小麦组织培养体系优化及抗冻基因KN2转化小麦的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与水稻相比,小麦组织培养技术和再生体系还不十分完善,遗传转化效率低得多,研究小麦组织培养条件和植株再生频率的影响因素,优化小麦遗传转化体系对于有效开展小麦转基因育种有重要意义。近年来我国小麦冻害发生频率不断增加,危害程度日趋严重,利用转基因技术引进外源抗(耐)冻基因是增强小麦的抗(耐)冻能力的可行途径之一
     本试验以陇春23、科农199、Bobwhite等10个小麦品种为材料,研究了不同诱导培养基、分化培养基、继代方式以及基因枪转化前的预培养等对小麦幼胚离体培养和转化效率的影响;研究了接种方式、诱导培养基等对小麦成熟胚离体培养的影响。结果如下:诱导培养基中添加0.2mg/L的ABA、1.25 mg/L的CuSO4对胚性愈伤组织的形成和再分化有促进作用,分化培养基中含5mg/L的KT、0.25 mg/L CuSO4再生效果较好,愈伤组织整块继代的方式有利于其胚性的维持,幼胚转化前预培养4天而转化后恢复培养15天转化效率较高;半胚法接种方式及添加了CH、VB1、Pro、Gln的诱导培养基有利于成熟胚的组织培养。
     在建立了小麦的高频再生和高效遗传转化体系的基础上,我们开展了南极鱼类的超氧化物歧化酶基因(KN2基因)转化小麦的研究,期望获得抗(耐)冻能力增强的小麦种质。用pUBI::Bar和pUBI::KN2表达载体对小麦材料陇春23、科农199和Bobwhite幼胚及其愈伤组织进行了的基因枪法共转化。转化陇春23幼胚共得到耐Bialaphos的再生苗265株,CTAB法提取总DNA进行Bar基因和KN2基因的PCR检测,共检测到转Bar基因的样品92个,转KN2基因的样品98个,转Bar和KN2基因的样品37个,转化率分别为14.91%、15.88%、和6.00%。转化陇春23、科农199和Bobwhite幼胚诱导10周左右的愈伤组织共得到耐Bialaphos的再生苗42株,CTAB法提取总DNA进行Bar基因和KN2基因的PCR检测,共检测到转Bar基因的样品17个,转KN2基因的样品19个,转Bar和KN2基因的样品6个,转化率分别为1.58%、1.77%、和0.56%,其中有4株科农199、7株Bobwhite、6株陇春23获得转基因种子。
Wheat tissue culture and regeneration system is not completely established as in rice, the efficiency of genetic transformation is much lower than that in rice. Optimization of regeneration system of wheat will be significant in promoting the application of transgenic wheat in large scale. In recent years, low-temperature is a common stress that always has adverse effect on the growth and productivity of wheat. In this study, the KN2 gene encoding superoxide dismutase cloned from Antarctic fish was transferred into wheat to improve their capacity of cold-resistance.
     Ten wheat genotypes were used to compare the effect of different media on callus induction and differentiation and effect of different ways of inculation, subculture and culture period before transformation on wheat immature and mature embryos culture and genetic transformation efficiency. The result showed that the callus induction media supplemented with 0.2mg/L ABA,1.25mg/L CUSO4 was the optimum media for callus induction and differentiation, the differentiation media supplemented with 5mg/L KT, 0.25mg/L CUSO4 was the optimum media for plantlet regeneration. High frequencies of plantlet regeneration were obtained when whole callus was used to subculture. Pre-incubation of wheat immature embryos for 4 days before transformation seemd to be the optimum pre-incubation period. Half-matured embryos inoculation and callus induction media supplemented with CH, VB1, Pro and Gln were both benefit for culturing mature embryos.
     Expression vectors carrying KN2 gene and Bar marker gene were transformed into immature embryos from L23, K199, Bobwhite to improve their capacity of cold-resistance using particle bombardment. Two hundred and sixty-five resistant plantlets from immature embryos of L23 were obtained. PCR analysis identified 92 Bar-positive transgenic plants,98 KN2- positive transgenic plants and 37 double positive transgenic plants. The transformation frequencies were 14.91%,15.88% and 6.00%, respectively. The KN2 gene and Bar marker gene were also transferred into the callus derived from ten-week induction of immature embryos of L23, K199, Bobwhite. Forty two resistant plantlets were obtained. PCR analysis identidfied 17 Bar-positive transgenic plants,19 KN2- positive transgenic plants and 6 double positive transgenic plants. The frequencies of gene transformation were 1.58%,1.77% and 0.56%, respectively. In addition, we also obtained transgenic seeds from 6 L23,4 K199 and 7 Bobwhite regenerated plants.
