几种新型分子标记技术在中国香菇种质资源遗传多样性研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香菇(Lentinula edodes)是产量仅次于双孢蘑菇(Agaricus bisporus)的世界第二大人工栽培食用菌,在我国食用菌产业体系中占有举足轻重的地位。中国幅员辽阔,地理环境和气候条件十分复杂,孕育了丰富的香菇种质资源,这些种质资源是进一步选育香菇优良品种的基础。准确鉴定和客观评价是香菇种质资源保藏和利用的基础。相对于常用的形态标记和生化标记而言,基于DNA多态性的分子标记技术不受环境影响,且稳定、简便、精确,已成为食用菌遗传学各研究领域中的重要工具。各种分子标记技术的原理和技术体系各不相同,所揭示的遗传学信息也不相同,因此,各分子标记技术所反映的结果间可相互补充。目前,在食用菌遗传学研究领域,基于通用引物PCR的分子标记技术应用较多,而基于物种特异性DNA序列的分子标记技术,例如,基于微卫星两侧序列的SSR标记、基于特定编码基因序列的TRAP标记及基于反转录转座子的IRAP和REMAP标记,则应用极少。
     本研究首次在香菇中开发了SSR、TRAP、IRAP和REMAP四种新型分子标记的特异性引物、优化了相关标记的PCR技术体系,并将其应用于香菇野生菌株及栽培菌株的遗传多样性和亲缘关系分析。本研究的目的是:(1)评价4种新型分子标记技术的适应性,为进一步开展香菇遗传学研究提供新的方法;(2)从DNA水平深化对于中国香菇种质资源遗传多样性的认识,为合理地保护和利用这些资源提供科学依据。主要研究结果如下:
     1.采用数据库搜索法及ISSR-抑制PCR法开发香菇SSR标记,并选择6个野生菌株和2个栽培菌株来验证所开发引物的多态性。由数据库搜索法开发出21对引物,其中11对有多态性,各位点平均产生3.3个等位基因;通过ISSR-抑制PCR法开发出8对引物,其中5对具多态性,各位点平均产生3个等位基因。结果表明,两种方法在香菇SSR开发工作中均是行之有效的。
     2.使用正交试验设计及梯度PCR优化了香菇SSR技术体系,并利用该SSR技术体系分析了中国14个省份的55香菇野生菌株和1个栽培菌株的DNA多态性。25对引物共扩增出224条DNA片段,其中的223条具有多态性(99.6%)。供试菌株的相似性系数变化范围在0.692到0.987之间,平均值为0.803。SSR带型重复率、DNA平均相似性系数和Shannon多样性指数的差异表明,中国自然香菇种群具有丰富的遗传多样性,云南高原、横断山脉、台湾和华南地区菌株的遗传多样性尤为突出。UPGMA聚类分析及主坐标分析都将供试菌株分为3个大的类群,类群A主要由北方菌株组成,类群C由地处中国西南部的云南和广西菌株组成,其余菌株包含在类群B中,分析结果反映了我国南北菌株之间的差异,来自相同或相邻区域菌株具有优先聚为小类的趋势,表明菌株的分组与其地理来源关系明显。
     3.采用单因素循环筛选法优化了TRAP-PCR反应体系,并利用该TRAP技术体系分析了中国14个省份的55香菇野生菌株和1个栽培菌株的DNA多态性。12对引物组合共扩增出932条DNA片段,其中的929条具有多态性(99.68%)。供试菌株的相似性系数变化范围在0.503到0.947之间,平均值为0.696。Shannon多样性指数和平均遗传相似性系数表明,中国自然香菇种群具有丰富的遗传多样性,各种群间的遗传差异明显,云南高原、横断山脉、台湾、华南地区和东北地区菌株的遗传多样性比较明显。UPGMA聚类分析及主坐标分析都将供试菌株分为2个主要类群,类群B主要由云南菌株组成,其余菌株包含在类群A中,类群A可细分为7个亚群。分析结果很好地反映了供试菌株的地域分布规律,来自相同或相邻区域菌株具有优先聚为小类的趋势。
     4.比较SSR及TRAP分析的结果发现,高多态性的SSR和TRAP技术适于研究中国香菇野生种质。中国香菇自然种群具有丰富的遗传多样性,各种群间的遗传差异明显,分析结果较好地反映了供试菌株的地域分布规律。在8个种群中,云南高原和东北种群的独立性比较突出。对SSR与TRAP数据进行了整合分析,其结果与TRAP分析的结果非常相似(相关系数达到0.99),而与SSR分析的相关性较差(相关系数为0.68)。基于各种群间的平均相似性系数的UPGMA聚类结果也较好地反映了各种群间的地理来源关系。
     5.采用单因素循环筛选法和梯度PCR优化了香菇IRAP技术体系,并基于该体系开展了中国44个香菇栽培菌株的IRAP和REMAP遗传多样性分析。19对具多态性的引物组合共扩增出281条DNA片段,其中的273条具有多态性(99.6%)。供试菌株的遗传相似性系数变化范围在0.495到0.975之间,平均值为0.668。UPGMA聚类分析及主坐标分析结果都表明,供试菌株可根据栽培基质、温型及菌龄分为4个类群,类群A1主要包含中高温或广温型代料品种,类群A2全部为中短菌龄的中温或中低温型代料品种,而类群A3则为中长菌龄的中温或中低温型代料品种。类群B主要由段木品种组成。部分聚类关系较近的菌株表现出了某些共有的农艺性状特征。
     6.基于IRAP和REMAP分析结果,进行了SCAR标记的开发工作。在供试菌株9608中获得1条1712bp的特异性带,在菌株L135中扩增到1条2549bp的特异性带。通过切胶收回克隆并测序,BLAST搜索表明,仅源于9608的特异片段与豆薯层锈菌(Phakopsora pachyrhizi)的反转座酶相关。应用软件Primer 3设计SCAR标记引物对,成功地将它们转化为SCAR标记,用于对菌株9608和L135的特异性鉴定。本研究提供了一条新的SCAR标记开发技术手段,所建立的SCAR标记,为香菇栽培菌株的鉴定提供了准确可靠和迅捷方便的新途径。
     总体来看,4种新型分子标记技术均具有较高的多态性,适用于中国香菇种质资源的遗传多样性研究,所揭示的遗传信息与前人研究结果较一致。因此,本研究优化和建立的4种分子标记技术体系是实用、高效的,为进一步开展香菇特异性SCAR标记开发、杂交育种、遗传图谱构建和QTL定位等方面的研究工作提供了有力的研究手段。
Lentinula edodes is the second most cultivated edible mushroom (following Agaricus bisporus) in terms of total world production, and play a very important role in mushroom industry in China. China stretches across a vast area, with complex geographic environment and climatic conditions, thus forming abundant wild germplasm of L. edodes. The rich germplasm lays the groundwork for further breeding improved variety of L. edodes. Preservation and utilization of shiitake germplasm are based on accurate identification and objective evaluation of these germplasm. Compared to morphological markers and biochemical markers that are commonly used, DNA-based molecular markers are stable, accurate, and independent of environmental impacts, which is powerful tools for all research field of genetics for edible mushroom. Each molecular marker technique would uncover different genetic information, because each technique has its own unique technological principle and system. So, it would be complementary among genetic information revealed by different molecular marker techniques. Currently, molecular marker techniques on the basis of universal primer PCR were widely used in genetics for mushroom. However, those techniques based on species-special primer PCR, such as SSR markers based on the DNA sequences of both sides of microsatellites, IRAP and REMAP markers based on sequences of retrotransposons, and TRAP markers based on sequences of special genes, were seldom used for mushroom research.
     In this study, it was the first time in L. edodes to develop special primers of above four new molecular markers, and to optimize their PCR technological systems. These four new molecular markers were then used to uncover genetic diversity and phylogenetic relationship of wild and cultivated germplasm of L. edodes in China. The aim of the present study was to assess the efficacy of these marker techniques in analyzing genetic diversity and phylogenetic relationship of L. edodes in China, and establish several new research techniques for future research. The second aim was to identify the genetic relationship of shiitake germplasm in China, thus providing scientific basis for rational preservation and utilization of these germplasm. The main results of this study were as follows:
