]。分子植物育种,2007,5(4):480-484.
    [85]于晓红,朱祯,付志明,等。提高小麦愈伤组织分化频率的因素[J]。植物生理学报,1999,25(4):388—394.
    [86]覃建兵,何光源。不同小麦基因型及其不同外植体离体培养研究初探[J]。华中农业大学学报,2001,20(6):522—527
    [87]陶丽莉,殷桂香,叶兴国。小麦成熟胚组织培养及遗传转化研究进展[J]。麦类作物学报,2008,28(4):713—718
    [88]郭晓丽,白丽荣,高汝勇,等。不同小麦品种成熟胚愈伤组织的培养研究[J]。安徽农业科学,2008,36(1):173-174
    [89]曹新有,李春莲,余玲,等。小麦成熟胚愈伤组织诱导及分化研究[J]。西北植物学报,2006,26(11):2276—2280
    [90]柯遐义,陈春洪,杨芳,等。影响麦成熟胚培养的几种因素研究[J]。广东农业科学,1995,6:12—14
    [91]任江萍,尹钧,师学珍,等。小麦转基因再生植株培养体系的优化[J]。华北农学报,2003,18(1):22—25
    [92]余桂荣,尹钧,郭天财,等。小麦幼胚培养基因型的筛选[J]。麦类作物学报,2003,23(2):14-18
    [93]Altpeter F, Vasil V, Srivastava V, et al. A ccelerated production of transgenic wheat plants[J]. Plant. Cell. Rep.,1996,16:12-17.
    [94]Ortizjpa, Reggiardo M I, Ravizzini R A, et al. Hygromycin resistance as an eff-icient selectable marker for wheat stable transformation [J]. Plant.Cell.Rep,1996,15(12): 877-881.
    [95]傅荣昭,曹光诚,马江生,等。用基因枪法将人工雄性不育基因导入小麦的研究初报[J]。遗传学报,1997,24(4):358—361
    [96]梁辉,赵铁汉,李良材,等。影响基因枪法转化小麦幼胚的几个因素的研究[J]。遗传学报,1998,25(5):443—448
    [97]刘伟华,李文雄,胡尚连,等。小麦组织培养和基因枪轰击影响因素探讨[J]。西北植物学报,2002,22(3):602—610
    [98]廖勇,张增艳,徐惠君,等。基因枪法介导转人工合成Rs-AFP2基因小麦的获得和检测[J]。麦类作物学报,2006,26(4):15-19
    [99]Derol Es S C, Gardn Er R C. Exp ression and inheritance of kanamycin resistance in a Iargenumber of transgenic petunias generated by A g robacterium 2 mediated t ransfo rmat ion[J]. PlantMol. Biol.,1998,11:355-364.
    [100]Xia Guangmin, LI Zhongyi, HE Chenxia, et al. Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by A grobacterium tumefaciens[J]. Acta Phytophysiolog ica Sin ica,1999,25 (1):22-28.
    [101]Ueli Grossnikiaus. Jean Philippe. Vielle-Calzada. Maternal control of embrogenesis by MEDEA. apolycomb groop gene in Arubidopsis[J],Science,1918,280:446-450
    [102]Chin Hang Geng,Chin Hang Gyeong.Mi Sook Choe,et al.Molecular analysis of rice plants harboring an Ac/Ds transposabl element-mediatd gene trapping system[J]The Plant Journal,1999,9(5):615-623
    [103]方进,翟文学,工文明,等。转基因水稻T—DNA侧翼序列的扩增与分析[J]。遗传学报,2001,28(4):345—351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700