Fe-20Ni-5.4Mn(wt%)合金中板条马氏体微结构和相变的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对板条马氏体的深入认识是许多高强度钢组织控制、设计钢成分和热处理工艺的重要理论基础。马氏体理论研究的一个重要方面是马氏体相变晶体学,这是理解马氏体形貌和相关性能的核心。
     本论文应用透射电镜(TEM)对Fe-20Ni-5.4Mn(wt%)合金中板条马氏体两相位向关系、惯习面、内部位错组态和界面结构开展系统地研究。采用菊池花样定量分析得到同一板条内两相位向关系不存在本征变化,平均位向关系为(111)f偏离(011)_b1.3°,[10-1]f偏离[11-1]_b1.6°。板条马氏体两侧界面一侧平直,另一侧不规则,这可能是由于相变过程中板条朝着不规则一侧界面移动导致的结果。通过双直立法和(或)迹线+直立法确定平直一侧界面平均取向为(0.380.390.34)f|(-0.010.470.43)_b。通过不同衍射矢量的中心暗场像确定板条马氏体内部存在4套<111>_b/2(近)螺位错,奥氏体内部观察到[011]f/2和[10-1]f/2两组(近)螺位错或具有较大螺位错分量的混合位错。界面上观察到一组间距为6~15nm的[10-1]f/2|[11-1]_b/2混合位错。应用热台原位TEM观察到马氏体逆相变过程中界面在~550C以台阶方式在板条一侧时断时续运动,最高速率达到0.79μm s-1。
     本工作还对板条马氏体表面浮凸进行系统地定量表征。采用原子力显微镜(AFM)结合背散射衍射(EBSD)观察到该合金中板条马氏体浮凸呈帐篷型。借鉴双面金相位移合成法合成单面样品浮凸的平均位移矢量为[0.370.43-0.82]f,最大切变角为29.8。应用AFM观察到最大浮凸角为22.4,小于合成得到的最大切变角,这可能由于惯习面不垂直于自由表面所致。
     马氏体表象理论被用于解释板条马氏体相变晶体学。当输入(-110)[110]_b切变系统时计算得到的结果与本文实验观察到的两相位向关系、惯习面取向和浮凸位移矢量方向和大小较为吻合。(-110)[110]_b可以等效为_bcc中两个常见滑移系(-110)_b[111]_b和(-110)_b[11-1]_b组合而成。
     本工作还基于二维倒空间O线性质和正空间位移分析,推导了界面含有一组平行矢量的不变线系统中各晶体学参量的解析表达式,可以用于解释前人在马氏体相变中所观察到的实验结果。
In-depth knowledge of lath martensite is an essential theoretical_basis to thecontrolling of the microstructure of many high strength steels and designing ofcomposition of steels and heat treatment processes. An important aspect of theoreticalstudy of martensite is on the crystallography of martensitic transformation, as the corefor understanding the properties and morphology of martensite.
     In this study, transmission electron microscopy (TEM) has_been applied for theinvestigation of orientation relationship (OR), interfacial structure and internaldislocations of lath martensite in Fe-20Ni-5.4Mn(wt%) alloy. It was found that the OR_between the martensite and austenite is close to G-T OR. The average ha_bit plane is(0.380.390.34)f|(-0.010.470.43)_b. Four sets of pure screw <111>_b/2dislocations, and two sets of [011]f/2and [10-1]f/2(nearly) screwdislocations have_been identified within martensite and austenite, respectively.The interface consists of a single set of parallel mixed-type dislocations havingBurgers vector [10-1]f/2|[11-1]_b/2. The spacing of the interface dislocationsvaries from6.0to15nm. Frame-_by-frame analysis of the austenite/lathmartensite interface during in situ heating using TEM is used to providedirection information on the mechanisms of the martensite interface motion. Itreveals that the interface migrated on only one side of the lath_by a ledgemechanism displaying start-stop growth_behavior; the highest velocity o_bservedwas0.79μm s-1.
     The shape strain accompanying surface relief, such as the magnitude and directionof the displacement vector, has also_been investigated in a quantitative way. Themorphology of the relief was studied_by the optical microscopy (OM) and the atomicmicroscopy (AFM). The crystallographic orientations of the matrix grain and the lathwere measured_by the electron_backscattered diffraction (EBSD), respectively, whichwas used to determine the orientation of the ha_bit plane, and the OR. Com_bining thedata from EBSD and AFM, it is concluded that the relief is produced_by a single_bcccrystal, which exhi_bits a tent-shaped relief. Based on an EBSD analysis, the OR and theha_bit plane are consistent with those got_by TEM. The largest shear angle for the relief is calculated to_be29.8, and the directions of com_bined displacement vector arescattered around [11-2]_b. The o_bserved maximum surface title angle is22.4, which issmaller than the calculated value. Considering the ha_bit plane is not perpendicular to thepre-polishing surface, the measured smaller value of tile angles is reasona_ble.
