人细小病毒B19-XA_2株VP1蛋白Bac-to-Bac系统表达及免疫学特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人细小病毒B19(Human parvovirus B19,又称人微小病毒B19,简称B19病毒)是迄今发现的能感染人类的最小的单链线状DNA病毒之一。自1990年我们在国内首次证实我国存在B19病毒感染以来,越来越多的研究揭示我国B19病毒感染可诱发急性再障危象、急性血小板减少性紫癜及孕妇非免疫性流产等疾病,尤其对于免疫功能低下或缺陷患者,因缺乏有效治疗药物,B19病毒持续感染可致慢性贫血,甚至危及生命。因此,在我国乃至世界都需要建立有效的B19病毒防治体系。
     B19病毒基因存在较大的变异。目前B19病毒分为三种基因型:1型(原型)、2型(类A6-和LaLi-)、3型(V9)。不同基因型的分布存在着地理的差异。欧美等西方国家流行的病毒株大多属于1型,2、3型少见;3型多见于西非。此三型其DNA序列差异约为10%,其中大于20%序列差异位于p6启动子区域。在编码VP1/VP2蛋白的开放阅读框内,2、3型与1型比较,DNA序列变异分别为9%、12%,但氨基酸变异仅为1.1%、1.4%。我们在国家自然科学基金课题(39870021)的资助下,采用基因克隆测序技术,对收集到的中国大陆B19病毒流行株(XA株)进行基因分析,发现我国B19病毒流行株的VP1基因独特区有明显的变异,其基因组一级结构的差异,导致所编码氨基酸的改变,可能影响到B19病毒抗原位点及免疫特性的变化。
     B19病毒基因的变异可导致病毒毒力、致病机制的改变。VP1基因表达的蛋白与病毒的免疫原性及机体感染后产生保护性抗体密切相关,为建立我国B19病毒感染的防治技术,必须深入研究我国病毒流行株变异基因区表达的蛋白的结构和功能位点的变化。因此本实验通过在原核及真核系统表达B19-XA2株VP1蛋白,研究其空间结构和功能位点的变化及其变化对抗原性的影响,以揭示变异的VP1基因表达蛋白的生物学活性,促进B19病毒分子流行病学、致病机理及预防疫苗的研究。
     研究目的:
     本实验目的在于扩增获得B19-XA2 VP1基因全长,构建其原核表达载体,表达融合蛋白。同时构建VP1穿梭载体,在昆虫细胞Sf9中表达VP1蛋白,并以原核及真核表达蛋白为免疫原,免疫动物,制备具有一定敏感性和特异性的抗VP1蛋白的多克隆抗血清,用于检测VP1蛋白的免疫原性。分别以原核及真核表达蛋白为抗原,采用ELISA方法与临床患儿的血清反应,并与德国Parvovirus B19 IgM ELISA Kit检测结果比较,分析表达产物VP1蛋白的反应原性,从而为以后研究VP1蛋白的生物学功能,和B19病毒的防治奠定基础。
     实验方法:
     1.获得目的基因自行设计引物,按巢式PCR筛选阳性B19感染标本,自阳性标本中按照常规PCR方法扩增获得长度为2345bp的HPV B19 VP1全长基因(nt2623-nt4968)。
     2.原核表达重组蛋白将VP1基因克隆入载体pET28(a),构建原核重组表达载体VP1-PET28(a),并在E.coli BL21(DE3)中扩增,通过IPTG诱导表达VP1融合蛋白,SDS-PAGE和Western-blot技术分析蛋白表达情况及初步鉴定表达蛋白。
     3.真核表达VP1蛋白将VP1基因及载体pFastbac1双酶切、连接、转化入DH10Bac,用抗生素及蓝白斑表型筛选阳性重组体,PCR鉴定,获得含目的基因的重组杆状病毒转移质粒VP1-Bacmid,用脂质体介导法将阳性重组体转入Sf9细胞,扩增病毒,循环冻融和裂解,超速离心,获溶解的蛋白质上清。
     4.以原核及真核表达的重组蛋白为抗原,免疫家兔,制备抗VP1蛋白的多克隆抗血清,ELISA法检测抗体效价;用重组菌超声裂解上清及转染后Sf9细胞裂解后上清(均含重组VP1蛋白)包被ELISA板,分别与临床患儿的血清反应,并与德国ELISA试剂盒检测结果比较,分析表达产物VP1蛋白的反应原性。
     实验结果:
     1.巢式PCR筛选到2份阳性B19感染标本,按照常规PCR方法扩增此2份标本,自其中1份标本获得B19 VP1全长基因(2345bp),将其命名为B19-XA2株。
     2.原核表达载体VPl-PET28(a)经SalⅠ和XbaⅠ双酶切,琼脂糖凝胶电泳观察酶切片段分子量与预期结果相符(2345bp),测序结果证实序列完全正确。
     3.将重组菌VP1-PET28(a)-BL21(DE3)经诱导剂IPTG诱导,可表达分子量约为87kDa的蛋白,经Western-blot鉴定,可与6-His抗体结合,证实为VP1融合蛋白。
     4.构建穿梭载体VP1-Bacmid,通过抗生素及蓝白斑表型双重筛选阳性重组体,经PCR鉴定,获得含目的基因的重组杆状病毒转移质粒VP1-Bacmid,用脂质体介导法将阳性重组体转入Sf9细胞,细胞出现典型病变,收集病变细胞,裂解后SDS-PAGE显示有分子量87kDa的蛋白表达,与预期分子量一致。
     5. ELISA检测原核系统表达蛋白刺激后产生抗VP1多克隆抗体效价可达1:12800。真核系统表达蛋白刺激后产生抗体效价可达1:50000。
     6.以重组杆状病毒表达的VP1蛋白作抗原,与B19病毒阳性血清有反应,其OD值略低于德国ELISA试剂盒检测结果。而大肠杆菌系统表达的重组VP1蛋白作为抗原,与B19病毒感染后阳性血清无反应。
     结论:
     1.成功构建了重组人细小病毒B19-XA2株VP1全长基因的E.coli.:VP1-PET28(a)-BL21(DE3)。
     2.成功构建了人细小病毒B19-XA2株VPl全长基因重组杆状病毒转移质粒VP1-Bacmid,并在昆虫细胞Sf9中成功表达VP1蛋白。
     3.两种表达系统表达的重组VP1蛋白作为抗原有诱导特异性抗体产生的能力,即具有良好的免疫原性。
     4. Bac-to-Bac系统表达的VP1蛋白其生物活性更接近天然产物,可用作抗原检测人感染B19病毒后的血清抗体,且与进口试剂盒进行平行比较,初步达到同类试剂盒水平。
Human parvovirus B19(HPV B19) was one of the smallest single chain DNA virus which confirmed to cause diseases in human. Since 1990 we confirmed that there were B19 virus infection for the first time in our country, more and more researches indicated that B19 virus was contributed to some disesases, such as acute aplastic crisis, acute thrombocytolytic purpura and nonimmune abortion. Especially in immunocompromided patients, the persistent HPV B19 infection could result in chronic anemia due to deficiency of effective therapy, even endanger life. Therefore, it was necessary to establish effective preventing and curing system of B19 virus in our country and even the world.
     B19 virus genome existed variation and was now divided into three genotypes: type 1 (prototype), type 2 (A6- and LaLi-like), and type 3 (V9-like). There were different distribution of genotype due to regional discrepancy, such as human parvovirus B19 type 1 circulated in European and American , whereas type 2 and 3 encountered infrequently in this area. The type 3 attained commonly in western African. In overall DNA sequence, the three virus types differed by 10%. The most striking DNA dissimilarity, of >20%, was observed within the p6 promoter region. Within the open reading frame(ORF) encoding the VP1/VP2 proteins, the majority of nucleotide substitutions were synonymous: at the nucleotide level, genotypes 