一个玉米RING蛋白基因克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产量性状在作物育种中起着十分重要的作用,本研究从玉米中克隆了一个水稻产量性状主效基因GW2的同源基因,命名为ZmGW2。利用生物信息学分析该基因的初步结构和功能;半定量RT-PCR检测ZmGW2在不同组织、不同处理下的表达情况;采用农杆菌介导的转基因技术,将ZmGW2导入拟南芥以及玉米中。主要结果如下:
     1.生物信息学分析,推测ZmGW2蛋白含有431个氨基酸,且也具有RING指结构。所有的RING指蛋白都如E3泛素蛋白质连接酶,参与一系列生物学领域。
     2.半定量RT-PCR分析表明,ZmGW2可以被高盐(NaCl)和脱落酸(ABA)诱导,且具有抵抗干旱和冷害的能力。另外,在不同的组织中,ZmGW2的表达模式也不一样,在茎和子粒中相对较高,而且在子代品种的花丝中ZmGW2的表达量比亲本高。这些结果表明,ZmGW2可能在产量方面、植物逆境反应及生殖生长发育过程中起多重作用。
     3.构建ZmGW2过表达载体和AtGW2 RNA干扰植物转化载体并转化拟南芥,获得的转基因pSuperCAMBIA1300(+)ihpAtGW2后代植株的子粒比转基因pSuperCAMBIA1300(+)ZmGW2的更大,千粒重相对也高,这表明ZmGW2、AtGW2负调控拟南芥子粒大小及粒重。
     4.以野生型拟南芥作对照,对转基因pSuperCAMBIA1300(+)ZmGW2拟南芥T1代进行干旱(土壤含水量36%)处理、低温(-6℃)处理以及NaCl、ABA不同浓度下的诱导,结果显示转基因pSuperCAMBIA1300(+)ZmGW2拟南芥幼苗的生长情况均好于野生型拟南芥。这表明ZmGW2参与了逆境胁迫响应。
High yield play important roles in breeding. In this study, a gene was cloned from maize (Zea mays L.) by RT-PCR method and named as ZmGW2. The initial structure and function of ZmGW2 was analyzed by bioinformatics.The expression of ZmGW2 was detected by sqRT-PCR in different tissues and different treatments. ZmGW2 was introduced into maize and Arabidopsis thaliana by Agrobacterium-mediated transformation.
     1. Bioinformatics analysis revealed that the predicted ZmGW2 protein has 431 amino acids, and has RING-type domain. all RING proteins act as E3 ubiquitin protein ligases, with implications for a variety of biological areas.
     2. SqRT-PCR analysis showed that the ZmGW2 expression was induced by salt (NaCl) and abscisic acid (ABA), and ZmGW2 was resistant to drought and cold. Furthermore, the ZmGW2 showed different expression patterns in different tissues and was more abundant in stems and kernels. ZmGW2 expression was higher in silk of F1 than parents. These results suggest that may play multiple roles in yield, plant stress response, as well as reproductive growth and development.
     3. Over-expression vector of ZmGW2 and RNA interference expression vector of AtGW2 were constructed and transformed into Arabidopsis thaliana.The grain size and kilo kernels weight of ZmGW2 overexpression transgenic plants were lower than those of AtGW2 RNA interference transgenic plants. These results suggested that ZmGW2 and AtGW2 negatively regulates the grain size and weight in Arabidopsis.
     4. Compared with wild-type Arabidopsis, T1 seeds and plants of ZmGW2 overexpression transgenic plants were treated with drought, cold, NaCl and ABA. The growth of transgenic Arabidopsis was all better than wild-type plants. The results showed that ZmGW2 may play multiple roles in plant stress response.
引文
[1] Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost: common and different paths for plant protection[J]. Curr Opin Biotechnol ,2003,(14):194-199.
    [2] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses[J]. Curr Opin Plant Biol,2003,(6):410-417.
    [3] Wang W, Vinocur B, Shoseyov O, et al. Role of plant heatshock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci,2004,(9):244-252.
    [4] Park EJ, Jeknic Z, Sakamoto A, et al. Genetic engineering of glycinebetaine synthesis in tomato protects seeds, plants, and flowers from chilling damage[J]. Plant J,2004,(40):474-487.