     1. Two methods, database search and ISSR-suppression PCR, were used to isolate microsatellite markers from L. edodes. Six wild strains and two cultivated strains were used to assess polymorphism of developed SSR markers.21 primer pairs were designed by database search,11 out of them with polymorphism. The number of alleles produced by these 11 markers was 3.3 per locus in average. As to the method of ISSR-suppression PCR, eight primer pairs were developed and five of them had polymorphism. There were three alleles per locus in average produced by these five markers. Results showed that two methods were effective and applicable to develop SSR from L. edodes.
     2. Orthogonal design and gradient PCR were used to optimize SSR technological system. SSR markers were then utilized to reveal the genetic diversity of 55 wild strains and a cultivated strain of L. edodes grown in China. A total of 224 DNA bands were detected through 25 primer pairs, of which,223 bands (99.6%) were polymorphic between two or more strains. The pairwise genetic similarity coefficient ranged from 0.692 to 0.987, with an average of 0.803. The variation in SSR DNA band patterns, average genetic similarity, and Shannon's Information Index among the wild-type strains of L. edodes obtained from the same region uncovered a vast genetic diversity in the wild germplasm found in China. Compared with L. edodes strains originating from other areas, the genetic diversity of those from the Yunnan Plateau, Hengduanshan mountains, Taiwan, and South China was significantly greater.Based on cluster analysis and PCoA analysis, the results indicated that all L. edodes strains were divided into three major groups. These results effectively displayed the differences between the strains from north and south China, and those from the same or adjoining regions could cluster preferentially into small groups in most cases, suggesting the positive correlation between the clustering results and the geographical origin for the wild germplasm of Chinese L. edodes.
     3. Single-factor cycle screening was used to optimize TRAP technological system. TRAP technique was also used to evaluate genetic diversity of above 56 strains of L. edodes in China.932 DNA fragments were amplified using 12 primer combinations, of which,929 fragments (99.68%) were polymorphic between two or more strains. The average pairwise genetic similarity coefficient was 0.696, with a range from 0.503 to 0.947. Results of average genetic similarity and Shannon's Information Index revealed a vast genetic diversity in the wild germplasm found in China, and the genetic diversity of strains from the Yunnan Plateau, Hengduanshan mountains, Taiwan, South and Northeast China was much higher than that of other regions. UPGMA cluster and PCoA analysis separated the tested strains into two major groups, and Group A was further divided into seven subgroups. Those strains from the same or adjoining regions could cluster preferentially into small groups in most cases. Results effectively displayed that genetic relationships among wild strains of L. edodes were highly associated with geographic distribution.
     4. Both results of SSR and TRAP indicated that these two highly polymorphic marker techniques were particularly useful for study on L. edodes'wild germplasm in China. There was rich genetic diversity in Chinese wild germplasm of L. edodes, and significant genetic differences exited in eight natural populations of shiitake mushroom in China. Results well reflected geographical distribution of tested wild strains of L. edodes in this study. Populations of L. edodes from Yunnan Plateau and Northeast China were separated independently to other ones among the eight populations. Data from both SSR and TRAP analysis were combined to reveal genetic diversity in Chinese wild germplasm of L. edodes. Results of combined analysis were highly similar to those from single TRAP analysis (Relative coefficient was 0.99 between them), however, were little similar to those from SSR analysis (Relative coefficient was 0.68 between them). UPGMA analysis based on average genetic similarity between two different populations also preferably displayed geographical distribution among the eight populations.