2 and 3 differed from the prototype by 9 and 12%, respectively, but at the amino acid level they differed by only 1.1 and 1.4%. We analyzed DNA sequence of the prevalent strain(XA strain) of B19 virus from chinese using the gene cloning and sequencing technology by assistance of the national natural sciences fundation(39870021) and discovered the VP1 unique region of B19-XA strain had the obvious variation in our country. The primary structure differences of its genome could cause alteration of coding amino acids, which might be contributed to the change of viral antigen site and immunal characteristic.
     The variation of B19 virus gene might result in changes of viral toxicity and pathogenic mechanism. The VP1 protein was closely correlation with viral immunogenicity and generation of protective antibodies after infection. So it was necessary to investigate thoroughly variation of structure and functional position of proteins which were expressed by the region of gene mutation in order to establish the preventing and controlling technology for B19 virus infection in our country. Accordingly, this experiment intended to constructe expressive vectors and express VP1 fusion protein of B19-XA2 strain in procaryon and eukaryon systems, then study change of the protein spatial structure and its functional position, as well as influence to antigenicity so as to reveal biologic activity of the VP1 protein and promote the investigation of B19 virus molecular epidemiology, pathogenic mechanism and preventive vaccine.
     Objective:
     Aim of this experiment lies in amplifying the whole VP1 gene of B19-XA2, constructing recombinant procaryotic expressive vector and the shuttle vector (VP1-Bacmid), expressing the fusion protein in E.coli. and Sf9 cells, respectively. In order to investigate immunogenicity of the fusion VP1 protein, rabbits were immunized by the fusion VP1 proteins from procaryon and eukaryotic expressive systems and produced the multiclone antiserum of anti-VP1 protein possessing a certain sensitivity and specificity. In addition, to analyze reactionogenicity of the VP1 fusion protein, the clinical serological detecting were respectively carried out using two kinds of ELISA on the basis of different antigen: one antigen was the VP1 fusion protein from procaryon and eukaryotic expressive systems, the other was parvovirus B19 IgM ELISA Kit of Germany. Above all, this experiment established the substructure for the further investigation of VP1 protein biological function and protection of B19 virus infection.
     Methods:
     1. To obtain the interested gene The positive B19 specimen were screened by nested PCR with primers which were independently designed. Then the VP1 whole gene of HPV-B19 (nt2623-nt4968) was amplified from the above positive specimen by conventional PCR assay.
     2. To express the recombinant protein in procaryon system The VP1 gene was inserted into the multiclone site of the pET28(a) expressive vector, afer that the recombinants were transformed into competent E.coli BL21(DE3). The VP1 fusion protein was expressed by IPTG inducing, analyzed by SDS-PAGE, and identified by Western blot.
     3. To express the VP1 protein in eukaryon system The VP1 gene and the pFastbac1 donor vector were digestted by SalⅠa nd XbaⅠrestrictive enzyme, connected each other with T4 DNA ligase, and then the recombinant vectors were emerged. Meanwhile the recombinant vectors were transformed into competent E.coli DH10Bac. The positive recombinants--the baculovirus shuttle vectors (VP1-Bacmid) containing the interested gene, were screened by antibiotics and phenotype of Blue-White spot and verified via PCR. In the subseqence testing, the VP1-Bacmid were transfected into Sf9 cells by a cationic lipid(Cellfectin reagent) mediation, then the recombinant baculoviruses were performed and amplified in Sf9 cells. Sf9 transfected cells were freezed repeatly and disintegrated with lysate, and in the end the supernatant containing the VP1 protein was procured by ultracentrifugation.