引文
1.安海龙,卫志明,黄健秋.小麦幼胚培养高效成株系统的建立.植物生理学报,2000,26(6):532-538
    2.蔡润,中田和男,平井八十一.小麦根愈伤组织胚胎发育过程研究.西北植物学报.2000,20(1):48-53
    3. 蔡润,中田和男,平井八十一.小麦根愈伤组织诱导再生植株.上海农业学报,1999,15(4):13-17
    4.蔡体树,田慧琴,林书康,等.基因型和胚龄对小麦未成熟胚离体培养反映的影响[J].遗传学报,1989,16(2):81-88
    5.曹新有,李春莲,余玲,等.小麦成熟胚愈伤组织诱导及分化研究[J].西北植物学报,2006,26(11):2276-2280
    6.苌收伟,程玉红,秦广雍,等.离子束辅助大豆基因群导入小麦的研究[J].华北农学报,2004,19(1):5-7
    7.陈粱鸿,王新望,张文俊,等.抗除草荆甘膦EPSPs基因在小麦中的转化[J].遗传学报,1999,26(3):239-243
    8.陈香波,张爱平,姚泉洪,等.植物抗寒基因工程研究进展.生物技术通报,2001,4:14-20
    9.陈耀锋.Cu2+对小麦幼胚脱分化和高频再生特性的影响[J].西北农林科技大学学报(自然科学版),2004,32(10):1-4
    10.成卓敏,何小源,陈彩层,等.大麦黄矮病毒外壳蛋白基因合成及用花粉管途径获得小麦转基因植株[J].自然科学进展—国家重点实验室通讯,1993,3(6):560-564
    11.程焉平.转基因植物的研究与应用[J].吉林农业科学,2001,26(5):26-30
    12.崔欣,陈庆山,杨庆凯,等.植物转基因沉默与消除.植物学通报,2002,19(3):374-379
    13.费云标,等.分离和检出雪莲抗冻蛋白[A].第七次全国生物化学学术会议专题报告及论文汇编[C],北京:北京大学出版社,1993,100-101
    14.费云标,等.沙冬青活性抗性蛋白的发现[J].植物学报,1994,36(8):649-650
    15.费云标.抗冻蛋白基因结构与基因工程[J].生物工程进展,992,12(3):33-36
    16.高俊山,叶兴国,马传喜,等.不同组织培养途径对小麦再生能力的研究[J].激光生物学报,2003,12(6):406-411
    17.关畅,曾寒冰,李文雄.小麦未熟胚离体培养的研究-愈伤组织发生及器官建成.东北农学院学报,1993,24(2):107-116
    18.郭光沁,夏光敏,李忠谊,等.小麦原生质体再生细胞直接形成体细胞胚和再生植株[J].中国科学(B辑),1990,(9):3970-3974
    19.郭光沁,许智宏,卫志明,等.用PEG法向小麦原生质体导入外源基因获得转基因植株[J].科学通报,1993,38(13):1227-1231
    20.郭向云,尹均,余桂荣,等.VB1和干燥处理对小麦幼胚愈伤组织培养的影响[J].华北农学报,2003,18(4):19-22
    21.何勇刚,林刚,刘曼西,等.小麦不同生理状态的幼穗和幼胚盾片与诱导分化能力关系的研究[J].武汉植物学研究,2001,19(5):363-368
    22.胡新.霜冻灾害与防御技术[M].北京:中国农业科技出版社,2001:81-82
    23.黄承彦,楚秀生,杨平平,等.外源DNA导入技术培育抗旱耐盐小麦新品种[J].山东农业科学,2000,(4):4-6
    24.黄承彦,颜挺进,张存良.不同世代小麦花药培养的遗传效应分析[J].作物学报,1991,17(4):304-309
    25.黄永芬,等.美洲拟鲽抗冻蛋白基因afp导入番茄的研究[J].生物化学杂志,1997,13(4):418-422
    26.简令成.植物冻害和抗冻性的细胞生物学研究[J].植物生理生化进展,1987,(5):1-16
    27.江勇,贾士荣,费云标,谭克辉.抗冻蛋白及其在植物抗冻生理中的作用.植物学报,1999,7(41):678
    28.朗明林,陈荣敏,赵建军等.影响小麦幼穗组培效应的几个因素探讨[J].植物生理学通讯,2001,37(5):393-395
    29.李宏潮,胡道芬,荻尾高志,等.小麦原生质体的电激介导基因转移[J].华北农学报,1996,11(3):25-30
    30.李书平,刘世强.小麦离体培养若干相关因素的研究[J].辽宁农业科学,1998,5:20-23
    31.李雪梅,刘熔山.小麦幼穗胚性愈伤组织诱导及分化过程中内源激素的作用[J].植物生理学通讯,1994,30(4):255-260