     The phenomenological crystallographic theory of martensitic transformation has_been applied to lath martensite. Experimental o_bservations on OR, ha_bit plane, theinterface dislocations and the shape strain of surface relief are in agreement with thetheory_by using the lattice invariant shear (-110)[110]_b. This mode is seen to_beequivalent to two equal amounts of shears in [111]_band [11-1]_bdirectionscontained in (-110)_b, which are the most common deformation mode in_bccstructure.
     This study also provides analytical expressions of crystallographic features_based on derivations in_both reciprocal and direct spaces in two dimensions (2D)for the phase transformations involving an invariant line strain with a pair ofparallel Burgers vectors in the ha_bit plane. Compared to existing2D models,this approach is more straightforward and simpler, and could_be applied tointerpret results in martensitic transformation from earlier studies.
引文
[1] Wayman C M. Introduction to the crystallography of martensitic transformations. New York:MacMillan,1964,189.
    [2] Wolten G M. Direct high-temperature single-crystal observation of orientation relationship inzirconia phase transformation. Acta Crystallographica,1964,17:763-765.
    [3] Olson G B. Designing a New Material World. Science,2000,288:993-997.
    [4] Wayman C M. Shear transformations and microstructure. Metallography,1975,8:105-130.
    [5] Marder A R, Krauss G. Trans. The formation of low-carbon martensite in Fe-C alloy. ASM,1969,62:957.
    [6]徐祖耀.马氏体相变与马氏体.北京:科学出版社,1999,648-652.
    [7] Huang D, Thomas G. Structure and mechanical properties of tempered martensite and lowerbainite in Fe-Ni-Mn-C steels. Metallurgical Transanctions,1972,3(1):343-346.
    [8] Krauss G, Marder A R. The morphology of martensite in iron alloys. MetallurgicalTransactions,1971,2:2343-2357.
    [9] Shimizu K, Nishiyama Z. Electron microscopic studies of martensitic transformations in ironalloys and steels. Metallurgical Transactions,1972,3:1055-1068.
    [10] Schoen F J, Nilles J L, Owen W S. Crystallographic aspects of Fe-Ni and Fe-Ni-C dilute alloymartensites. Metallurgical Transactions,1971,2:2489-2494.
    [11] Raghavan V, Cohen M. Measurement and interpretation of isothermal martensitic kinetics.Metallurgical Transactions.,1971,2:2409-2418.
    [12] Pati S R, Cohen M. Nucleation of the isothermal martensitic transformation. ActaMetallurgica,1969,17:189-199.
    [13] Rao B V N, Thomas G. Transmission electron microscopy characterization of dislocated lathmartensite.//Owen W S. ed. Proceedings of international conference on martensitictransformations, ICOMAT-79. Cambridge USA:1979:12-18.
    [14] Wakasa K, Wayman C M. Isothermal martensite formation in an Fe-20%Ni-5%Mn alloy.Metallography,1981,14:37-48.
    [15] Kajiwara S. Continuous observation of isothermal martensite formation in Fe-Ni-Mn alloys.Acta Metallurgica,1984,32(3):407-413.
    [16] Wechsler M S, Lieberman D S, Read T A. On the theory of the formation of martensite.Journal of metals. Transactions AIME,1953,1503-1515.
    [17] Bowles J S, MacKenzie J K. The crystallography of martensite transformations I. ActaMetallurgica,1954,2:129-137.
    [18] Zhang W Z, Purdy G R. O-lattice analysis of interfacial misfit II. Systems containing invariantlines. Philosophical Magazine A,1993,68:291-303.
    [19]吴静,张文征.从相变出发理解和计算变体间位向差.金属学报,2009,45:897-905.
    [20] Greninger A B, Troiano A R. Mechanism of Martensite Formation. Metals Transactions,1949,185:590-598.
    [21] Bowles J S, MacKenzie J K. The crystallography of martensite transformations III.Face-centred cubic to body-centred tetragonal transformations. Acta Metallurgica,1954,2:224-234.
    [22] Christian J W. Applications of the phenomenological theories of martensite. Journal ofInstitute of Metals,1955,84:386-398.
    [23] Wechsler M S. On the theory of martensitic transformations. The generalized lattice invariantshear and the degeneracy of solutions for the cubic to tetragonal transformation. ActaMetallurgica,1959,7:793-802.