     4. Domestic rabbits were respectively immunized by the fusion VP1 proteins from procaryon and eukaryotic expressive systems and produced the multiclone antibody of anti-VP1 protein which valence was detected by ELISA. In the other hand, to analyze reactionogenicity of the VP1 fusion protein, the clinical serological detection were respectively carried out using two kinds of ELISA on the basis of different antigen: one antigen was the VP1 fusion protein from the supernatant of recombinant bacteria disintegrated by ultrasonic wave and the supernatant of transfected Sf9 cells after disintegration by lysate, the other was parvovirus B19 IgM ELISA Kit of Germany.
     Results:
     1. The VP1 whole gene of B19 were successfully amplified from one of the positive B19 specimen screened with nested PCR, and be named as B19-XA2 strain.
     2. The VPl-PET28(a) vectors were digested by SalⅠa nd XbaⅠrestrictive enzyme, and then we observed that the length of fragment matched with anticipative results by agarose gel electrophoresis. Sequencing result confirmed that the sequence of recombinant was entirely accurate.
     3. As the recombinant bacteria VP1-PET28(a)-BL21(DE3) were propagated by IPTG induction, the fusion protein were expressed and exactly proved to be the VP1 fusion protein using Western-blot, which molecular weight was approximately 87kDa and could conjugate with 6-His antibody.
     4. The recombinant baculovirus shuttle vectors (VP1-Bacmid) which were screened by antibiotics and phenotype of Blue-White spot, successfully constructed and verified via PCR. Meanwhile, the VP1-Bacmid were transfected into Sf9 cells by cellfectin reagent, then the recombinant baculovirus were amplified in Sf9 cells. Sf9 cells emerging typical pathological changes were assembled and disintegrated. The 87kDa interested protein which molecular weight was consistent with the anticipated was found by SDS-PAGE.
     5. As antigen, both of the VP1 fusion proteins from procaryon and eukaryotic expressive systems could make rabbits to produce the multiclone antibodies of anti-VP1 protein. Its valence was detected by ELISA, and the results showed that valence of the former was 1:12800, while the later 1:50000.
     6. The VP1 protein producing in recombinant baculovirus system could well react to the positive sera of patients after B19 virus infection, moreover its OD value was lower than that of the German ELISA Kit. However, the VP1 protein producing from recombinant E.coli. system didn’t exist immunologic reaction with these positive sera.
     Conclusion:
     1. We successfully constructed the recombinant E.coli. VP1-PET28(a)- BL21(DE3).
     2. We successfully constructed the recombinant baculovirus shuttle vectors(VP1-Bacmid), and effectively expressed the VP1 protein in Sf9 insect cells.
     3. The fusion VP1 proteins from either procaryon or eukaryotic expressive systems could stimulate animals to generate the specific antibody, so both of them possesed immunogenicity.
     4. The VP1 protein expressing in Bac-to-Bac system, which bioactivity was much similarly to native protein, could be used to detect specific antibody after B19 virus infection, but also its valence attained the parallel level compared with abroad kit.
引文
[1] Cossart YE, Cant B, Field AM, et al. Parvovirus-like particles in human serum. Lancet. 1975, 1: 72-73
    [2] Allander T, Tammi MT, Eriksson M, et al. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA. 2005, 102(36): 12891-12896
    [3] Endo R, Ishiguro N, Kikuta H, et al. Seroepidemiology of human bocavirus in Hokkaido prefecture, Japan. J Clin Microbiol. 2007, 45(10):3218-3223
    [4] Candotti D, Etiz N, Parsyan A, et al. Identification and characterization of persistent human erythrovirus infection in blood donor samples. J Virol. 2004, 78: 12169-12178
    [5] Dembinski J, Eis-Hubinger AM, Maar J, et al. Long term follow up of serostatus after maternofetal parvovirus B19 infection. Arch Dis Child, 2003, 88: 219-221
    [6] Parsyan A, Candotti D. Human erythrovirus B19 and blood transfusion-an update. Transfusion Medicine. 2007, 17(4): 263-278
    [7] Andson MJ, Jones SE, Fisher-Hoch SP, et al. Human parvovirus, the cause of erythema infectiosum(fifth disease)? Lancet. 1983, 1: 1378
    [8] Brown T, Anand A, Ritchie LD, et al. Intrauterine parvovirus infection associated with hydrops fetalis. Lancet. 1984, 2: 1033-1034
    [9] Anderson MJ, Khousam MN, Maxwell DJ, et al. Human parvovirus B19 and hydrops fetalis. Lancet. 1988, 1: 535