    32.李永春,王潇,陈雷,等.中国小麦转基因研究的现状及前景.中国农学通报,2008,24(5):90-97
    33.梁静静,吕德彬,陈军营,等.不同基因型对小麦成熟胚愈伤组织诱导及植株再生的影响[J].河南农业大学学报,2003,37(2):107-114
    34.廖祥儒,杜建芳,王俊霞,等.预处理对小麦成熟胚愈伤组织形成的影响[J].河北大学学报(自然科学版),1999,19:41-44
    35.廖祥儒,郭中伟,杜建芳,等.低温和PGE处理对小麦愈伤组织形成及IAA氧 化的影响[J].植物学通报,2000,17(3):257-259
    36.廖祥儒,张会图.甘露醇和AgN03对小麦细胞再分化的影响[J].河北大学学报(自然科学版).2000,20(3):263-265
    37.林德书,王艳丽,庄振宏,等.小麦成熟胚再生体系及基因枪转化的初步研究[J].福建农林大学学报,2005,34(2):141-144
    38.林刚,何勇刚,刘勇,等.激素对小麦愈伤组织诱导和植株再生的影响[J].华中科技大学学报(自然科学版),2004,32(99):111-113
    39.刘建平,刘学馨,魏秀玲.冬小麦常用亲本以及配组一代花药培养力的研究[J].华北农学报,1997,12(4):17-22
    40.刘建平,夏晶,胡道芬.冬小麦幼穗培养几个因素的研究[J].北京农业科学,1993,11(1):22-24
    41.刘丽艳.水稻基因转化技术的研究及主要转化方法可行性分析[J].黑龙江农业科学,1999,6:38-40
    42.刘淖,张琼玉,徐龙珠,等.不同品种小麦幼穗离体培养的研究[J].河南师范大学学报。1993,(4):65-68
    43.刘庆法,唐克轩,叶建明,等.农杆菌介导的小麦遗传转化条件的研究[J].复旦学报(自然科学版),1998,37(4):569-572
    44.刘瑞凝,谢一鸣,余素芹.冬、春小麦幼穗离体培养的比较研究[J].北京农业大学学报,1986,12(4):435-438
    45.刘少翔,王卉,孙毅,等.小麦幼胚脱分化状态及再生性能研究[J].华北农学报,2003,18(1):64-67
    46.刘思衡,康水英,连秀叶等.小麦幼穗离体培养初步研究[J].福建稻麦科技,1994,12(4):39-42
    47.刘香利,刘缙,郭蔼光,等.小麦幼穗的离体培养及影响因素研究[J].西北农林科技大学学报(自然科学版),2007,35(2):79-82
    48.刘祖祺,张石城.植物抗性生理学.北京:中国农业出版社,1994
    49.柳建军,于洪欣,冯兆礼.小麦成熟胚愈伤组织诱导及分化的研究[J].山东农业大学学报,1996,27(4):451-456
    50.卢存福,王红,简令成,等.植物抗冻蛋白研究进展[J].生物化学与生物物理进展,1998,25(3):210-216
    51.卢萍,王宝兰.基因枪法转基因技术的研究综述.内蒙古师范大学学报,2006,(1): 106-109
    52.陆堆忠,郑企成.植物细胞工程与分子育种技术研究[M].北京:中国农业科学技术出版社,2003,20-29
    53.栾凤侠,张洪祥,白月.转基因小麦的定性pcr筛选检测技术[J].麦类作物学报,2007,27(3):378-381
    54.牟红梅,刘树俊,周文娟,等.慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析[J].遗传学报,1999,26(6):634-642
    55.欧巧明,陈玉梁,张正英,等.小麦转基因技术研究进展及其在育种中的应用.中国农学通报,2005,21(1):41-45
    56.裴翠娟,胡含,刘成华.影响小麦花培诱导因素的研究[J].作物学报,1988,14(1):36-38
    57.权军利,刘正全,陈耀锋,等.蔗糖与激素对小麦幼穗体细胞无性系形成及生长特性的影响研究[J].西北植物学报,1999,19(6):87-91
    58.任江萍,尹钧,师学珍,等.小麦转基因再生植株培养体系的优化[J].华北农学报,2003,18(1):22-25
    59.舒理惠.小麦不同发育时期的幼穗对离体培养的反应[J].科学通报,1982,27(14):882-884
    60.隋新霞,樊庆琦,李根英,等.小麦花药培养研究进展[J].麦类作物学报,2005,25(4):127-131
    61.唐宗祥,张怀琼,张怀瑜,等.不同小麦成熟胚对愈伤组织形成及萌发的影响[J].麦类作物学报,2005,25(1):33-36.