    [24] Wechsler M S, Read T A, Lieberman D S. The crystallography of the austenite-martensitetransformation: the {111}f shear solutions. Trans, AIME,1960,218:202-205.
    [25] Otte H M. On the imperfections in martensite and their relation to the formation of martensite.Trans. AIME,1960,218:342-351.
    [26] Dunne D P, Wayman C M. An assessment of the double shear theory as applied to ferrousmartensitic transformations. Acta Metallurgica,1971,19:425-438.
    [27] Dunne D P, Wayman C M. The crystallography of ferrous martensites. MetallurgicalTransactions,1971,2:2317-2341.
    [28] Crocker A G, Bilby B A. The crystallography of the martensite reaction in steel. ActaMetallurgica,1961,9:678-688.
    [29] Ross N D H, Crocker A G. A generalized theory of martensite crystallography and itsapplication to transformations in steels. Acta Metallurgica,1970,18:405-418.
    [30] Acton A F, Bevis M. A generalised martensite crystallography theory. Materials Science andEngineering,1969,5:19-29.
    [31] Kelly P M. Crystallography of lath martensite in steels. Materials Transactions J.I.M.,1992,33:235-242.
    [32] Shibata A, Furuhara T, Maki T. Interphase boundary structure and accommodationmechanism of lenticular martensite in Fe-Ni alloys. Acta Materialia,2010,58:3477-3492.
    [33] Dahmen U. The role of the invariant line in the search for an optimum interphase boundary byO-lattice theory. Scripta Metallurgica,1981,15:77-81.
    [34] Dahmen U. Orientation relationships in precipitation systems. Acta Metallurgica,1982,30:63-73.
    [35] Dahmen U, Ferguson P, Westmacott K H. Invariant line strain and needle-precipitate growthdirections in Fe-Cu. Acta Metallurgica,1984,32:803-810.
    [36] Kato M, ishima T. The crystallography of alpha-iron deposited onto the (112) plane of aCu-Ni alloy. Philosophical Magazine A,1987,56:725-733.
    [37] Kato M. Simple criteria for epitaxial relationships between f.c.c. and b.c.c. crystals. MaterialsScience&Engineering A,1991,146A:205-216.
    [38] Xiao S Q, Howe J M. Analysis of a two-dimensional invariant line interface for the case of ageneral transformation strain and application to thin-film interfaces. Acta Materialia,2000,48:3253-3260.
    [39] Luo C P, Weatherly G C. The invariant line and precipitation in a Ni-45wt.%Cr alloy. ActaMetallurgica,1987,35:1963-1972.
    [40] Hall M G, Aaronson H I, Kinsman K R. The structure of nearly coherent fcc: bcc boundariesin a Cu-Cr alloy. Surface Science,1972,31:257-274.
    [41] Russell K C, Hall M G, Kinsman K R, et al. Atomic matching across a stepped interface.Metallurgical Transactions,1974,5:1503.
    [42] Hall M G, Aaronson H I, Kinsma K R. The structure of nearly coherent fcc:bcc boundaries ina Cu-Cr Alloy. Surface Science,1972,31:257-274.
    [43] Rigsbee J M, Aaronson H I. A computer modeling study of partially coherent f.c.c:b.c.cboundaries. Acta Metallurgica,1979,27:351-363.
    [44] Furuhara T, Aaronson H I. Computer modeling of partially coherent b.c.c:h.c.p boundaries.Acta Metallurgica et Materialia,1991,39:2857-2872.
    [45] Russell K C, Hall M G, Kinsman K R, et al. The nature of the barrier to growth at partiallycoherent FCC:BCC boundaries. Metallurgical Transactions,1974,5:1503-1505.
    [46] Liang Q, Reynolds Jr WT. Determining interphase boundary orientations fromnear-coincidence sites. Metallurgical and Materials Transactions,1998,29A:2059-2072.
    [47] Miyano N, Fujiwara H, Ameyama K, et al. Preferred orientation relationship of intra-andinter-granular precipitates in titanium alloys. Materials Science&Engineering A,2002, A333:85-91.
    [48] Bollmann W. Crystal defects and crystalline interfaces. Berlin: Springer,1970,143-183.
    [49] Howell P R, Southwick P D, Honeycombe R W K. The austenite/ferrite interface in a duplexalloy steel: Structure and associated diffraction effects. Journal of Microscopy,1979,116:151-158.
    [50] Hall M G, Aaronson H I. The fine structure FCC/BCC boundaries in a Cu-0.3%Cr alloy. ActaMetallurgica,1986,34:1409-1418.