    [5] Apse MP, Blumwald E. Engineering salt tolerance in plants[J]. Curr Opin Biotechnol,2002,(13):146-150.
    [6] Rontein D, Basset G, Hanson AD. Metabolic engineering of osmoprotectant accumulation in plants [J]. Metab Eng, 2002,(4):49-56.
    [7]扬洪强,贾文锁,张大鹏.植物水分胁迫信号识别与转导[J].植物生理学通讯,2001,37(2):149-154.
    [8]缪颖,伍炳华.植物抗逆性的获得与信息传导[J].植物生理学通讯,2001,37(1):71-76.
    [9]颜华,贾良辉,王根轩.植物水分胁迫诱导蛋白的研究进展[J].生命的化学,2002,22(2):165-168.
    [10]余光辉,李玲,曾福华.水分胁迫的基因表达和信号转导[J].亚热带植物科学,2002,31(1):57-62.
    [11]沈元月,黄丛林,张秀海,曹鸣庚.植物抗旱的分子机制研究[J].中国生态农业学报,2002,10(1):30-34.
    [12]张继澍等.植物生理学[M].北京:高等教育出版社,2006, (1): 406-407.
    [13]王瑞云,李润植.抗冻蛋白与植物胁迫低温反应[J].应用生态学报,2006,17(3):551-556.
    [14] Katsuhara M. and T. Kawasaki, Salt stress induced nuclear and DNA Degradation in meristematic cells of barley roots[J]. Plant Cell Physiol. ,1996, (37):169-173.
    [15]单雷,赵双宜,夏光敏.植物耐盐相关基因及其耐盐机制研究进展[J].分子植物育种,2006,4(1):15-22.
    [16]刘慧丽等.脱落酸(ABA)诱导基因表达的调控元件[J].植物学通报,2001,18(3):276-282.
    [17]宋松泉等.植物对干旱胁迫的分子反应[J].应用生态学报,2002,l3(8):1037-1044.
    [18]吴耀荣,谢旗. ABA与植物胁迫抗性[J].植物学通报,2006,23(5):511-518.
    [19]向旭等.脱落酸应答基因的表达调控及其与逆境胁迫的关系[J].植物学通报,1998,15(3):11-16.
    [20]龙海涛,李玲,万小荣.ABA诱导基因及其与逆境胁迫的关系[J].亚热带植物科学,2004,33(4):74-77.
    [21] Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]. Plant J, 2000, (23): 319-327.
    [22] Seki M, Ishida J, Narusaka M, et al. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray[J]. Functional and Integrative Genomics ,2002, 2(6):282-291.
    [23]屈伸,刘志国.分子生物学实验技术[M].北京:化学工业出版社,2007, (9):133-143.
    [24] Frohman MA, Dush MK, Martin GR. Rapid production offull—length cDNAsfrom rare transcripts: amplification using a single gene—specific oligonucleotide primer[J]. Proc Nad Acad Sci.,1988,(85): 8998-9002.
    [25] Lamar EE, Palmer E. Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains[J]. Cell, 1984,(37):171-177.
    [26] Diatchenko L, Lau YFC, Campell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries or libraries[J]. Proc Natl Acad Sci, 1996,(93): 6025-6030.
    [27] Liang P, Pardee AB. Differential displsy of eukaryotic messenger RNA by means of the polymerase chain reation[J]. Science,1992,(257): 967-970.
    [28]孙乃恩,孙东旭,朱德煦.分子遗传学[M].南京大学出版社, 1996, (10):281-471.
    [29] Eun Kyung Cho and Choo Bong Hong.Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants[J]. Plant Cell Rep ,2006,(25):349-358.
    [30]罗伯祥,邓力华,陈芬等. OsbHLH1基因过表达载体构建及转化水稻研究[J].生物技术通报,2009,(7):76-81.
    [31]伍林涛,阮颖等.RNAi技术及其应用[J].生物技术通报,2007,(4):82-84.
    [32] Fire A., Xu S.Q., Mary K., et al., Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans[J]. Nature,1998,392(19): 806–811.
    [33]陈彩艳,肖晗等.以花药愈伤组织为受体的水稻转化和RNA干扰研究[J].中国科学C辑生命科学,2006,36(4): 289-301.