    62.唐宗祥,张怀渝,张怀琼,等.增强小麦成熟胚脱分化能力的有效方法及其不同部位成愈率植株再生率比较[J].四川大学学报:自然科学版,2005,42(增刊):81-84
    63.万巧兰.柑橘离体形态建成及转鱼类抗冻蛋白基因研究[D].北京:中国农业科学院,1996
    64.王爱国,叶发辉,罗广华.活性氧对花生叶片大分子量DNA的损伤.植物生理学通讯,1993,29(4):260-262
    65.王常云,王作全,李小亮,等.小麦幼胚离体培养育种技术研究[J].麦类作物,1999,19(1):14-16
    66.王常云,王作全,谢永福,等.小麦不同基因型幼胚离体培养的研究[J].莱阳农学院学报,1996,13(2):109-112
    67.王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998
    68.王海波,李问辉,孙勇如.小麦原生质体培养—高频率细胞团形成及植株再生[J].中国科学(B辑),1989,(8):828-835
    69.王海波,魏景芳.小麦愈伤组织状态调空与原生质体培养[J].中国农业科学,1996,29(6):8-14
    70.王培,陈玉蓉.冬小麦的不同生育条件对其花粉植株诱导率的影响[J].遗传学报,1980,7(1):64-71
    71.王培,裴翠娟,陈玉蓉.冬小麦幼穗不同发育期不同穗段离体培养的效应.华北农学报,1990,5(1):28-32
    72.王培,裴翠娟,陈玉蓉.提高小麦幼穗绿苗诱导率的研究[J].河北农业情报,1989,25-26
    73.王睿辉,陈耀锋,高秀武,等.激素对小麦幼胚胚性无性系高频率诱导的影响[J].西北农林科技大学学报(自然科学版),2001,29(1):33-36
    74.王睿辉,陈耀锋,粱虹等.胚龄和基因型对小麦幼胚体细胞胚性无性系的诱导[J].西北农林科技大学学报(自然科学版),2002,30(4):17-20
    75.王艇,苏应娟,刘良式.植物低温诱导蛋白和低温诱导基因的表达调控.武汉植物学研究,1997,15(1):80
    76.王万军,王文芳,曹建军等.小麦叶片愈伤组织及其再生植株的诱导.西北植物学报,1999,18(3):401-405
    77.王小军,刘玉乐,田波,等.可育的抗除草剂溴苯腈转基因小麦[J].植物学报,1996,38(12):942-948
    78.王晓丹.PF40基因与DREB转录因子转化小麦的研究[硕士学位论文].中国农业科学院,2007
    79.王亚馥,崔凯荣,陈克民,等.小麦幼胚培养中体细胞胚发生和植株再生[J].植物学通报,1992,9(增刊):29
    80.吴丽芳,余增亮.离子注入法获得大豆-小麦分子远缘杂种及后代的变异分析[J].核农学报,2000,14(4):206-211
    81.吴茂森,田苗英,陈彩层,等.通过花粉管途径将BYDV-GPV株系缺失复制酶基因导入小麦[J].农业生物技术学报,2000,8(2):125-127
    82.伍碧华,任正隆.2,4-D、KT和6-BA在小麦幼穗愈伤组织诱导和生长中的效应[J].四川大学学报(自然科学版),1996,33(2):55-61
    83.伍碧华,郑有良,刘登才,等.四川小麦幼胚离体培养变异性及其性状的相关研究[J].西南农业学报,2001,14(4):20-24
    84.伍碧华,郑有良,骆建明.小麦组织培养体细胞胚胎的次生胚状体发生研究[J].西南农业学报,2005,18(4):373-377
    85.武丽敏,郑友良,魏育明.小麦转基因研究进展.西川农业大学学报,2003,21(2):176-181
    86.夏光敏,陈惠民,郭光沁,等.微弹射击将大麦黄矮病毒外壳蛋白基因转入小麦获可育植株[J].山东大学学报(自然科学版),1996,31(1):94-101
    87.肖海林,赵世绪.影响小麦幼穗离体培养的几个因素的研究[J].北京农业大学学报,1989,15(2):147-151
    88.肖兴国,张爱民,聂秀玲.转基因小麦的研究进展与展望[J].农业生物技术学报,2000,8(2):111-116
    89.徐龙珠,薛建平,石灵.基因型对小麦花药培养的影响[J].河南师范大学学报(自然科学版),1992,(2):100-103
    90.阎新甫,刘文轩,王胜军,等.抗白粉病大麦DNA导入普通小麦的研究[A]。农业分子育种研究进展[C].北京:中国农业科技出版社,1993,69-75
    91.颜昌敬,黄建华,赵庆华等.小麦幼穗培养一步成苗和提高分化率的研究[J].中国农业科学,1985,(3):11-15
    92.尹钧,任江萍,宋丽,等.小麦不同转基因受体材料的植株再生培养研究[J].麦类作物学报,2004,24(2):1-4
    93.尹明安,等.胡萝卜抗冻蛋白基因克隆及植物表达载体构建[J].西北农林科技大学。2001。29(1):6-10
    94.于晓红,朱祯,付志明,等.提高小麦愈伤组织分化频率的因素[J].植物生理学报,1999,25(1):388-394
    95.余桂荣,伊钧,郭天财,等.小麦幼胚基因型的筛选[J].麦类作物学报,2003,23(2):4-18
    96.余舜武,朱永生,余毓君,等.快速建立胚性细胞系悬浮系的培养程序初探[J].华中农业大学学报,2001,20(4):325-328
    97.曾寒冰.小麦未成熟胚离体培养的研究—愈伤组织的诱导及再生植株[J].东北农学院学报,1998,19(1):1-8
    98.曾寒冰.小麦幼穗离体培养的研究-不同基因型的反应[J].东北农学院学报,1988,20(3):205-209
    99.曾君祉,王东江,吴有强,等.用花粉管途径获得小麦转基因植株[J].中国科学(B辑),1993,23(3):256-261
    100.张国存,查良松.南京近50年来气候变化及未来趋势分析[J].安徽师范大学学报,2008,31(6):580-584
    101.张艳敏,郭北海.小麦花药培养的基因型差异与杂交组合配制[J].华北农学报,2002,17(2):16-19
    102.章力建.小麦未成熟胚诱生大量绿苗的研究初报.遗传学报,1987,14(3):175-178
    103.赵化冰,马峙英,赵宏.小麦转基因方法的回顾、比较与展望.河北农业大学学报,2002,25增刊:5-7
    104.赵天永,王国英,谢友菊.用基因枪将GUS基因导入玉米和小麦的茎尖分生组 织[J].农业生物技术学报,1994,2(2):93-94
    105.赵微平.植物基因组构建、表达和调控.北京:首都师范大学出版社,1996
    106.周文麟,倪建福,王亚馥,等.外C4作物DNA导入小麦的研究[J].作物学报,1992,18(6):418-423
    107.朱根发,葛台明,余毓君,等.小麦原生质体培养与植株再生的研究[J].华中农业大学学报,1995,14(4):315-321
    108.Ahuja PS, Pental D, Cocking EC. Plant regeneration from leaf base callus and cell suspensions of Triticum aestivum. Z. Pflanzenzuchtg,1982,89:139-144
    109.Allen RD. Dissection of oxidative stress tolerance using transgenic plants[J]. Plant Physiol,1995(107):1049-1054
    11O.Almesterand A. Growth and metabolism of isolated cereal roots. Physio. Planatarum, 1957,10:521-620