    [51] Luo C P, Weatherly G C. The interphase boundary structure of precipitates in a Ni-Cr alloy.Philosophical Magazine A,1988,58:445-462.
    [52] Zhang W Z, Purdy G R. A TEM study of the crystallography and interphase boundary in aZr-2.5wt%Nb alloy. Acta Metallurgica et Materialia,1993,41:543-551.
    [53] Ogawa K, Kajiwara S. High-resolution electron microscopy study of ledge structures andtransition lattices at the austenite-martensite interface in Fe-based alloys. PhilosophicalMagazine,2004,84:2919-2947.
    [54]张文征. O点阵模型及其在界面位错计算中的应用.金属学报,2002,38:785-794.
    [55] Zhang W Z, Weatherly G C. On the crystallography of precipitation. Progress in MaterialsScience2005,50:181-292
    [56] Christian J W. The Theory of Transformation in Metals and Alloys. Oxford, UK: PergamonPress,2002,421.
    [57] Bollmann W. Crystal lattices, interfaces, matrices. Geneva: Bollmann,1982,19-24.
    [58] Zhang W Z, Purdy G R. O-lattice analyses of interfacial misfit. I. General considerations.Philosophical Magazine A,1993,68:279-290.
    [59] Zhang W Z, Qiu D, Yang X P, et al. Structures in irrational singular interfaces. Metallurgicaland Materials Transactions,2006,37A:911-927.
    [60] Zhang W Z. Formulas for periodic dislocations in general interfaces. Applied Physics Letters,2005,86:121919-1~121919-3.
    [61] Zhang W Z, Weatherley G C. A comparative study of the theory of the O-lattice and thephenomenological theory of martensite crystallography to phase transformations. ActaMaterialia,1998,46:1837-1847.
    [62] Qiu D, Zhang W Z. A systematic study of irrational precipitation crystallography in fcc-bccsystems with an analytical O-line method. Philosophical Magazine A,2003,83:3093-3116.
    [63] Qiu D, Shen Y X, Zhang W Z. An extended invariant line analysis for fcc/bcc precipitationsystems. Acta materialia,2006,54:339-347.
    [64] Gu X F, Zhang W Z. Analytical O-line solutions to phase transformation crystallography infcc/bcc systems. Philosophical Magazine,2010,90:4503-4527.
    [65] Pond R C, Celotto S, Hirth J P. A comparison of the phenomenological theory of martensitictransformations with a model based on interfacial defects. Acta Materialia,2003,51:5385-5398.
    [66] Kelly P M. The phenomenological theory of martensite crystallography(PTMC) versus thetopological model(TM).//Olson G B, Lieberman D S, Saxena A, eds. Proceedings of theinternational conference on martensitic transformations. New Mexico: TMS,2008:115-112.
    [67] Pond R C, Ma X, Hirth J P. Kinematic and topological models of martensitic interfaces.Materials Science&Engineering A,2006,438-440:109-112.
    [68] Hirth J P, Mitchell J N, Schwartz D S, et al. On the fcc->monoclinic martensite transformationin a Pu-1.7at.%Ga alloy. Acta Materialia,2006,54:1917-1925.
    [69] Kelly P M, Zhang M X. Edge-to-Edge Matching-a new approach to the morphology andcrystallography of precipitates. Material Forum,1999,23:41-62.
    [70] Zhang M X, Kelly P M. Crystallography and morphology of Widmanstatten cementite inaustenite. Acta Materialia,1998,46:4617-4628.
    [71] Zhang M X, Kelly P M. Edge-to-edge matching and its applications. Part one. Application tothe simple HCP/BCC system. Acta Materalia,2005,53:1073-1084.
    [72] Zhang M X. Edge-to-edge matching and its applications Part Ⅱ. Application to Mg-Al,Mg-Y and Mg-Mn alloys. Acta Materialia,2005,53:1085-1096.
    [73]曹晔,钟宁,王晓东,黄宝旭,戎咏华等.边-边匹配晶体学模型及其应用-HCP/FCC体系晶体学位向关系的预测.上海交通大学学报,2007,41:586-591.
    [74] Gautam A R S. Method to predict the orientation relationship, interface planes andmorphology between a crystalline precipitate and matrix[Doctor of philosophy].Charlottesville: University of Virginia,2009.
    [75] Ye F, Zhang W Z, Qiu D. Near-coincidence-sites modeling of the edge facet dislocationstructure of αprecipitates in a Ti-7.26wt.%Cr alloy. Acta Materalia,2006,54:5377-5384.
    [76] Qiu D, Zhang W Z. An extended near-coincidence-sites method and the interfacial structure ofaustenite precipitates in a duplex stainless steel. Acta Materalia,2008,56:2003-2014.