     5. Single-factor cycle screening and gradient PCR were used to optimize IRAP technological system. Based on the optimized PCR system,19 pairs of polymorphic primer combinations of IRAP and REMAP were utilized to demonstrate genetic diversity among 44 cultivated strains of L. edodes in China. Among 281 amplified DNA fragments, 273 (99.6%) out of them were polymorphic between two or more strains. The pairwise genetic similarity coefficient ranged from 0.495 to 0.975, with an average of 0.668. Both results from UPGMA cluster and PCoA showed that all the strains of L. edodes were divided into four groups, according to differences in cultivated substrate, temperature and growth period of L. edodes. Group A1 was mainly composed of L. edodes strains for sawdust cultivation, fruiting in high or broad temperature. Group A2 consisted of strains for sawdust cultivation, fruiting in medium or low-medium temperature with medium-short growth period. Group A3 included strains for sawdust cultivation, fruiting in medium or low-medium temperature with medium-long growth period. Group B mainly contained L. edodes strains for wood log cultivation. Some strains with close cluster relation indicated some similar agronomic characters.
     6. SCAR markers were developed based on IRAP and REMAP analysis of cultivated stains of Chinese shiitake mushroom. Two specific amplified DNA fragments from strain 9608 (1712bp) and L135 (2549bp) were excised from agarose gels, cloned and sequenced. Results of BLAST search displayed that the sequence of specific fragment from strain 9608 showed homology with transposase of Phakopsora pachyrhizi. According to the sequence of the strain-specific fragments, two pairs of SCAR primers was designed to diagnose strain 9608 and L135 respectively, using on-line Primer 3 program. This study provided a new developing method for SCAR markers, and SCAR markers exploited here were useful for precisely and rapidly distinguishing strains of L. edodes.
     As a whole, all of the four new molecular markers are highly polymorphic, and suitable for analyzing genetic diversity of L. edodes in China. Genetic information of L. edodes germplasm in China revealed by the four markers was consistent with those of previous studies. Therefore, the technological systems of four new molecular markers optimized and established in present study were practical and efficient, thus providing powerful tools for development of strains-special SCAR markers, cross breeding, construction of genetic map and mapping QTL in L. edodes.
引文
[1]鲍大鹏,王南,谭琦,陈明杰,郭倩,贺冬梅,郭力刚,潘迎捷.不同地域柳松菇菌株遗传多样性的初步研究.食用菌学报,2000,7(3):16-20
    [2]陈明杰,谭琦,汪昭月,冯志勇,贺冬梅,严培兰,关斯民,潘迎捷.应用RAPD技术对香菇融合菌株进行遗传鉴定.食用菌学报,1997,4(4):17-20
    [3]陈巍,王力荣,张绍铃,陈昌文,曹珂.利用SSR研究不同国家桃育成品种的遗传多样性.果树学报,2007,24(5):580-584
    [4]代江红,林芳灿.香菇自然群体中个体间的空间分布及其遗传联系.菌物系统,2001,20(1):100-106
    [5]邓旺秋,杨小兵,李泰辉,宋斌,林群英,周洁莹,夏凤娜.广东省草菇主要栽培菌株RAPD多态性分析.食用菌学报,2004,11(3):1-6