    111.Altpeter F, Vasil V, Srivastava V, et al. A celerated production of transgenic wheat(Triticums aestivumL.)plants[J]. Plant Cell Rep,1996,16:12-17
    112.Artus NN, Uemura M, Steponkus PL, et al. Consitutive expression of the cold-regulated Arabidopsis thaliana cor15a gene affects both chloroplast and protoplast freezing tolerance.1996,93(23):13404
    113.Asada K. et al. Ascorbate peroxide dismutase-a hydrogen peroxide scavenging enzyme in plants. Plant Physiol,1992,85:235-241
    114.Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1999,50:601-639
    115.Bajaj YPS. Biotechnology in Agriculture and Forestry 13. Berlin:Springer-Verlag press,1990,24-25
    116.Baum J A, Scandalios J G. Developmental expression and intracellular localization of superoxide dismutases in maize. Differentiation,1979,13:133-140
    117.Bi R M, Kou M, Chen I G, et al. Plant regeneration throughcallus initiation from mature embryo of Triticum [J]. Plant Breeding,2007,126:9-12
    118.Blechl A E, Anderson O D. Expression of a novel high- molecular-weight gluten subunit gene in transgenic wheat. Nature Biotechnology,1996,14(7):875-879
    119.Bowler C, Slooten L, Vandenbranden S, et al. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants[J]. EMBO J, 1991(10):1723-1732
    12O.Breusegem F V, Slooten L, Stassart J M, Moens T, Moens T, Botterman J, Montagu M V, Inze D. Over exproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol,1999,40(5):515-523
    121.Bunbelmann J R and Trelease R N. Ascorbate peroxidase:a prominent membrane protein in oilseed glyoxusomes. Plant Physiol,1996,110:589-598
    122.Busrortm H. Studies on growth and metabolism of roots V. Cell elongation and dry matter content. Physiol [J]. Planatarum,1951,4:199-208
    123.Chakrabartty A, et al. Structure function relationships in a winter flounder antifreeze polypeptide 1. Stabilization of an a-helical antifreeze polypeptide by changed-group and hydrophobic interaction[J]. J Biol Chem,1989,264(19):11307-312
    124.Chakrabartty A, et al. Structure function relationships in a winter flounder antifreeze polypeptide 2. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides[J]. J Biol Chem,1989,264(19):11313-11316
    125.Cheng M, Joyce E F, Pang S Z, et al. Genetic transformation of wheat mediated by Agro bacterium tumefactions. Plant Physiology 1997,115:971-980
    126.Chin J C,Scott K J.Studies on the formation of roots and shoots in wheat callus cultures[J]. Ann.Bot,1977,41:473-481
    127.Chlyah H, Karim R. Improvement of somatic embryogensis in wheat by segmentation of cultured embryos[J]. Plant Biotechnology in Agriculture and Forestry,1990,13:88-97
    128.Chowdhury S H, Kato K, Yamamoto Y, et al. Variation in plant regeneration capacity from immature embryo among common wheat Cultivars[J]. Japan:Breed, 1991,41:443-450
    129.Culter A J. Winter flounder antifreeze protein improves the cold hardiness of plant tissue[J]. J Plant Physiol,1989,135(3):351-354
    130.Daley M, Knauf V, Summerfelt KR and Turner JC Cotransformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a methods for producing marker-free transgenic plants. Plant Cell Rep,1998,17:489-496
    131.Danyluk J, Houde M, Rassart E, et al. Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing-tolerant gramineae species. FEBS Letters,344,20