    [77] Bowles J S. The crystallographic mechanism of the martensite reaction in iron-carbon alloys.Acta Crystallographica,1951,4:162-171.
    [78] Bain E C, Dundirk N Y. The Nature of Martensite. Transactions of the American Institute ofMining and Metallurgical Engineers,1924,70:25-46.
    [79] Christian J W. Physical properties of martensite and bainite. Journal of the Iron and SteelInstitute,1961,197:127-167.
    [80] Bilby B A, Christian J W. The mechanism of phase transformations in metals. London: Inst.of Metals,1956,121.
    [81] Guo H, Okuda K, Enomoto M. Surface Relief of '' Martensite in a Ti-Mo alloy.Metallurgical and Materials Transactions,2000,31A:599-605.
    [82] Ko T, Cotrell S A. The formation of bainite. Journal of the iron and steel institute,1952,307-313.
    [83] Qiu D, Zhang W Z. Measurment and characterization of the surface relief in a duplex stainlesssteel. Acta Metallurgica Sinica,2005,41:897-904.
    [84] Furuhara T, Ogawa T, Maki T. Surface relief effect and atomic site correspondence in thegrain boundary alpha precipitation in a beta Ti-Cr ally. Scripta Materialia,1996,34:381-386.
    [85] Lee H J, Aaronson H I. Surface relief effects associated with proeutectoid α plates in a Ti-7.15wt.%Cr alloy. Acta Metallurgica,1988,36:787-794.
    [86] Guo H, Yamanoto A, Enomoto M. Inverse tent-shaped surface relief of α plates in a Ti-Moalloy. Scripta Materalia,2000,43:899-903.
    [87] Watson J D, McDougall P G. The crystallography of Widmanstatten ferrite. Acta Metallurgica,1973,21:961-973.
    [88] Laird C, Aaronson H I. The dislocation structures of the broad faces of widmanstatten γ phasein an Al-15%Ag alloy. Acta Metallugica,1967,15:73-103.
    [89] Hall M G, Aaronson H I, Lorimer G W. Consideration on a martensitic mechanism for thefcc->bcc transformation in a Cu-0.33wt%Cr alloy. Scripta Metallurgica et Materialia,1975,9:533-542.
    [90] Crosky A, McDougall P G, Bowles J S. The crystallography of the precipitation of rodsfrom Cu-Zn alloys. Acta Metallurgica,1980,28:1495-1504.
    [91] Kinsman K R, Eichen E, Aaronson H I. Thickening kinetics of proeutectoid ferrite plates inFe-C alloys. Metallurgical Transactions A,1975,6:303-317.
    [92] Bhadeshia H K D H. A rationalisation of shear transformations in steels. Acta Metallurgica,1981,29:1117-1130.
    [93] Hall M G, Aaronson H I. Formation of invariant plane-strain and tent-shaped surface reliefsby the diffusional ledge mechanism. Metallurgical and Materials Transactions A,1994,25A:1923-1931.
    [94] Yang Z G, Zhang C, Bai B Z, et al. Observation of bainite surface reliefs in Fe-C alloy byatomic force microscopy. Materials Letters,2001,48:292-298.
    [95] Bryans B G, Bell T, Thomas V M. The Mechanism of Phase Transformations in Solids.London: Institute of Metals,1969,181.
    [96] Efsic E J, Wayman C M. Crystallography of the fcc to bcc martensitic transformation in aniron-platinum alloy. Trans AIME,1968,239:873-882.
    [97] Dunne D P, Bowles J S. Measurement of the shape strain for the (225)fand (259)fmartensitictransformations. Acta Metallurgica,1969,17:201-212.
    [98] Muddle B C, Krauklis P, Bowles J S. The shape strain of the (225)fmartensite transformation.Acta Metallurgica,1976,24:371-380.
    [99] Yang D Z, Wayman C M. Lath martensitic transformation with a plate component in anFe-21Ni-4Mn alloy. Scripa Metall,1983,17:1377-1379.
    [100] Williams A J, Cahn R W, Barrett C S. The crystallography of the-transformationin titanium. Acta Metallurgica,1954,2:117-128.
    [101] Swallow E, Bhadeshia K D H. High resolution observations of displacements caused bybainitic transformation. Materials Science and Technology,1996,12:121-125.
    [102] Wakasa K, Wayman C M. The morphology and crystallography of ferrous lath martensite.Studies of Fe-20%Ni-5%Mn-III. Surface relief, the shape strain and related features. ActaMetallurgica,1981,29:1013-1028.