    [10] Torok TJ, Wang QY, Gary GW, et al. Prenatal diagnosis of intrauterine infection with parvovirus B19 by the polymerase chain reaction technique.Clin Infect Dis. 1992, 14: 149-155
    [11] Jin Xu, Thomas C. Hydrops Fetalis Secondary to Parvovirus B19 Infections. The Journal of the American Board of Family Practice. 2003, 16: 63-68
    [12] Pattison JR, Jones SE, Hodgson J, et al. Parvovirus infections and hypoplastic crisis in sickle-cell anaemia. Lancet. 1981, 1: 664-665
    [13] Zakrzewska K, Azzi A, De Biasi E, et al. Persistence of parvovirus B19 DNA in synovium of patients with haemophilic arthritis. J Med Virol, 2001, 65: 402-407
    [14] Aslan B, Serin MS, Aslan G, et al. Detection of parvovirus B19 in synovial fluids of patients with osteoarthritis. Diagn Microbiol Infect Dis. 2008, 60(4): 381-385
    [15] Dina J, Vabret A, Rambaud C, et al. Fulminant myocarditis associated with parvovirus B19 infection in a child. J Clin Virol. 2008, 28: 281-287
    [16] Dennert R, Schalla S, Suylen RJ, et al. Giant cell myocarditis triggered by a parvovirus B19 infection. Int J Cardiol. 2008, 14(1): 33-41
    [17] Seishima M, Shibuya Y, Suzuki S,et al. Acute heart failure associated with human parvovirus B19 infection. Clin Exp Dermatol. 2008, 18: 156-158
    [18] Roubille F, Roubille C, Rullier P, et al. Daily management of acute pericarditis: Clinical and paraclinical outcomes, etiological diagnosis. Ann Cardiol Angeiol. 2008, 57(1):1-9
    [19] Yoto Y,Kudoh T,Haseyama K. Huamn parvovirus B19 infection associated with acute hepatitis. Lancet. 1996, 347: 868-869
    [20] Seishima M, Mizutani Y, Shibuya Y, et al. Chronic Fatigue Syndrome after Human Parvovirus B19 Infection without Persistent Viremia. Dermatology. 2008, 216(4):341-346
    [21] Kurtzman G, Ozawa K, Hanson GR, et al. Chronic bone marrow failure dueto persistent parvovirus infection. N Engl J Med. 1987, 317: 287-294
    [22] Young NS. Parvoviruses. In Fields Virology. 1996, 3: 2199-2220
    [23] Uemura N,Ozawa K, Tani K, et al. Pure red cell aplasia caused by parvovirus B19 infection in a renal transplant recipient. Eur J Haematol. 1995, 54(1): 68-69
    [24] Pamidi S, Friedman K, Kampalath B, et al. Human parvovirusBl9 infection presenting as persistent anemia in renal transplant recipients. Transplantation. 2000, 69(12): 2666-2669
    [25] Kariyawasam HH, Gyi KM, Hodson ME, et al. Anemia in lung transplant patient caused by parvovirus B19. Thorax. 2000, 55(7): 619-620
    [26] Bisognano JD, Morgan MB, Lowes BD, et al. Acute parvovirus infection in a heart transplant recipient. Transplant Proc. 1999, (5): 2159-2160
    [27] Hung CC, Sheng WH, Lee KL, et al. Genetic drift of parvovirus B19 is found in AIDS patients with persistent B19 infection. J Med Virol. 2006, 78(11): 1374-1384
    [28] Lindblom A, Heyman M, Gustafsson I, et al. Parvovirus B19 infection in children with acute lymphoblastic leukemia is associated with cytopenia resulting in prolonged interruptions of chemotherapy. Clin Infect Dis. 2008, 46(4): 528-36.
    [29] Nigro G, Zerbini M, Krysztofiak A, et al. Active or recent Human parvovirus B19 infection in chidren with Kawasaki disease. Lancet, 1994, 343: 1260-1261
    [30] 曹玉红, 张光运, 张国成等. 人细小病毒 B19 感染与小儿川崎病的关系.第四军医大学学报. 2005, 26(8): 714-715
    [31] Bengtsson A, Widell A, Elmstahl S, et al. No serological indications that systemic lupus erythematosus is linked with exposure to human parvovirusB19. Ann Rheum Dis. 2000, 59(1): 64-66
    [32] Hemauer A, Beckenlehner K, Wolf H, et al. Acute parvovirus B19 infection in connection with a flare of systemic lupus erythematodes in a female patient. J Clin Virol. 1999, 14(1): 73-77
    [33] Chevrel G, Calvet A, Belin V, et al. Dermatomyositis associated with the presence of parvovirus B19 DNA in muscle. Rheumatology (Oxford). 2000, 39(9): 1027-1039
    [34] Chevrel G, Borsotti JP, Miossec P. Lack of evidence for a direct involvement of muscle infection by parvovirus B19 in the pathogenesis of inflammatory myopathies: a follow-up study. Rheumatology (Oxford). 2003, 42(2): 349-352
    [35] Scheurlen W, Ramasubbu K, Wachowski 0, et al. Chronic autoimmune thrombopenia/neutropenia in a boy with persistent parvovirus B19 infection. J Clin Virol. 2001, 20(3): 173-178
    [36] Hartwig W, Lehmann. Parvovirus B19 infection and autoimmune disease. Autoimmunity Reviews. 2003, 2(4):218-223
    [37] Uslu H, Kiki I, Ozbek A, et al. Seroprevalence of parvovirus B19 in patients with chronic idiopathic thrombocytopenic purpura. Mikrobiyol Bul. 2007, 41(4):597-602
    [38] Pinho JR, Alves VA, Vieira AF, et al. Detection of human parvovirus B19 in a patient with hepatitis. Braz J Med Biol Res. 2001, 34(9): 1131-1138