    132.Delporte F, Mostade O, Jacquemin J M. Plant regeneration through callus initiation from thin mature embryo fragments of wheat[J]. Plant Cell, Tissue and Organ Culture, 2001,67:73-80
    133.Dudits D, Emet N G, Haydu Z. Study of callus growth and organ formation in wheat(Triticurn aestivum)tissue cultures[J]. Can. J. Bot.,1975,53:957-963
    134.Eapen S, Rao P S. Plant regeneration from immature inflorescence callus cultures of wheat-rye and triticale[J]. Euphytica,1985,34:153-159
    135.Ferguson J D. Continuous culture of excised wheat roots. Physiol.Planatarum,1963, 16:585-595
    136.Foroughi-Wehr B and Zeller F J. In vitro microspore reaction of different German wheat cultivars[J]. Theor. Appl. Genet.,1990,79(1):77-80
    137.Georges F, et al. Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cell[J]. Gene,1990,91:159-165
    138.GOX genes as a selectable marker in wheat transformation. Plant Cell Reports,1993, 12:159-163
    139.Gupta A S, Heinen J L, Holaday A S, et al. Increased resistance to oxidative stress in transgentic plants that overxpress chloroplastic Cu/Zn superoxide dimutase [J]. Proc Natl Acad Sci USA,1993 (90):1629-1633
    140.Hansen G, Shillito R D, Chilton M D. "Agrolistic" transformation of plant cells integration of T-strands generated in plant [J]. Proc Natl Acad Sci,1996USA,93: 14978-14983
    141.Harris R, Wright M, Byrne M, et al. Callus formation and plantlet regeneration from protoplasts derived from suspension cultures of wheat(Triticum aestivum L.)[J]. Plant Cell Reports,1988,7:337-340
    142.He D G, Mouradov A, Yang Y M, et al. Transformation of wheat (Triticum aestivum. L) through electronoration of protoplasts [J]. Plant Cell Report,1994,14:192-196
    143.Hughes M A, Dunn M A. The molecular biology of plant acclimation to low temperature[J]. J Experimental Botany,1996,47(296):291-305
    144.1n vitro Cell Dev. Biol. Plant,2000,36:453-456
    145.Jaglottosen K R, et al. Arabidopsis CBFI overexpression induces cor gene and enhances freezing tolerance. Science,1998,280(3):36
    146.Jarillo J A, Capei J, Leyva A, et al. Two related low-temperature-induced genes of arabidopsis encode proteins showing high homology to 142323 proteins, a family of putative kinase regulators. Plant Molecular Biology,1994,25:693
    147.Kaye C, Neven L, et al. Characterization of a gene for spinach CAP 160 and Expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol,1998, 116:1367-1377
    148.Kenward K D, et al. Type Ⅱ fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J]. Transgenic Research,1999,8(2):105-117
    149.Lee J S, et al. The redaction of the freezing point of tobacco plants transformed with the gene encoding for the antifreeze protein from winter flounder[J]. J Cell Biochem, 1990,14 (supple):E303
    150.Lin C, Thomashow M F. A cold-regulated Arabidopsis gene encodes a polypetide having potent cryoprotective activity. Biochem Biophysic ResCom,1992,183:1103
    151.Maddock S E, Lancaster V A, Risott R, et al. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat(Triticum aestivuml). Experiment Bot,1983,34(144):915-926
    152.Mann T, et al. Proc. Roy. Soc. (London)1938,126:303-315
    153.Mathias R J. Factors affecting the establishment of callus culture in wheat. In:Bajaj YPS, ed. Biotechnology in Agriculture and Forestry. Vol.13. Berlin:Springer-Verlag Press,1990,24-25
    154.Mckersie BD, Chen Y.et al. Plant physiol,1993,103(4):1155-1163