    [103] Yamamoto M, Fujisawa T, Saburi T, et al. Quantitative study of surface relief induced in themartensitic transformation of a Cu-Al-Ni shape memory alloy by scanning tunnelingmicroscopy. Surface science,1992,266:289-293.
    [104] Yamamoto M, Fujisawa T, Saburi T, et al. Scanning tunneling microscope study of surfacerelief induced by the tetragonal-to-monoclinic transformation in a zirconia-yttria alloy.Ultramicroscopy,1992,42-44:1422-1427.
    [105] Yang Z G, Fang H S, Wang J J, et al. Scanning tunnelling microscopy study of surface reliefwith bainite and martensite transformation. Journal of materials science letters,1996,15:721-723.
    [106] Waitz T, Karnthaler H P. The f.c.c. to h.c.p. martensitic phase transformation in CoNi studiedby TEM and AFM methods. Acta Materialia,1997,45:837-847.
    [107]吴静,刘新新,顾新福,等.铁基合金中板条马氏体帐篷型表面浮凸位移的定量分析.金属学报,2009,45:1425-1434.
    [108]邱冬,张文征.双相不锈钢中表面浮凸的测量与表征.金属学报,2005,41:897-904.
    [109] Yang Z G, Fang H S, Wang J J, et al. Surface relief accompanying martensitic transitions inan Fe-Ni-C alloy by atomic-force microscopy and phenomenological theory of martensiticcrystallography. Physical Review B,1995,52:7879-7882.
    [110] Christian J W. Crystallographic theories, interface structures, and transformation mechanisms.Metallurgical and Materials Transactions A,1994,25A:1821-1839.
    [111] Hirth J P, Spanos G, Hall M G, et al. Mechanisms for the development of tent-shaped andinvariant-plane-strain-type surface reliefs for plates formed during diffusional phasetransformations. Acta Materialia,1998,46:857-868.
    [112] Zhang W Z, Purdy G R. An O-lattice approach to the migration of crystalline interfaces.Scripta Materialia,1997,37:543-5489.
    [113] Zhang W Z. Decompositon of the transformation displacement field. Philosophical MagazineA,1998,78:913-933.
    [114] Sandvik B P J, Wayman C M. Characteristics of lath martensite: Part I. Crystallographic andsubstructural features. Metallurgical Transactions A,1983,14A:809-822.
    [115]魏振宇.板条马氏体的形态和内部显微组织.钢铁,1982,17:71-78.
    [116]贡海.板条马氏体研究的新进展.大连铁道学院学报,1981,4:1-13.
    [117] Morito S, Huang X, Furuhara T, et al. The morphology and crystallography of lath martensitein alloy steels. Acta Materialia,2006,54:5323-5331.
    [118] Kitahara H, Ueji R, Tsuji N, et al. Crystallographic features of lath martensite in low-carbonsteel. Acta Materialia,2006,54:1279-1288.
    [119] Moritani T, Miyajima N, Furuhara T, et al. Comparison of interphase boundary structurebetween bainite and martensite in steel. Scripta Materialia,2002,47:193-199.
    [120] Kelly P M, Jostsons A, Blake R G. The orientation relationship between lath martensite andaustenite in low carbon, low alloy steels. Acta Metallurgica et Materialia,1990,38:1075-1081.
    [121] Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationshipof lath martensite and bainite by electron backscatter diffraction analysis. Scripta Materialia,2009,60:1113-1116.
    [122] Zhang M X, Kelly P M. Accurate orientation relationship between ferrite and austenite in lowcarbon martensite and granular bainite. Scripta Materialia,2002,47:749-755.
    [123] Rao B V N. On the orientation relationships between retained austenite and lath martensite.Metallurgical Transactions A,1979,10A:645-648.
    [124] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensitein Fe-C alloys. Acta Materialia,2003,51:1789-1799.
    [125]罗承萍,许麟康,查健中.300M超高强度钢板条马氏体的晶体学研究.金属学报,1993,29: A312-A317.
    [126]孟昭伟.铁基合金马氏体形态、表面浮凸及相界面研究[硕士学位论文].河北:河北工业大学,2003.
    [127] Sarma D S, Whiteman J A, Woodhead J H. Habit plane and morphology of lath martensites.Journal of Metal Science,1976,10:391-395.
    [128] Van Gent A, Van Doorn F C, Mittemeijer E J. Crystallography and tempering behavior ofion-nitrogen martensite. Metallurgical Transactions A,1985,16A:1371-1384.
    [129] Sandvik B P J, Wayman C M. Characteristics of lath martensite: Part II. Themartensite-austenite interface. Metallurgical Transactions A,1983,14A:823-834.