    [34]柴晓杰,王丕武等.应用RNA干扰技术降低玉米支链淀粉含量[J].植物生理与分子生物学学报, Journal of Plant Physiology and Molecular Biology ,2005, 31 (6): 625-630.
    [35] Twyman R. M., Stoger E., Schillberg S., et al. Molecular farming in plants: host systems and expression technology[J]. Trends Biotechnol.,2003,21 (12) :570-578.
    [36] Walmsley A. M., Arntzen C. J. Plant for delivery of edible vaccines[J]. Curropin Biotechnol, 2000, 11(2):126-129.
    [37]张森.喷雾,一种简便的拟南芥转化方法[J].生物技术,2006,16(5):36-38.
    [38] Chang S.S., Park S.K., Kim B.C., et al. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta [J]. Plant J, 1994, (5):551-558.
    [39] Katavic V., HaughnG.W., Reed D., et al. In planta transformation of Arabidopsis Thaliana [J]. Mol. Gen. Genet., 1994, (245):363-370.
    [40] Bechtold N., Ellis J. and Pelletier G., In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants[J].CR Acad. Sci. Paris, Life Sci.,1993,(316):1194-1199.
    [41] Fromm M. E., Taylor L. P., Walbot V. Stable transformation of maize after gene transfer by electroporation[J]. Nature, 1986, (319):791-793.
    [42] Rhodes C. A., Pierce D. A., Mettles I. J., et al.Genetically transformed maize plants from protoplasts[J]. Science, 1988, (240):204-207.
    [43] Uchimiya H., Fushimi T., Hashimoto H., et a1.Expression of a foreign gene in callus derived from DNA—treated protoplasts of rice(Oryza saliva L.)[J].Mol Gen Genet,1986,(204):204-207.
    [44] Alessandra d’Azzo, Bongiovanni A and Nastasi T. E3 Ubiquitin Ligases as Regulators of Membrane Protein Trafficking and Degradation[J]. Traffic,2005,(6): 429–441.
    [45] Paul S. Freemont. Ubiquitination: RING for destruction?[J].Current Biology ,2000,(10):R84–R87.
    [46] Hershko A, Ciechanover A, Varshavsky A. Basic Medical Research Award. The ubiquitin system[J]. Nat Med ,2000,(6):1073–1081.
    [47] Pichler A, Knipscheer P, Oberhofer E, van Dijk WJ, Korner R, Olsen JV, Jentsch S, Melchior F, Sixma TK. SUMO modification of the ubiquitin conjugating enzymeE2-25K[J]. Nat Struct Mol Biol ,2005,(12):264–269.
    [48] Hatakeyama S, Yada M. et al. U-box proteins as a new family of ubiquitin-protein ligases[J]. The Journal of Biological Chemistry,2001,(276): 33111-33120
    [49] Klug A. "Zinc finger peptides for the regulation of gene expression"[J]. J. Mol. Biol,1999,293 (2): 215–218.
    [50] Hall TM. "Multiple modes of RNA recognition by zinc finger proteins"[J]. Curr. Opin. Struct. Biol,2005,15 (3): 367–373.
    [51] Brown RS. "Zinc finger proteins: getting a grip on RNA"[J]. Curr. Opin. Struct. Biol,2005,15 (1): 94–98.
    [52] Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. "Sticky fingers: zinc-fingers as protein-recognition motifs"[J]. Trends Biochem Sci. ,2007,32 (2): 63–70.
    [53] Matthews JM, Sunde M. "Zinc fingers--folds for many occasions"[J]. IUBMB Life,2002,54 (6): 351–355.
    [54] Laity JH, Lee BM, Wright PE. "Zinc finger proteins: new insights into structural and functional diversity"[J]. Curr. Opin. Struct. Biol. ,2001,11 (1): 39–46.
    [55] Borden KL, Freemont PS (1996). "The RING finger domain: a recent example of a sequence-structure family"[J]. Current Opinion in Structral Biology,1996,6 (3): 395–401.
    [56] Dominguez C, Folkers G.E, and Boelens R. Biological Introduction: RING domain proteins[M]. Contribution to Handbook of Metalloproteins,2004,(3): 338-351.
    [57] Hanson IM, Poustka A, Trowsdale J. "New genes in the class II region of the human major histocompatibility complex"[J]. Genomics ,1991,10 (2): 417–424.