    155.Mccord J M, Fridovich I. Superoxide dismutase an menzymatic function for erythrocuprein. J. Biol. Chem.1969,244:6049-6055
    156.Mchugen A. Rapid regeneration of wheat in vitro. Ann. Bol.,1983,51:851-853
    157.Mentewab A, Sarrafi A. Influence of genotype and cold pretreatment on the production of embryoids and their regeneration in tetraploid and hexaploid wheats[J]. Journal of Genetics and Breeding,1997,51(1):59-62
    158.Miyake Y, Asada K. Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radical in spinach thylakoids. Plant Cell Physiol,1994,33:541-553
    159.Murata N, Yamaya J. Molecular species composition of phosphatedylgylcerols from chilling semsitive and chilling resistance plants. Plant Cell Physiol,1983,24:81
    160.Murata N, et al. Genetically engieeried alteration in the chilling sensitiiy Of Plants. Nature,1992,356(6371):710-713
    161.Nabors M W, Heyser J W, Dykes T A, et al. Long duration, high frequency plant regeneration from cereal tissue culture[J]. Planta,1983,57:385-391
    162.Ogawa K, Kanematsu S, Adada K. Intra-and extra- cellular localization of cytosolic". GuZn-superoxide dismutase in spinach leaf and hypocotyls. Plant Cell Physiol,1996, 37(6):790-799
    163.O'Hara J F, Street H E. Wheat callus culture:the initiation,growth and organogenesis of callus derived from various explant sources[J]. Ann.Bot.,1978,42,1029-1038
    164.Orshinsky B R, Sadasivaiah R S. Effect of plant growth conditions, plating density, and genotype on the anther culture response of soft white spring wheat hybrids [J]. Plant Cell Rep.,1997,16(11):758-762
    165.Ozgen M, Turet M, Altinok S, et al. Efficient callus induction and plant regeneration from mature embryo culture of winter wheat(Triticum aestivum L.)genotypes[J]. Plant Cell Rep.,1998,18(3-4):331-335
    166.Ozgen M, Turet M, Ozcan S, Sancak C. Callus induction and plant regeneration from immature and mature embryos of winter durum wheat genotypes[J]. Plant Breeding, 1996,115:455-458
    167.Ozias-Akins P, Vasil I K.Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat):evidence for somatic embryogenesis[J]. Protoplasma,1982,110:95-105
    168.Perl A, Perl-Treves R, Galili G, et al. Enhanced oxidative stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases[J]. Theor Appl Genet, 1993(85):568-576
    169.Potrykus I. Micro-targeting of micro-projectiles to target areas in the micrometer range[J]. Nature,1992,355(2):568-569
    170.Purnhauser L, Gyulai G. Effect of copper on shoot and root regeneration in wheat.triticale rape and tobacco tissue culture [J]. Plant Cell Tissue Organ Culture, 1993,35:131-139
    171.Saidi N, Cherkaoui S, Chlyah A. Embryo formation and regeneration in Triticum turgidum ssp. durum anther culture[J]. Plant Cell Tiss.Org.Cult.,1997,51(1):27-33
    172.Samis K, Bowl E Y S, Mckersie B. Pyramiding Mn-superoxide dismutase transgenes to improve persistence and biomass production in alfalfa[J]. J Exp Bot Oxford: Oxford University Press,2002,53(372):1343-1350
    173.Scott K J, He D G, Yang Y M. Somatic embryogenesis in wheat. In:Bajaj YPS, ed. Biotechnology in Agriculture and Forestry 13. Berlin:Springer-Verlag Press,1990, 46-47
    174.Shimada T, Sasakuma T, Tsunewaki k., In vitro culture of wheat tissue.I. Callus formation, organ redifferentiation and culture. Can. J. Genet. Cytol.,1969,11: 294-394