    [6]杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.中国医学科学院学报,2000,22(4):392-394
    [7]杜文兴,虞德兵,刘红林,练春兰,候水生,王林云.双重抑制PCR技术分离鹅微卫星标记.南京农业大学学报,2005,28(3):63-67
    [8]杜晓云,罗正荣.部分柿属植物IRAP反应体系的建立和指纹图谱构建.农业生物技术学报,2006,14(6):931-936
    [9]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,2-21
    [10]付俊生.草菇杂交育种研究及其分子遗传标记的建立.[硕士学位论文].福州:福建农林大学图书馆,2007
    [11]高风英,叶星,卢迈新,黄樟翰,张庭.3个奥利亚罗非鱼群体遗传多样性的RAPD分析和SCAR标记的转化.上海水产大学学报,2008,17(1):22-27
    [12]高巍.金针菇SCAR标记遗传连锁图的构建.[硕士学位论文].福州:福建农林大学图书馆,2007
    [13]龚利娟,李玉,刘淑艳.香菇品种遗传多样性RAPD分子标记的研究.菌物研究,2005,3(1):17-21
    [14]郭大龙,罗正荣.柿和君迁子SSR分析技术的建立.农业生物技术学报,2004,12(4):386-389
    [15]郭大龙,罗正荣.一种利用ISSR开发SSR引物的方法.植物生理学通讯,2006,42(2):268-270
    [16]郭大龙.几种分子标记技术的建立及其在部分柿属植物亲缘关系研究中的应用.[博士学位论文].武汉:华中农业大学图书馆,2006
    [17]何凯,张琴,赵胜.单核苷酸多态性的研究进展.西南民族大学学报(自然科学 版),2004,30(5):619-623
    [18]蒋彩虹,王元英,孙玉合.SSR和ISSR标记技术应用进展.中国烟草科学,2007,28(28):1-5
    [19]黎裕,贾继增,王天宇.分子标记的种类及其发展. 生物技术通报,1999,4:19-22
    [20]李安政.香菇交配型因子次级重组体及与交配型因子连锁的分子标记的鉴定.[博士学位论文].武汉:华中农业大学图书馆,2006
    [21]李强,万建民.SSRHunter,一个本地化的SSR位点搜索软件的开发.遗传,27(5):808-810
    [22]李明芳,郑学勤.开发SSR引物方法之研究动态.遗传,2004,26(5):769-776
    [23]梁枝荣,安沫平,通占元.香菇原生质体分离诱变育种研究. 微生物学通报,2001,28(2):38-41
    [24]林范学,程水明,李安政,林芳灿.香菇基因组中EST-SSR的构成和分布.微生物学通报,2007a,34(3):438441
    [25]林范学,程水明,李安政,林芳灿.香菇EST-SSR引物筛选.农业生物技术学报,2007b,15(2):358-359
    [26]林范学.香菇分子连锁图构建和数量性状座位(QTL)分析.[博士学位论文].武汉:华中农业大学图书馆,2007
    [27]刘国振,刘振岳,贾建航,刘丽娟,泰立芳,李小兵,朱衡,朱立煌.用RAPD方法对平菇、香菇属间原生质体融合子的研究.遗传,1995,17(5):37-40
    [28]刘春如,易诚.香菇的营养价值和药用价值.中国林副特产,2002,60(1):52-53
    [29]李月梅.香菇的研究现状及发展前景.微生物学通报,2005,32(4):149-152
    [30]刘林,李成云,杨静,艳芬,李进斌,周晓罡,王云月,朱有勇.灰盖鬼伞基因组中微卫星序列的组成.西南农业学报,2006,19(1):131-135
    [31]吕作舟.食用菌栽培学.北京:中国农业出版社,2006,130-155
    [32]卯晓岚.中国香菇属的种类及香菇的自然分布.中国食用菌,1996,15(3):34-36
    [33]苗培明,罗淑萍,范玲.棉花TRAP-PCR扩增体系的建立.新疆农业科学,2008,45(6):1007-1011
    [34]潘迎捷,陈明杰,汪昭月,龚胜萍,郑海歌.香菇和虎皮香菇的种间原生质体融合.上海农业学报,1992,8(1):9-12
    [35]秦莲花,宋春艳,谭琦,陈明杰,潘迎捷.用ITS和ISSR分子标记技术鉴别香菇生产用种.菌物学报,2006,25(1):94-100
    [36]秦莲花,张红,陈明杰,谭琦,潘迎捷.微卫星(TATG)n在香菇菌种中的验证.微生物学报,2004,44(4):474-478
    [37]施庆利,罗信昌.RAPD技术在木耳杂交种及原生质体融合子鉴定分析中的应用.中国食用菌,1994,12(6):3-4
    [38]舒小林,明庆忠,滕卫霞,詹建立.云南生物多样性的保护和可持续利用.云南环境科学,2006,25(2):14-16
    [39]宋思扬,曾伟,陈融.一个与双孢蘑菇子实体品质相关的DNA片段的克隆.食用菌学报,2000,7(3):11-15
    [40]宋小亚,肖扬,边银丙.ISSR标记在黑木耳单核体遗传分析中的应用.菌物学报,2007,26(4):528-533
    [41]孙洪,程静,詹克慧,张相武,杨艳会.ISSR标记技术及其在作物遗传育种中的应用.分子植物育种,2005,3(1):123-127
    [42]孙勇,林芳灿.中国香菇自然种质遗传多样性的RAPD分析.菌物系统,2003,22(3):387-393
    [43]谭祖猛,李云昌,胡琼,梅德圣,李英德,徐育松.通过分子标记估算遗传距离预测甘蓝型油菜的杂种优势.中国油料作物学报,2007,29(2):20-26
    [44]谭琦,潘迎捷,黄为一.中国香菇育种的发展历程.食用菌学报,2000,7(4):48-52
    [45]谭琦,杨建明,陈明杰,贺冬梅,潘迎捷,黄为一.用RAPD技术对香菇非对称杂交后代遗传性状的分析.食用菌学报,2001,8(2):10-14
    [46]唐利华,肖扬,边银丙.黑木耳ISSR-PCR反应体系的正交优化.菌物研究,2005,3(4):15-18
    [47]唐利华,肖扬,边银丙.中国黑木耳主要栽培菌株ISSR指纹分析及SCAR标记.菌物学报,2008,27(2):243-251
    [48]田娟,李玉祥,李惠君.香菇金针菇远缘亲本原生质体融合及融合子检测.南京农业大学学报,1996,19(3):63-69
    [49]王石平,张启发.高等植物基因组中的反转录转座子.植物学报,1998,40(4):291-297.