    [130] Ogawa K, Kajiwara S. Basic differences between martensitic and bainitic transformationsrevealed by high-resolution electron microscopy. Materials Science and Engineering A,2006,438-440:90-94.
    [131] Kajiwara S. Morphology and crystallography of the isothermal martensite transformation inFe-Ni-Mn alloys. Philosophical Magazine A,1981,43:1483-1503.
    [132]林晓娉,张勇,谷南驹,等.(fcc)→(bcc)马氏体相变表面浮凸的AFM观察与定量分析.材料热处理学报,2001,22:4-8.
    [133] Howe J M. Comparison of the atomic structure, composition, kinetics and mechanisms ofinterfacial motion in martensitic, bainitic, massive and precipitation face-centeredcubic-hexagonal close-packed phase transformations. Materials Science and Engineering A,2006,438-440:35-42.
    [134] Howe J M, Tsai J M, Csontos A A. In situ high resolution and energy-filtering transmissionelectron microscope observations of interphase boundary dynamics in diffusional anddiffusionless fcc-hcp phase transformations.//Kiowa M, Otsuka K, Miyazaki T, eds.Materials Science Forum. Sendai: Czech Republic,1999:1136-1143.
    [135] Benson W E, Howe J M. An in-situ high resolution transmission electron microscopy study ofthe growth and dissolution of (111) precipitate plates in an Al-Cu-Mg-Ag alloy. PhilosophicalMagazine A,1997,75:1641-1663.
    [136] Laird C, Aaronson H I. The growth of gamma plates in an Al-15%Ag alloy. Acta Metallurgica,1969,17:505-520.
    [137] Schonfelder B, Wolf D, Philpot S R, et al. Molecular-Dynamics method for the simulation ofgrain boundary migration. Interface Science,1997,5:245-262.
    [138] Kittl J E, Massalski T B. A cinematographic study of massive transformation in Cu-Ga alloys.Acta Materialia,1967,15:161-180.
    [139] Raffler N, Howe J M. A high-resolution time-resolved study of incoherent interface motionduring the massive transformation in TiAl alloy. Metallurgical and Materials Transactions A,2006,37A:873-878.
    [140] Waitz T, Karnthaler H P. High-resolution and in-situ transmission electron microscopyinvestigation of the martensitic fcc-hcp phase transformations in Co-Fe single crystals. Philosophical Magazine A,1996,73:365-386.
    [141] Howe J M. In-situ high-resolution transmission electron microscope study of martensitenucleation and growth in a Co-32wt.%Ni alloy.//Wayman C M, Perkins J, eds. Proceedingof the international conference on martensitic transformations. Monterey, CA: Monterey Inst.Adv. Studies,1993:185-190.
    [142] Chen I W, Chiao Y H. Theory and experiment of martensitic nucleation in ZrO2containingceramics and ferrous alloys. Acta Metallurgica,1985,33:1827-1845.
    [143] Araki T, Shibata K, Asakura K, et al. The direct observation of the γ-α isothermal martensitictransformation of iron alloys in electron microscope. Transactions of the Iron and steelinstitute of Japan,1975,15:175-184.
    [144] Kikuchi T, Kajiwara S. HVEM in situ observation of isothermal martensitic transformationunder applied stress. Transaction of the Japan Institute of Metals,1985,26:861-868.
    [145] Singh J, Wayman C M. Reverse martensitic transformation in Fe-Ni-Mn alloy. Metallography,1987,20:485-490.
    [146] Sandvik B P J, Wayman C M. Characteristics of lath martensite: Part III. Some theoreticalconsiderations. Metallurgical Transactions A,1983,14A:835-844.
    [147]黄孝瑛.透射电子显微学.上海:上海科学技术出版社,1987,264-276.
    [148]黄孝瑛.透射电子显微学.上海:上海科学技术出版社,1987,252-263.
    [149]邱冬.双相不锈钢系统奥氏体沉淀相的相变晶体学研究[博士学位论文].北京:清华大学,2005.
    [150] Edington J W. Monograph two electron diffraction in the electron microscope. London: TheMacmillan Press LTD,1974,20-22.
    [151] Sandvik B P J, Wayman C M. Crystallography and substructure of lath martensite formed incarbon steels. Metallography,1983,199-227.
    [152] Edington J W. Electron diffraction in the electron microscope. Northern Ireland: Filmset at theuniversity Press,1975,54.
    [153] Hirsch P, Howe A, Nicholson R, et al. Electron microscopy of thin crystals. Malabar, Florida:Robert E. Krieger Publishing Company,1977,311.