    [39] Giortz-Carlsen B, Rittig S, Thelle T. Neurological symptoms and acute hepatitis associated with parvovirus B19. Ugeskr Laeger. 2007, 169(47): 4075-4077
    [40] Takeda S, Takaeda C, Takazakura E, et al. Renal involvement induced by human parvovirus B19 infection. Nephron. 2001, 89(3): 280-285
    [41] Diss TC, Pan LX, Du MQ, et a1. Parvovirus B19 is associated with benign testes as well as testicular germ cell tumours. Mol Pathol. 1999, 52(6): 349-352
    [42] Justin M, Bailey MD. Parvovirus B19 Presenting with Severe Sepsis in a Previously Healthy 25-year-old Female. The Journal of the American Board of Family Medicine. 2006,19: 317-319
    [43] 王绮云, 张国成, 金春子等. 西安地区妇女和儿童血清中检出细小病毒B19 抗体. 第四军医大学学报. 1991, 12(2): 134-136
    [44] 许东亮, 张国成, 曹玉红等. 血液病儿童人细小病毒B19检测211例. 第四军医大学学报. 2000, 21(4): 65-66
    [45] 张笑飞, 许东亮, 张国成等. 特发性血小板减少性紫癜与人细小病毒B19. 中华儿科杂志. 1999, 37(1): 15-17
    [46] 成胜权, 张国成, 许东亮. 幼年类风湿性关节炎与人细小病毒 B19 感染的关系及其临床特征. 中华儿科杂志. 2000, 38(8): 477-479
    [47] 曹玉红,张国成,钱新宏等. 结缔组织病患儿 B19 病毒感染的意义. 第四军医大学学报. 2003, 24(1): 56-57
    [48] 王晓明, 张国成, 韩美玉等. 巢式 PCR 检测新生儿先天畸形心脏组织中B19-DNA 的研究. 中国优生优育. 1999, 10(1): 28-29
    [49] Corcoran A, Doyle S. Aduances in the biology, diagnosis and host-pathogen interactions of parvovirus B19. J Med Microbiol. 2004, 53: 459-475
    [50] Shade RO, Blundell MC, Cotmore SF, et al. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J Virol. 1986,58(3): 921-936.
    [51] Blundell MC, Beard C, Astell CR. In vitro identification of a B19 parvovirus promoter. Virology. 1987,157: 534-538
    [52] Hick KE, Beard S, Cohen BJ, et al. A simple and sensitive DNAhybridisation assay used for the diagnosis of human parvovirus B19 infection. J Clin Microbiol. 1995,33: 2473-2475
    [53] Gallinell G, Venturoli S. B19 genome sequence and structure analysis. Clinical and Experimental Medicine. 1999,23(1): 9-22
    [54] Blundell MC, Beard C, Astell CR. In vitro identification of a B19 parvovirus promoter. Virology. 1987, 157: 534-538
    [55] Ozawa K, Ayub J, Hao YS, et al. Novel transcription map for the B19 (human) pathogenic parvovirus. J Virol. 1987,61(8): 2395-2406
    [56] Modrow S, Dorsch S. Antibody responses in parvovirus B19 infected patients. Pathol Biol, 2002,50: 326-331
    [57] Mehraein Y, Lennerz C, Ehlhardt S, et al. Detection of parvovirus B19 capsid proteins in lymphocytic cells in synovial tissue of autoimmune chronic arthritis. Modern Pathology, 2003, 16: 811-817
    [58] Saikawa T, Anderson S, Momoeda M, et al. Neutralizinglinear epitopes of B19 parvovirus cluster in the VPl unique and VP1-VP2 junction regions. J Virol. 1993, 67(6): 3004-3009
    [59] Raab U, Bechenlehner K, Lowin T, et al. NS1 protein of parvovirus B19 interacts directly with DNA sequence of the p6 promoter and with the cellular transcription factors Sp1/Sp3. Virology. 2002, 293: 86-93
    [60] Morita E, Nakashima A, Asao H, et al. Human parvovirus B19 nonstructural protein(NS1) induces cell cycle arrest at G1 phase. J Virol. 2003, 77: 2915-2921
    [61] Kerr JR, Curran MD, Moore JE, et al. Genetic diversity in the non- structural gene of parvovirus B19 detected by single-tranded donformational polymorphism assay(SSCP) and partial nucleotide sequencing. J Virol Methods. 1995, 53(2-3): 213-222
    [62] Zhi N, Mills IP, Lu J, et al. Molecular and functional analyses of a human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity. J Virol. 2006, 80(12): 5941-5950
    [63] Torok TJ. Parvovirus B19 and human disease. Adv Intern Med. 1992, 37(2): 431-435
    [64] Vassias L,Perol S,Coalombel,et al. An in situ hybridization technique for the study of B19 human parvovirus replication in bone marrow cell cultures. J Virol Methods. 1993, 44: 329-338
    [65] Weigel-Kelley KA, Yoder MC, Chen L, Srivastava A. Role of integrin cross-regulation in parvovirus B19 targeting. Hum Gene Ther. 2006, 17(9): 909-920
    [66] Florea AV, Ionescu DN, Melhem MF. Parvovirus B19 infection in the immunocompromised host. Arch Pathol Lab Med. 2007, 131(5): 799-804
    [67] Wong S, Zhi N, Filippone C, et al. Ex vivo-generated CD36+ erythroid progenitors are highly permissive to human parvovirus B19 replication. J Virol. 2008,82(5): 2470-2476
    [68] Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: cellular receptor for B19 parvovirns. Science. 1993, 262: 114-119
    [69] Rouger P, Gane P, Salmon C. Tissue distribution of H Lewis and P antigens as shown by a panel of 18 monoclonal antibodies. Rev Fr Transfus Immunohematol. 1987, 30(5): 699-708.