    [50]王澄澈,苗艳芳,梁枝荣,田娟.香菇和凤尾菇原生质体融合初探. 西北农业大学学报,2000,28(2):68-71
    [51]王健,图力古尔,李玉.香菇属真菌的研究进展兼论中国香菇属的种类资源.吉林农业大学学报,2001,23(2):41-45
    [52]王淑珍,白晨,高雁,范俊,杨家峰,杨英杰.松茸与香菇原生质体融合的研究.食用菌,2003,2:9-10
    [53]王淑珍,白晨,范俊,高雁,扬家峰,扬英杰.灵芝与糙皮侧耳原生质体融合子基因组RAPD分析.食用菌学报,2003,10(1):1-5
    [54]王芳,周延清.TRAP标记技术在植物研究中的应用.河南农业科学,2008,6: 15-17
    [55]王晓维,王立新,常利芳,魏建民,赵昌平.小麦AFLP-SCAR标记的开发及应用.麦类作物学报,2008,28(5):738-744
    [56]王子迎,王书通.安徽野生香菇遗传多样性及杂种优势的ISSR分析.菌物学报,2006,25(2):211-216
    [57]吴康云,边银丙.黑木耳种内杂交子的鉴定技术.菌物系统,2002,21(2):210-214
    [58]吴松权,管清杰,全雪丽,傅伟杰,吴基日.松茸SCAR标记的建立.林业科学,2007,43(10):150-153
    [59]吴学谦,李海波,魏海龙,付立忠,吴庆其,彭华正,朱睦元.SCAR分子标记技术在香菇菌株鉴定上的应用研究.菌物学报,2005,24(2):259-266
    [60]肖炳光,杨本超.利用IRAP标记分析烤烟品种间遗传差异.西北植物学报,2006,26(6):1119-1124
    [61]肖扬.PCR技术在黑木耳交配型因子研究中的应用.[硕士学位论文].武汉:华中农业大学图书馆,2005
    [62]肖扬,李黎,吴茜,边银丙.香菇SSR-PCR技术体系的优化及其在遗传多样性分析中的初步应用.中国农学通报,2009a,25(2):20-24
    [63]肖扬,李黎,吴茜,边银丙.香菇反转录转座子间扩增多态性(IRAP) PCR反应体系的研究.中国农学通报,2009b,25(7):47-51
    [64]肖扬,陈隆钟,吴茜,边银丙.数据库搜索及ISSR-抑制PCR法开发香菇微卫星标记.菌物学报,2009c,28(4):548-552
    [65]谢宝贵,刘维侠,王秀全,江玉姬.金针菇子实体颜色基因的分子标记.福建农林大学学报(自然科学版),2004,33(3):363-368
    [66]谢文刚,张新全,彭燕,马啸,曾兵.鸭茅SSR-PCR反应体系优化及引物筛选.分子植物育种,2008,6(2):381-386
    [67]忻雅,崔海瑞,张明龙,姚艳玲,卢美贞,金基强,林容杓,崔水莲.白菜EST-SSR标记的通用性.细胞生物学杂志,2006,28:248-252
    [68]徐学锋,林范学,程水明,李安政,林芳灿.中国香菇自然种质的rDNA遗传多样性分析.菌物学报,2005,24(1):29-35
    [69]许美燕,唐传红,张劲松,唐庆九,杨焱,贾薇,潘迎捷.利用SRAP和ISSR建立快速鉴定灵芝属菌株的SCAR标记.菌物学报,2008,27(5):707-717
    [70]薛丽娥,顾沁雪.运用原生质体融合技术培育香菇新品种.贵州农业科学,1998,26(3):23-24
    [71]闫培生,蒋家慧,王东昌,罗信昌,周启.利用RAPD标记构建木耳属种间关 系的研究.菌物学报,2002,21(1):47-52
    [72]杨志辉,朱杰华,张凤国.中国马铃薯晚疫病菌AFLP遗传多样性分析.菌物学报,2008,27(3):351-359
    [73]杨传平,王艳敏,魏志刚.利用正交设计优化白桦的SSR-PCR反应体系.东北林业大学学报,2006,34(6):1-3
    [74]姚芳杰.金顶侧耳基因连锁图谱与双-单交配机制解析及高温型菌株选育研究.[博士学位论文].长春:吉林农业大学图书馆,2002
    [75]应正河.RAPD、SRAP和ISSR标记在香菇种质资源的应用及其SCAR标记的建立.[硕士学位论文].福州:福建农林大学图书馆,2004
    [76]袁力行,傅骏骅,刘新芝,彭泽斌,张世煌,李新海,李连城.利用分子标记预测玉米杂种优势的研究.中国农业科学,2000,33(6):6-12
    [77]臧威,张兰兰,张国民,李柱刚,张淑园,孙剑秋,严善春.稻瘟病菌SSR反应体系的优化.中国农学通报,2007,23(6):174-178
    [78]曾伟,宋思扬,王泽生,苏文金.双孢蘑菇及大肥菇的种内及种间多态性RAPD分析.菌物系统,1999,18(1):55-60
    [79]曾伟,宋思扬,陈融,王泽生,苏文金.应用RAPD技术分析两个双孢蘑菇遗传家系.微生物学通报,2000,27(2):132-134
    [80]曾东方,陈升明.珍稀共生食用真菌松茸DNA指纹研究.园艺学报,2000,27(3):223-225
    [81]曾兵,张新全,范彦,兰英,马啸,彭燕,刘伟.鸭茅种质资源遗传多样性的ISSR研究.遗传,2006,28(9):1093-1100
    [82]詹才新,朱兰宝,杨新美.RAPD技术在金针菇杂交育种中的应用.食用菌学报,1995,2(1):7-12
    [83]詹才新,朱兰宝,杨新美.利用RAPD技术评估金针菇种质资源.食用菌学报,1997,4(1):1-7
    [84]詹才新,张引芳,凌霞芬,贺冬梅,严培兰,高红亮.中国主栽双孢蘑菇菌株的DNA多态性.食用菌学报,1998,5(2):1-7
    [85]张引芳,陈春涛.香菇菌种不同组织分离物的DNA差异性研究.食用菌学报,1996,3(3):1-4
    [86]张引芳,潘迎捷,陈春涛,姚占芳.中国香菇栽培品种的遗传相关性研究.农业生物技术学报,1996,4(2):141-146
    [87]张日清,谭晓风,吕芳德.林木RAPD标记技术研究进展.吉首大学学报(自然科学版),2001,22(3):16-21
    [88]张瑞颖.香菇菌株多相鉴定鉴别技术研究.[硕士学位论文].北京:中国农业大学图书馆,2004
    [89]张青林,罗正荣.ISSR及其在果树上的应用.果树学报,2004,21(1):54-58
    [90]张永强,罗信昌.木耳交配型混合集群RAPD分析.菌物系统,1999,18(2):192-196
    [91]张志伟,韩曜平,曹哲明.草鱼TRAP-PCR反应体系的建立.生物技术,2006,16(2):31-34
    [92]郑丽珊,石玉真,王静毅,黄秉智,冀小蕊,张保才,袁有禄,武耀廷.棉花EST-SSRs在香蕉中的通用性.中国农学通报,2008,24(1):33-37
    [93]邹喻苹,葛颂.新一代分子标记—SNPs及其应用.生物多样性,2003,11(5):370-382
    [94]周洪生.RFLP在玉米遗传和育种中的应用.作物杂志,1992,4:7-9
    [95]朱虎.高赖氨酸蛋白基因转化银耳研究.[硕士学位论文].福州:福建农林大学图书馆,2004.