    [154] Kelly P M, Jostsons A, Blake R G, et al. The determination of foil thickness by scanningtransmission electron microscopy. Physical Status Solidi A,1975,31:771-780.
    [155] Young C T, Steele J H J, Lytton J L. Characterization of bicrystals using Kikuchi patterns.Metallurgical Transactions,1973,4B:1973-2081.
    [156] Zhou D S, Shiflet G J. Ferrite: cementite crystallography in pearlite. MetallurgicalTransactions A,1992,23A:1259-1269.
    [157] Qiu D, Zhang W Z. A TEM study of the crystallogrphy of austenite precipitates in a duplexstainless steel. Acta Materialia,2007,55:6754-6764.
    [158]孟杨,谷林,张文征. TEM精确测定无理择优界面取向.金属学报,2010,46:411-417.
    [159] Hirth P B, Howie A, Nicholson R B, et al. Electron Microscopy of Thin Crystals. London:Butterworths,1965,312.
    [160] Wakasa K, Wayman C M. The crystallography and morphology of lath martensite inFe-20Ni-5Mn.//Owen W S. ed. Proceedings of international conference on martensitictransformations, ICOMAT-79. Cambridge USA:1979:12-18.
    [161] Bryans R G, Bell T, Thomas V M. The morphpology and crystallography of massivemartensite in iron-nickel alloys. Institute of Metals, UK,1969:181-188.
    [162] Fultz B, Howe J M. Transmission electron microscopy and diffractometry of materials. NewYork: Springer,2008,362-367.
    [163] McDonald R C, Ardell A J. On diffraction contrast effects at extrinsic grain boundarydislocations. Physica Status Solidi A,1973,18:407-417.
    [164] Christian J W. The theory of transformation in metals and alloys. Oxford: Pergamon Press,1975,1052.
    [165] Benson W E, Howe J M. An in-situ high-resolution transmission electron microscopy study ofthe growth and dissolution of {111} precipitate plates in an Al-Cu-Mg-Ag alloy.Philosophical Magazine A,1997,75:1641-1663.
    [166] Howe J M, Dahmen U, Gronsky R. Atomic mechanisms of precipitate plate growth.Philosophical Magazine A,1987,56:31-67.
    [167] Hitzenberger C, Karnthaler H P, Korner A. In-situ study of the H.C.P to F.C.C. martensiticphase transformation in CoNi single crystals. Acta Metallurgica,1988,36:2719-2728.
    [168] Miyamoto G, Shibata A, Maki T, et al. Precise measurement of strain accommodation inaustenite matrix surrounding martensite in ferrous alloys by electron backscatter diffractionanalysis. Acta Materalia,2009,57:1120-1131.
    [169] Grujicic M, Ling H C, Haezebrouck D M, et al. The growth of martensite. OH. ASMinternational, Materials Park,1992:175-196.
    [170] Aaronson H I, Muddle B C, Nie J F, et al. Comparison of interfacial structure-relatedmechanisms in diffusional and martensitic transformations. Metallurgiacal and MaterialsTransactions A,2002,33A:2541-2547.
    [171]杨平.电子背散射衍射技术及其应用.北京:冶金工业出版社,2007,52-53.
    [172] Wakasa K, Wayman C M. Crystallography and morphology of surface martensite inFe-20%Ni-5%Mn. Scripta Metallurgica,1979,13:1163-1166.
    [173] Kitahara H, Ueji R, Ueda M. Crystallographic analysis of plate martensite in Fe-28.5%at.%Ni by FE-SEM/EBSD. Materials Characterization,2005,54:378-386.
    [174] Nie J F. Crystallography and migration mechanisms of planar interphase boundaries. ActaMaterialia,2004,52:795-807.
    [175] Qiu D, Zhang W Z. A comment on ''Crystallography and migration mechanisms of planarinterface boundaries'' Acta Materialia,52,795-807(2004) by J.F. Nie. Scripta Materialia,2005,52:683-686.
    [176] Kelly P M, Zhang M X. Comments on edge-to-edge matching and the equivalence of theinvariant line, Δg and Moiré Fringe approaches to the crystallographic features of precipitates.Scripta Materialia,2005,52:679-682.
    [177] MacKenzie J K, Bowles J S. The crystallography of martensite transformations IV.Body-centred cubic to orthorhombic transformations. Acta Metallurgica,1957,5:137-149.
    [178] Christian J W, Knowles K W. Interface structure and growth mechanisms.//Aaronson H I,Laughlin D E, Sekerka R F, eds. Proceedings of the international conference on solid-to-solidphase transformations. Warrendale(PA): TMS-AIME,1982:1185-1207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700