    [70] Weigel-Kelley KA, Yoder MC, Srivastava A. Recombinant human parvovirus B19 vectors: erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells. J Virol. 2001, 75(9): 4110-4116
    [71] Kaufmann B, Baxa U. Parvovirus B19 does not bind to membrane -associated globoside in vitro. Virology. 2005, 332 (1): 189-198
    [72] Nguyen QT, Wong S, Heegaard D, et al. Identification and characterization of a second novel human erythrovirus variant, V6. Virology. 2002, 301: 374-380
    [73] Hokynar K, Soderlund-Venermo M, Pesonen M, et al. A new parvovirus genotype persistent in human skin. Virology. 2002, 302: 224-228
    [74] Servant A, Laperche S, Lallemand F, et al. Genetic diversity within human erythroviruses: identification of three genotypes. J Virol. 2002, 76: 9124–9134
    [75] Schneider B, H?ne A, Tolba RH, et al. Simultaneous persistence of multiple genome variants of human parvovirus B19. J Gen Virol. 2008, 89(1): 164-176
    [76] Cohen BJ, Gandhi J, Clewley JP. Genetic variants of parvovirus B19 identified in the United Kingdom: implications for diagnostic testing. J Clin Virol. 2006, 36: 152–155
    [77] Candotti D, Danso K, Parsyan A, et al. Maternal-fetal transmission of human parvovirus B19 genotype 3. J Infect Dis. 2006, 194(5): 608-611
    [78] Toan NL, Duechting A, Kremsner PG,et al. Phylogenetic analysis of human parvovirus B19, indicating two subgroups of genotype 1 in Vietnamese patients. J Gen Virol. 2006, 87: 2941-2949
    [79] Ekman A, Hokynar K, Kakkola L, et al. Biological and immunological relations among human parvovirus B19 genotypes 1 to 3. J Virol. 2007, 81(13): 6927-6935
    [80] Heegaard ED, Qvortrup K, Christensen J. Baculovirus expression of erythrovirus V9 capsids and screening by ELISA: serologic cross-reactivitywith erythrovirus B19. J Med Virol. 2002, 66(2): 246-252
    [81] Erdman DD, Durigon EL, Wang QY, et al. Genetic diversity of human parvovirus B 19: sequence analysis of the VP1/VP2 gene from multiple isolates. J Gen Virol. 1996, 77(11): 2767-2774.
    [82] Hemauer A, von Poblotzki A, Gigler A, et al. Sequence variability among different parvovirus B19 isolates. J Gen Virol. 1996, 77(8): 1781 -1785.
    [83] Hicks KE, Cubel RC, Cohen BJ, et al. Sequence analysis of a parvovirus B19 isolate and baculovirus expression of the non- structural protein. Arch Virol. 1996, 141: 1319-1327
    [84] Haseyama K, Kudoh T, Yoto Y, et al. Analysis of genetic diversity in the VP1 unique region gene of human parvovirus B19 using the mismatch detection method and direct nucleotide sequencing. J Med Virol. 1998, 56(3): 205-209
    [85] Zhang GC,Wang MY. Nucleotide sequence analysisof PCR production of the specific target region of human parvovirus B9 domestic isolate. Chin Microbiol Immunol. 1995,15(1): 13
    [86] 张国成,孙新,许东亮等. 我国人细小病毒 B19 VP1 和 VP2 部分基因序列测定及变异分析. 第四军医大学学报. 2002,23(4):298-300
    [87] 采华,张国成,许东亮等. 人细小病毒 B19 中国株 VP1 蛋白独特区基因片段序列变异分析. 第四军医大学学报. 2002,23(16):1464-1466
    [88] 张国成,苏国平,孙新等. 我国再障患儿血清中人细小病毒 B19 NS 基因序列测定及变异分析. 中国当代儿科杂志. 2003,5(1):5-11
    [89] 江晓凌,曹虹,张文柄. 两株人微小病毒 B19 结构蛋白部分基因序列的测定及分析. 中华实验和临床病毒学杂志. 2003,17(2):190-191
    [90] 赵国强,宋建伟,戚敏等. 郑州市 B19 病毒分离株全基因的克隆及序列测定. 郑州大学学报(医学版). 2005,4(3):385-387
    [91] 钱新宏,张国成,焦西英等. 人细小病毒 B19 VP1 独特区基因变异的研究. 中华儿科杂志. 2003,41(2):128
    [92] Hemauer A, Poblotzki A, Gigler A, et al. Sequence variability among different parvovirus B19 isolates. J Gen Virol. 1996, 77: 1781-1785
    [93] Umene K, Nunoue T. The genome type of human parvovirus B19 strains isolated in Japan during 1981 differs from types detected in 1986 to 1987: a correlation between genome type and prevalence. J Gen Virol. 1990, 71: 983-986
    [94] Umene K, Nunoue T. Genetic diversity of human parvovirus B19 determined using a set of restriction endonucleases recognizing four or five base pairs and partial nucleotide sequencing: use of sequence variability in virus classification. J Gen Virol. 1991, 72: 1997-2001
    [95] Umene K, Nunoue T. Genetic diversity of human parvovirus B19 determined using a set of restriction endonucleases recognizing four or five base pairs and partial nucleotide sequencing:use of sequence variability in virus classification. J Gen Virol. 1991, 72(8): 1997-2001
    [96] Kerr JR,Curran MD, Moore JE, et al. Parvovirus B19 infection- persistence and genetic variation. Secand J Infect Dis. 1995, 27(6): 551-557
    [97] Gallinella G, Ventturoli S, Gentilomi G, et al. Extent of sequence variability in a genomic region coding for capsid proteins of B19 parvovirus. Aich Virol. 1995, 140: 1119-1125
    [98] Modrow S, Dorsch S. Antibody responses in parvovirus B19 infected patients. Pathol Biol(Paris). 2002, 50(5): 326-331
    [99] Dorsch S, Kaufmann B, SchaibleU, et al. The VPl-unique region of parvovirus B19: amino acid variability and antigenic stability. J Gen Virol. 2001, 82(1): 191-199
    [100] Manaresi E, Zuffi E, Gallinella G, et al. Differential IgM response to conformational and linear epitopes of parvovirus B19 VP1 and VP2 structural proteins. J Med Virol. 2001, 64(1): 67-73
    [101] Corcoran A, Doyle S, et al. Impaired gamma interferon responses against parvovirus B19 by recently infected children. J Virol. 2000, 74(21): 9903–9910.