    [96]朱志凯,方良俊,招倩婷,邓燕华,苏涣杰.水稻TRAP-PCR反应体系优化与P-糖蛋白基因片段的分析.分子植物育种,2008,6(1):65-70
    [97]卓英,谭琦,陈明杰,曹晖,贾亚妮,潘迎捷.香菇主要栽培菌株遗传多样性的AFLP分析.菌物学报,2006,25(2):203-210
    [98]Alwala S, Suman A, Arro J A, Veremis J C, Kimbeng C A. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci,2006,46:448-455
    [99]Aranzana M J, Garcia-Mas J, Carbo J, Arus P. Development and variability analysis of microsatellite markers in peach. Plant Breeding,2002,121:87-92
    [100]Bastide P Y, Horgen P A. Mitochondrial inheritance and the detection of non-parental mitochondrial DNA haplotypes in crosses of Agaricus bisporus homokaryons. Fungal Genet Biol,2003,38:333-342
    [101]Barroso G, Labarere J. Molecular organization and heredity of the mitochondrial genome in Basidiomycetes. Mycoscience,1995,36:135-142
    [102]Beckmann J S, Soller M. Toward a Unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites. Bio Technology,1999,8: 930-932
    [103]Bennetzen J L. The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol,1996,4:347-353
    [104]Breto M P, Ruiz C, Pina J A, Asins M J. The diversification of Citrus clementina Hort. Es Tan.; a vegetatiely propagated crop species. Mol Phylogenet Evol,2001,21(2):285-293
    [105]Budak H, Shearman R C, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet,2004,109:280-288
    [106]Budak H, Shearman R C, Gaussoin R E, Dweikat I. Application of sequence-related amplified polymorphism markers for characterization of Turfgrass species. HortScience,2004,39:955-958
    [107]Bunyard B A, Nicholson M S, Daniel J. A systematic assessment of Morchella using RFLP analysis of the 28S ribosomal RNA gene. Mycologia,1994,86(6): 762-772
    [108]Burgess T, Wingfield M J, Wingfield B D. Simple sequence repeat (SSR) markers distinguish between morphotypes of Sphaeropsis sapinea. Appl Environ Microbiol,2001,67:354-362
    [109]Bushman F. Lateral DNA transfer:mechanisms and consequences. Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press,2002.1-448
    [110]Casacuberta J M, Antiago N S. Plant LTR-retrotransposons and MITEs:control of transposition and impact on the evolution of plant genes and genomes. Gene,2003, 311(2003):1-11
    [111]Castle A J, Horgen P A, Anderson J B. Restriction fragment length polymorphisms in the mushroom Agaricus brunnescens and Agaricus bitorquis. Appl Environ Microbiol,1987,53(4):816-822
    [112]Callac C, Desmerger R W, Kerrigan R W, Imbernon M. Conservation of genetic linkage with map expansion in distantly related crosses of Agaricus bisporus. FEMS Microbiol Lett,1997,146:235-240
    [113]Chadha S, Gopalakrishna T. Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome,2005,48:943-945
    [114]Chang S T. Witnessing the Development of the Mushroom Industry in China. Acta Edulis Fungi,2005,12 (supplement):3-19 [Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products]
    [115]Chen J, Hu J, Vick B A, Jan C C. Molecular mapping of a nuclear male-sterility gene in sunflower (Helianthus annuus L.) using TRAP and SSR markers. Theor Appl Genet,2006,113:122-127
    [116]Chen X, Michelle S, Romaine C P. A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol,2000,66 (10):4510-4513
    [117]Chiu S W, Ma A M, Lin F C, Moore D. Genetic homogeneity of cultivated strains of shiitake (Lentinula edodes) used in China as revealed by the polymerase chain reaction. Mycol Res,1996,100(11):1393-1399
    [118]Chiu S W, Wang Z M, Chiu W T, Lin F C, Moore D. An integrated study of individualism in Lentinula edodes in nature and its implication for cultivation strategy. Mycol Res,1999,103:651-660
    [119]Cho Y G, Ishii T, Tenmykh S, Chen X, Lipovich L, McCouch S R. Diversity of microsatellites derived form genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet,2000,100:713-722
    [120]Cipriani, G, Marrazzo, M T, Gaspero G, Testolin R. DNA microsatellite in fruit crops:isolation, length polymorphisim, inheritance, somatic stability and cross-species conservation. Acta Hort,2001,546:145-150
    [121]DeMarco R, Venancio TM, Verjovski-Almeida S. SmTRCl, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evol Biol,2006,6:89
    [122]Di ez J, Beguiristain T, Tacon F L, Casacuberta J M, Tagu D. Identification of Tyl-copia retrotransposons in three ectomycorrhizal basidiomycetes:evolutionary relationships and use as molecular markers. Curr Genet,2003,43:34-44
    [123]Dutech C, Enj albert J, Fournier E, Delmotte F, Barres B, Carier J, Tharreau D, Giraud T. Challenges of microsatellite isolation in fungi. Fungal Genet Biol,2007, 44:933-949.