    [58] Freemont PS, Hanson IM, Trowsdale J. "A novel cysteine-rich sequence motif"[J]. Cell ,1991,64 (3): 483–484.
    [59] Lovering R, Hanson IM, Borden KL, Martin S, O'Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS. "Identification and preliminarycharacterization of a protein motif related to the zinc finger"[J]. Proc. Natl. Acad. Sci. ,1993,90 (6): 2112–2116.
    [60] Saurin AJ, Borden KL, Boddy MN, Freemont PS. Does this have a familiar RING? [J]. Trends Biochem Sci. ,1996,(21):208-214.
    [61] Freemont P.S., Hanson I.M. and Trowsdale J. A novel cysteine-rich sequence motif[J]. Cell,1991,(64):483–484.
    [62] Huang Y., Li C.Y., Pattison D.L., Gray W.M., Park S. and Gibson S.I. SUGAR-INSENSITIVE3, a RING E3 Ligase, is a new player in plant sugar response[J]. Plant Physiol. ,2010,(152):1889–1900.
    [63] Peng M., Hannam C., Gu H., Bi Y.M. and Rothstein S.J. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the asaptability of Arabidopsis to nitrogein limitation[J]. Plant J. ,2007,50(2):320–37.
    [64] Raab S., Drechsel G., Zarepour M., Hartung W., Koshiba T., Bittner F. and Hoth F. Identification of a novel E3 ubiquitin ligase that is required for suppression of premature senescence in Arabidopsis[J]. Plant J. ,2009,(59): 39–51.
    [65] Bu Q., Li H., Zhao Q., Jiang H., Zhai Q., Zhang J., Wu X., Sun J., Xie Q., Wang D. and Li C. The Arabidopsis RING finger E3 Ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. Plant Physiol. ,2009,(150): 463–481.
    [66] Lee H, Xiong L, Gong Z, Ishitani M, Stevenson B, Zhu J K. The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning[J]. Genes Dev, 2001, 15(7): 912–924.
    [67] Dong C.H., Agarwal M., Zhang Y., Xie Q. and Zhu J.K. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc. Natl. Acad. Sci. USA ,2006,103(21):8281–8286.
    [68] Lee H.K., Cho S.K., Son O., Xu Z., Hwang I. and Kim W.T. Droughtstress-induced Rma1H1, a RING membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants[J]. Plant Cell ,2009,(21):622–641.
    [69] Qin F, Sakuma Y, Tran L.P. et al. Arabidopsis DREB2A-Interacting Proteins Function as RING E3 Ligases and Negatively Regulate Plant Drought Stress–Responsive Gene Expression[J]. The Plant Cell ,2008,(20):1693-1707.
    [70] Craig A., Ewan R., Mesmar J., Gudipati V. and Sadanandom A. E3 ubiquitin ligase and plant innate immunity[J]. J. Exp. Bot. ,2009,60(4):1123–1132.
    [71] Kawasaki T., Nam J., Boyes D.C., Holt B.F., Hubert D.A., Wiig A. and Dangl J.L. A duplicated pair of Arabidopsis RING-finger E3 ligases contribute to the RPM1- and RPS2-mediated hypersensitive response[J]. Plant J. ,2005,(44): 258–270.
    [72] Perricone A. RRE1: an Arabidopsis E3 Ligase Involved in plant defense[J]. JOSHUA J. ,2009 , (7):29-32.
    [73] Yaeno T., Iba K. BAH1/NLA, a RING-Type Ubiquitin E3 Ligase, Regulates the Accumulation of Salicylic Acid and Immune Responses to Pseudomonas syringae DC3000[J]. Plant Physiology ,2008,(148):1032-1041.
    [74]吴学闯,曹新有等.大豆C3HC4型RING锌指蛋白基因GmRZFP1克隆与表达分析[J].植物遗传资源学报,2010,11(3):343-348.
    [75] Ma K, Xiao JH, et al. Sequence and expression analysis of the C3HC4-type RING finger gene family in rice[J]. Gene ,2009,33-45.
    [76]徐建龙,薛庆中,罗利军,黎志康.水稻粒重及其相关性状的遗传解析[J].中国水稻科学(Chinese J Rice Sci) ,2002,16(1): 6-10.
    [77] Li Q, Li L, Yang X.H. et al. Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight[J]. BMC Plant Biology,2010,(10):143.