    [102] Manaresi E, Gallinella G,V enturoli S, et al. Detection of parvovirus B19 IgG: choice of antigens and serological tests. J Clin Virol. 2004,29(1): 51-53
    [103] Erdman DD, Usher MJ, Tsou C, et al. Human parvovirus B19 specific IgG,IgA,IgM antibodies and DNA in serum specimens from persons with erythema infectiosum. J Med Virol. 1991, 35(2): 110-115
    [104] Soderlund M, Brown KE, Meurman 0, et al. Prokaryotic expression of a VP1 polypeptide antibody enzyme immunoassay. J Clin Microbiol. 1992, 30(2): 305-311
    [105] 汤雪晴,张国成,许东亮等. 人细小病毒 B19 NS1 片段全长的克隆及表达. 医学研究生学报. 2003,16(7):483-486
    [106] 陈彩萍,张国成,许东亮等. 人细小病毒 B19 中国株结构蛋白 VP1 的克隆及表达. 医学研究生学报. 2004,17(5):385-387
    [107] 李志宏, 张国成, 许东亮等. 人微小病毒 B19VP1 独特区蛋白的表达及纯化. 细胞与分子免疫学杂志. 2007,23(4): 372-373
    [108] 孟炯,赵国强,赵新合. 人细小病毒 B19 VP1 基因片段原核表达载体的构建及其表达. 河南预防医学杂志. 2004,15(6):330-332
    [109] 周为民,谷淑燕. 细小病毒 B19 壳抗原 VP2 在大肠杆菌中的表达及血清学检测. 生物技术通讯. 2002,13(3):176-178
    [110] 于红,张文卿,王斌等. 人微小病毒 B19 VP1 基因原核表达克隆的构建.青岛大学医学院学报. 2002,38(2):117-120
    [111] 王慧娟,谷淑燕,张素香等. 抗细小病毒 B19-VP2 单克隆抗体的建立.生物技术通讯. 2002,13(6):451-452
    [112] 黄庆生,薛小平. 人类微小病毒 B19 结构蛋白 VP2 的重组表达及单克隆抗体的制备. 细胞与分子免疫学杂志. 2005,21(5):609-610
    [113] Gigler A,Dorsch S,Hemauer A, et al. Generation of neutralizing human monoclonal antibodies against Human parvovirus B19 proteins. J Virol. 1999,73(3): 1974-1979
    [114] Ballou WR, Reed JL, Noble W, et al. Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59C.1. J Infect Dis. 2003, 187: 675-678
    [115] Ayres MD, Howard SC, Kuzio J, et al. The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology. 1994, 202(2): 586-605
    [116] Kost TA, Condreay JP. Recombinant baculovirus as mammalian cell gene-delivery vector. Trends Biotechno1. 2002, 20(4): 173-180
    [117] Huser A, Hofmann C. Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. Am J Pharmacogenomics. 2003, 3(1): 53-63
    [118] 侯云德. 分子病毒学. 北京:学苑出版社,1990: 72-86
    [119] Pessee R D. Baculoviruses as expression vectors. Curr Opin Biotech. 1997,8: 569-572
    [120] Jones I, Moilkawa Y. Baculovirus vectors for expression in insect cells. Curt Opin Biotech. 1996, 7(5): 512-516
    [121] Luckow VA, Lee SC, Barry GF, et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertionof foreign genes into a baculovirus genome propagated in Escherichia coli. J. Viro1. 1993, 67(8): 4566-4579
    [122] Sun SH, Zhang PW, Dai JX. Gene engineering principles and Methods. Beijing: People’s Military Medical Press. 2001, 92-100
    [123] Luekow V A, Lee S C, Barry G F, et a1. Efficient generation of infectious recombinant baculovirues by site-specific transposon-mediated insertion of foreign genes into a baceulovirus genomo propagated in Escherichia coli. J Virol. 1993, 67(8): 4566-457
    [124] Petricevich V L, Palomares L A, Gonzalez M, et a1. Parameters that determine virus adsorption kinetics:toward the design of better infection strategies for the insect cell-baculovirus expression system. Enzyme Microb Tech, 2001, 29(1): 52-61
    [125] Saito T, Dojima T, Toriyama M, et a1. The effect of cell cycle on GFPuv gene expression in the baculovirus expression system. J Biotechnol. 2002, 93(2): 121-129
    [126] Lowin T, Raab U, Schroeder J, et al. Parvovirus B19 VP2-proteins produced in Saccharomyces cerevisiae: comparison with VP2-particles produced by baculovirus-derived vectors. J Vet Med B Infect Dis Vet Public Health. 2005, 52(8): 348-352
    [127] Toivola J, Gilbert L, Michel P, et al. Disassembly of structurally modified viral nanoparticles: characterization by fluorescence correlation spectroscopy. C R Biol. 2005, 328(12): 1052-1056
    [128] Maranga L, Braz?o TF, Carrondo MJ. Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnol Bioeng. 2003, 84(2): 245-253
    [129] Sico C, White S, Tsao E, et al. Enhanced kinetic extraction of parvovirusB19 structural proteins. Biotechnol Bioeng. 2002, 80(3): 250-256
    [130] Heegaard ED, Rasksen CJ, Christensen J. Detection of parvovirus B19 NS1-specific antibodies by ELISA and western blotting employing recombinant NS1 protein as antigen. J Med Virol. 2002, 67(3): 375-383