    [124]Ellis T H, Poyser S J, Knox M R, Vershinin A V, Ambrose M J. Polymorphism of insertion sites of Tyl-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet,1998,260(1):9-19
    [125]Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucubita pepo using SRAP and AFLP markers. Theor Appl Genet,2003,107: 271-282
    [126]Fischer B M, Salakhutdinov I, Akkurt M, Eibach R, Edwards K J, Topfer R, Zyprian E M. Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet,2004,108 (3):501-515
    [127]Fisher P J, Gardner R C, Richardson T E. Single locus microsatellites isolated using 5'anchored PCR. Nuc Acid Res,1996,24(21):4369-4371
    [128]Fisher D, Bachmann K. Microsatellite enrichment in organisms with large genomes. Biotechniques,1998,24:796-802
    [129]Fisher M C, Koenig G, White T J, Taylor J W. A test for concordance between the multilocus genealogies of genes and microsatellites in the pathogenic fungus Coccidioides immitis. Mol Phylogenet Evol,2000,17:1164-1174
    [130]Flavell A J, Knox M R, Pearce S R, Ellis T H. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J,1998,16(5): 643-650
    [131]Flavell A J, Bolshakov V N, Booth A, Jing R, Russell J, Ellis T H, Isaac P. A microarray-based high throughput molecular marker genotyping method:the tagged microarray marker (TAM) approach. Nuc Acid Res,2003,31(19):e115
    [132]Foulongne-Oriol M, Spataro C, Savoie J M. Novel microsatellite markers suitable for genetic studies in the white button mushroom Agaricus bisporus. Appl Microbiol Biotechnol,2009, Doi:10.1007/s00253-009-2030-8
    [133]Fukuda M, Harada Y, Imahori S, Fukumasa-Nakai Y, Hayashi Y. Inheritance of mitochondrial DNA in sexual crosses and protoplast cell fusions in Lentinula edodes. Curr Genet,1995,27:550-554
    [134]Gabriel A, Nceke J D. Retrotransposon revers transcription. In:Skalka AM, Goff SP, eds. Reverse transcriptase. New York:Cold Spring Harbor Laboratory Press,1993, 275-328
    [135]Gao L F, Jing R L, Huo N X, Li Y, Li X P, Zhou R H, Chang X P, Tang J F, Ma Z Y, Jia J Z. One hundred and one new microsatellite loci derived from ESTs (EST SSRs) in bread wheat. Theor Appl Genet,2004,108(7):1392-1400
    [136]Gilbert J E, Lewis R V, Wilkinson M J, Caligari P D S. Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet,1999,98:1125-1131
    [137]Goodwin S B, van der Lee T A, Cavaletto J R, Hekkert B L, Crane C F, Kema G H. Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the Septoria tritici blotch pathogen Mycosphaerella graminicola. Fungal Genet Biol,2007,44:398-414
    [138]Grandbastien M A. Retroelements in higher plants. Trends Genet,1992,8: 103-108
    [139]Groot M J A, Bundock P, Hooykaas P J J. Agrobacterium tumefaciens- mediated transformation of filamentous fungi. Nat Biotechnol,1998, (16):839-842
    [140]Guan X J, Xu L, Shao Y C, Wang Z R, Chen F S. Differentiation of commercial strains of Agaricus species in China with inter-simple sequence repeat marker. World J Microbiol Biotechnol,2008,24(8):1617-1622
    [141]Guo D, Zhang H, Luo Z. Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis. Plant Science,2006,170: 528-533
    [142]Hammond-Kosack K E, Jone J D. Plant disease resistance. Ann Rev Plant Phycicol Mol Biol,1997,48:575-607
    [143]Hayden M J, Sharp P J. Sequence-tagged microsatellite profiling (STMP):a rapid technique for developing SSR markers. Nuc Acid Res,2001a,29 (8):e43
    [144]Hayden M J, Sharp P J. Targeted development of informative microsatellite (SSR) markers. Nuc Acid Res,2001b,29 (8):e44
    [145]Hibbett D S, Fukumasa-Nakai Y, Tsuneda A, Donoghue M J. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia, 1995,87:618-638
    [146]Hibbett D S, Hansen K, Donoghue M J. Phylogeny and biogeography of Lentinula inferred from an expanded rDNA dataset. Mycol Res,1998, 102:1041-1049
    [147]Hibbett D S. Shiitake mushrooms and molecular clocks:historical biogeography of Lentinula. JBiogeogr,2001,28:231-241
    [148]Hu J G, Vick B A. Target Region Amplification Polymorphism:A novel marker technique for plant genotyping. Plant Mol Biol Rep,2003,21:289-294
    [149]Hu J, Ochoa O E, Truco M J,Vick B A. Application of TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica,2005,144:225-235
    [150]Hu J, Mou B, Vick B A. Genetic diversity of 38 spinach (Spinacia oleracea L.) germplasm accessions and 10 commercial hybrids assessed by TRAP markers. Genet Resour Crop Evol,2007,54:1667-1674
    [151]Huang S, Zhang B, Milbourne D. Development of pepper SSR markers from sequence databases. Euphytica,2000,117:163-167.