    [78] Ashikari M;Sakakibara H;Lin S.Y;Yamamoto T;Takashi T;Nishimura A;Angeles E.R; Qian Q; Kitano H;Matsuoka M. Cytokinin Oxidase Regulates Rice GrainProduction [J].Science,2005, 309(741): 741-745.
    [79] Xue WY, Xing YZ, Weng XY, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nat Genet ,2008, 40:761-767.
    [80] Fan CC, Xing YZ, Mao HL, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein[J]. Theor Appl Genet ,2006,(112):1164-1171.
    [81] Li Q, Yang X, Bai G, Warburton ML, Mahuku G, Gore M, Dai J, Li J, Yan J. Cloning and characterization of a putative GS3 ortholog involved in maize kernel development[J]. Theor Appl Genet ,2010,120(4):753–763.
    [82] Weng JF, Gu SH, Wan XY, et al. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research ,2008,(18):1199-1209.
    [83] Song X.J, Huang W, Shi M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature genetics, 2007, (39):623-630.
    [84] Khush G. Productivity Improvements in Rice[J]. Nutrition Reviews,2003, (61):114-116.
    [85] Khush G. S. Challenges for meeting the global food and nutrient needs in the new millennium[J]. Proceedings of the Nutrition Society,2001,(60):15-26.
    [86]孙毅.农业部专家称中国应大胆使用转基因技术提高农业竞争力[R],2010,2.
    [87] Yano,M. Genetic and molecular dissection of naturally occurring variation[J]. Current opinion in plant biology ,2001,(4):130-135.
    [88]Benton D. Bioinformatics—principles and potential of a new multidisciplinary tool[J].Trends in Biotechnology,1996,(14): 261-272.
    [89]李晓,雷波.生物信息学理论及农业应用的发展趋势[J].西南农业学报,1999,(12):32.
    [90]马小龙,刘颖慧等.玉米蔗糖转运蛋白基因ZmERD6 cDNAs的克隆与逆境条件下的表达[J].作物学报. 2009,35(8):1410?1417.
    [91] Rodo A.P, Brugiere N, Vankova R. et al. Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation[J]. Journal of Experimental Botany,2008,59(10): 2673–2686.
    [92] Wang A M,Doyle M V,Mark D F.Quantitation of mRNA by the polymerase chain reaction[J].Leukemia,2000,14(2):316-323.
    [93]王爱荣,刘丽等.拟南芥室内简易栽培和田间大规模种植的方法[J].福建农林大学学报(自然科学版),2005,34(2):252-254.
    [94]陈敏,白书农.拟南芥菜培养经验点滴.植物生理通讯[J],1995,31(6):436-438.
    [95] Shi D.Q, Liu J, Xiang Y.H. et al, SLOW WALKER1, Essential for Gametogenesis in Arabidopsis, Encodes a WD40 Protein Involved in 18S Ribosomal RNA Biogenesis[J]. The Plant Cell,2005,(17) 2340–2354.
    [96] Sambrook J., Russell D. W. Molecular cloning: A laboratory Manual[M].3rd. New York, USA: Cold Spring Harbor Laboratory Press, 2001.
    [97] Chuang Chiou-Fen and Elliot M. Meyerowitz. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana[J]. Proc Natl Acade Sci,2000,97(9):4985-4990.
    [98] Waterhouse PM, Helliwell CA. Exploring plant genomes by RNA induced gene silencing[J]. Nat Rev Genet,2003,(4):29-38.
    [99] Wesley SV, Helliwell CA, et al. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. The Plant Journal, 2001,(27):581-590.
    [100]王关林,方宏筠.植物基因工程(第二版)[M],2002:744.
    [101] Du QL, Cui WZ, Zhang CH, Yu DY. GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean[J]. Mol Biol Rep. ,2010, 37(2):685-693.
    [102] Gaut BS, Doebley JF: DNA sequence evidence for the segmental allotetraploidorigin of maize[J]. Proc Natl Acad USA ,1997,(94):6809-6814.
    [103] White S, Doebley J. Of genes and genomes and the origin of maize[J]. Trends Genet ,1998, 14(8):327-332.
    [104] Valvekens D, Montagu MV, et al. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection[J]. Proc. Natl. Acad. Sci. ,1988,(85):5536-5540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700