    175.Shimada T, Yamada. Wheat plants regenerated from embryo cell cultures. Japanese Journal Grner.,1979,54(5):379-385
    176.Shimada T. Plant regeneration from callus induced from wheat embryos[J]. Jpn.J. Genet.,1978,53:371-374
    177.Singh N, Chawla H S, Current Seience.1999,76(11):1483-1486
    178.Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker- free transgenic plants containing a single copy transgene at high frequency. Plant J.,2000,22 (5):461-469
    179.Takumi S, Shimada T, et al. Production of transgenic wheat through particle bombardment of scutellar tissues:frequency is in fluenced by culture duration[J]. Plant Physiol.,1996,149:418-42
    180.Tang Z X, Ren I, Wu F, et al. The selection of transgenic recipients from new elite wheat cultivars and study on its plant regeneration system[J]. Agricultural Sciences in China,2006,5(6):417-424
    181.Trick H N, Finer J J. TmnegenieRes,1997,6(5):329-336
    182.Trione E J, Jones L E, Metzger R J. In vitro culture of somatic wheat callus tissue.Am. J.Bot.,1968,55(5):529-531
    183.Two T-DNA binary system to derive markerfree transgenic soybeans.
    184.Vasil V, Redway F A, Vasil I K. Regeneration of plants from embryogenic suspension culture protoplasts of wheat(Triticum aestivum L.)[J]. J.Biotechnol.,1990, 8:429-434
    185.Vasil V, Srivastava V, Castillo A M. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology,1993,11: 1153-1158
    186.Wada H, et al. Enhancement of chilling tolerance of a cyannobacterium by genetic manipulation of fatty acid desaturation[J]. Nature,1990,347:200-203
    187.Wallis J G, et al. Expression of synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures[J]. Plant Molecular Biology,1997,35(3): 323-330
    188.Weeks J T, Anderson O D, Blechl A E. Rapid production of multiple independent lines of fertile transgenic wheat (Tritium aestivumL). Plant Physiology,1993,102: 1077-1084
    189.Weiser GJ. Cold resistance and injury in woody plants. Science,1970,169:1269
    190.Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defece in C3 plants. EMBO,1997,16:4806-4816
    191.Xia G M, Li Z Y, He C X, et al. Transgenic plant regeneration from wheat (Triticum aestivum L.)mediated by Agrobacterium tumefactions. Alta Phytophysiologica Sinic 1999,25(1):22-28
    192.Xing A, Zhang Z, Sato S, Staswick P, Clemente T. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tissue Organ Cult,56:37-46.
    193.Yang Y S. Copper enhances plant regeneration in callus culture of rice[J]. Chinese J Rice Sci,1999a,13(4):95-98
    194. Yang Y S. A further study on the effects of copper in rice callus culaute[J]. Chinese J Rice Sci,1999b,13(4):245-247
    195.Ye X G, Shirley S, Xu H J. Regular production of transgenic wheat plants mediated with Agrobacterium. Scientist Agricultura Sinica,2002,1(3):239-244
    196.Yurkova G N, Levenko B A, Novozhilov OV. Plant regeneration in wheat tissue culture. Biochem. Physiol,1982,177:337-344
    197.Zamani Ⅰ, Gouli-Vavdinoudi E, Kovacs G. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat Fl hybrids[J]. Plant Breeding,2003,112(4):315-317
    198.Zamora A B, Scott K J. Callus formation and plant regeneration from wheat leaves. Plant Sci. Lett.,1983,29:183-189
    199.Zhou H, Arrow smith J W, Fromm M E. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep,1995,15(3-4):159-163

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700