    [131] Heegaard ED, Qvortrup K, Christensen J. Baculovirus expression of erythrovirus V9 capsids and screening by ELISA: serologic cross-reactivity with erythrovirus B19. J Med Virol. 2002, 66(2): 246-252
    [132] Pereira RF, Paula WN, Cubel Rde C, et al. Anti-VP1 and anti-VP2 antibodies detected by immunofluorescence assays in patients with acute human parvovirus B19 infection. Mem Inst Oswaldo Cruz. 2001, 96(4): 507-513
    [133] Kock,et al. A synthetic parvovirus B19 capsid protein can replace eviral antigen in antibody-capture enzyme immunoassays. J Virol Methods. 1995, 55(1): 67-82
    [134] Jordan JA. Comparison of a baculovirus-based VP2 enzyme immunoassay (EIA) to an Escherichia coli-based VP1 EIA for detection of human parvovirus B19 immunoglobulin M and immunoglobulin G in sera of pregnant women. J Clin Microbiol. 2000, 38(4): 1472-1475
    [135] Kishore J, Gupta I. Serological study of parvovirus B19 infection in women with recurrent spontaneous abortions. Indian J Pathol Microbiol. 2006, 49(4): 548-550
    [136] Enders M, Helbig S, Hunjet A, et al. Comparative evaluation of two commercial enzyme immunoassays for serodiagnosis of human parvovirus B19 infection. J Virol Methods. 2007, 146(1-2): 409-413
    [137] Peterlana D, Puccetti A, Corrocher R, et al. Serologic and molecular detection of human Parvovirus B19 infection. Clin Chim Acta. 2006,372(1): 14-23
    [138] Lehmann HW., Knoll A, Kuster RM, et al. Frequent infection with a viral pathogen, parvovirus B19, in rheumatic diseases of childhood. Arthritis Rheum. 2003, 48(6): 1631-1638
    [139] Kerr JR, Cunniffe VS. Antibodies to parvovirus B19 non-structural protein are associated with chronic but not acute arthritis following B19 infection. Rheumatology. 2000, 39: 903-908
    [140] Pereira RF, Paula WN, Cubel RD, et al. Anti-VPl and anti-VP2 antibody detected by immunofluorescence assays in patients with acute human parvovirus Bl9 infection. Men Inst Oswaldo Cruz. 2001, 96(4): 507-513
    [141] Franssila R, Hokynar K, Hedman K. T helper cell-mediated in vitro responses of recently and remotely infected subjects to a candidate recombinant vaccine for human parvovirus b19. J Infect Dis. 2001, 183 (5): 805-809
    [142] Manaresi E, Gallinella G, Zuffi E, et al. Diagnosis and quantitative evaluation of parvovirus B19 infections by real-time PCR in the clinical laboratory. J Med Virol. 2003, 67(2): 275-281
    [143] Goeddel DV. Systems for heterologous gene expression. Methods Enzymol. 1990, 185: 3-7
    [144] Balbas P,Bolivar F. Design and construction of expression plasmid vectors in Escherichia coli. Methods Enzymol. 1990, 185: 14-37
    [145] Hockney RC. Recent developments in heterologous protein production in Escherichia coli. Trends-Biotechnol. 1994,12(11): 456-463
    [146] Sambrook J, Russell DW 著. 黄培堂,王嘉玺,朱厚础等译. 分子克隆实验指南. 第三版, 北京: 科学出版社, 2002:1252-1253
    [147] 景志忠,王佩雅,才学鹏.杆状病毒表达系统研究进展及在寄生虫基因工程疫苗中的应用前景. 中国兽医科技, 2001,31(3):43-45
    [148] Kidd M, Emery VC. The use of baculoviruses as expression vectors. Appl Biochem Biotech. 1993, 42: 137-159
    [149] Turk V, Bode W. The cystatins:protein inhibitors of cysteine proteinases. FEBS Lett. 1991, 285(2): 213-219
    [150] Ailor E,Betenbaugh MJ. Modifying secretion and post  translational processing in insect cells. Curr Opin Biotechnol. 1999, 10(2): 142-145
    [151] 董志伟,王 炎.抗体工程(第2 版),北京:北京医科大学出版社,2002:264-267
    [152] Dyck JA, LaMorte VJ. Preparation of polyclonal antibodies to retinoid receptors. Methods Mol Biol. 1998;89:205-217
    [153] Sachiko K, Hiroyuki F, Anne F, et a1. Self-assembled B19 parvovirus capsids produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Proc Natl Acad Sci USA. 1991, 88: 4646
    [154] Koichi M, Sachilo K, Mikio M, et al. Parvovirus particles as platforms for protein presentation. Proc Natl Acad Sci USA. l994, 9l: 8507
    [155] Zeng Z, Wu DY. Progress of baculovirus expression vector system. J Sericulture in China. 2005, 26(3): 4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700