    [152]Jany J L, Bousquet J, Khasa D P. Microsatellite markers for Hebeloma species developed from expressed sequence tags in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Ecol Notes,2003,3:659-661
    [153]Jany J L, Bousquet J, Gagne A, Khasa D P. Simple sequence repeat (SSR) markers in the ectomycorrhizal fungus Laccaria bicolor for environmental monitoring of introduced strains and molecular ecology applications. Mycol Res, 2006,110:51-59
    [154]Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet, 1999,98(5):704-711
    [155]Kalendar R, Schulman A H. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols,2006,1(5):2478-2484
    [156]Kanchanaprayudh J, Lian C, Zhou Z, Hogetsu T, Sihanonth P. Polymorphic microsatellite markers of a Pisolithus sp. from a Eucalyptu plantation. Mol Ecol Notes,2002,2:263-264
    [157]Kaneko I, Tanaka A, Tsuge T. REAL, an LTR retrotransposon from the plant pathogenic fungus Alternaria alternata. Mol Gen Genet,2000,264:1432-1874
    [158]Karaoglu H, Lee C M, Meyer W. Survey of simple sequence repeats in completed fungal genomes. Mol Phylogenet Evol,2004,22(3):639-649
    [159]Kaye C, Milazzo J, Rozenfeld S, Lebrun M, Tharreau D. The development of simple sequence repeat markers for Magnaporthe grisea and their integration into an established genetic linkage map. Fungal Genet Biol,2003,40:207-214
    [160]Kempken F, Kuck U. Transposons in filamentous fungi-facts and perspectives. BioEssays,1998,20:652-659
    [161]Kerrigan R W, Royer J C, Baller L M, Kohli Y, Horgen P A, Anderson J B. Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus. Genetics,1993,133:225-236
    [162]Khush R S, Becker E, Wach M. DNA amplification polymorphisms of the cultivated mushroom Agaricus bisporus. Appl Envion Mcrobiol,1992,58(6):2971-2977
    [163]Kikuchi K, Matsushita N, Suzuki K. Development of SSR markers from an ectomycorrhizal fungus, Suillus bovines. Mycoscience,2007,48:255-258
    [164]Kim M S, Klopfenstein N B, Hanna J W, McDonald G I. Characterization of North American Armillaria species:genetic relationships determined by ribosomal DNA sequences and AFLP markers. For Path,2006,36:145-164
    [165]Konieczny A, Ausubel F M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific markers. The Plant J,1993,4:403-410
    [166]Kumar A. The adventures of the Ty1-copia group of retrotransposons in plants. Trends Genet,1996,12:41-43
    [167]Kumar A, Bennetzen J L. Plant retrotransposons. Ann Rev Genet,1999,33: 479-532
    [168]Kunze R, aedle H, Lonnig W E. Plant transposable elements. Adv Bot Res,1997, 27:331-470
    [169]Kwan H S and Xu H L. Construction of a genetic linkage map of shiitake mushroom Lentinula edodes strain L-54. J Biochem Mol Biol,2002,35(5):465-47
    [170]Labbe J, Zhang X, Yin T, Schmutz J, Grimwood J, Martin F, Tuskan G A, Tacon F L. A genetic linkage map for the ectomycorrhizal fungus Laccaria bicolor and its alignment to the whole-genome sequence assemblies. New Phytol,2008,180: 316-328
    [171]Langrell S R H, Lung-Escarmant B, Decroocq S. Isolation and characterization of polymorphic simple sequence repeat loci in Armillaria ostoyae. Mol Ecol Notes, 2001,5:305-307
    [172]Larraya L M, Perez G, Ritter E, Pisabarro A G, Ramirez L. Genetic Linkage Map of the Edible Basidiomycete Pleurotus ostreatus. Appl Envir Microbiol,2000,66(12): 5290-5300
    [173]Lewontin R C. Population genetics. Annu Rev Genet,1973,7:1-17
    [174]Lee Y K, Chang H, Kim J S. Lignocellulolytic mutants of Pleurotus ostreatus induced by gamma ray radiation and their genetic similarities. Rad Phys Chem,2000, 57(2):145-150
    [175]Leung G S W, Zhang M, Xie W J, Kwan H S. Identification by RNA fingerprinting of genes differentially expressed during the development of the basidiomycetes Lentinula ededes. Mol Gen Genet,2002,262:977-990
    [176]Li G, Quiros C F. Sequence related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:Its application to mapping and gene tagging in Brassica. Theor Appl Genet,2001,103:455-461
    [177]Li H B, Wu X Q, Peng H Z, Fu L Z, Wei H L, Wu Q Q, Jin Q Y, Li N. New available SCAR markers:potentially useful in distinguishing a commercial strain of the superior type from other strains of Lentinula edodes. Appl Microbiol Biotechnol, 2008,81:303-309
    [178]Li L, Li J, Zou L, Bai S, Niu L, Ma Y. RAPD analysis of genetic diversity of nine strains of Auricularia auriculacultivated in Heilongjiang Province. Journal of Forestry Research,2007,18(2):136-138
    [179]Li Y C, Hu Q, Mei D S, Li Y D, Xu Y S, Tan Z M. Molecular Assisted Breeding and Adaptability Analysis of Zhongyouza 11with Super High Oil Content. Agricultural Sciences in China,2007,6(11):1306-1314
    [180]Lian C, Zhou Z, Hogetsu T. A simple method for amplified fragments developing microsatellite markers using of Inter-simple sequence repeat (ISSR). J Plant Res,2001,114:381-385
    [181]Lian C, Hogetsu T, Matsushita N, Guerin-Laguette A, Suzuki K, Yamada A. Development of microsatellite markers from an ectomycorrhizal fungus, Tricholoma matsutake, by an ISSR-suppression-PCR method. Mycorrhiza,2003,13:27-31
    [182]Lim S, Notley-McRobb L, Lim M, Carter D A. A comparison of the nature and abundance of microsatellites in 14 fungal genomes. Fungal Genet Biol,2004,41: 1025-1036
    [183]Lin X, Kaul S, Rounsley S, Shea T P, Benito M I, Town C D, Fujii C Y, Mason T, Bowman C L, Barnstead M, Feldblyum T, Buell C R, Ketchum K A, Ronning C M, Koo H, Moffat K, Cronin L, Shen M, Pai G, Van Aken S, et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature,1999,402:761-768.
    [184]Liu Z H, Anderson J A, Hu J, Friesen T L, Rasmussen J B, Faris J D. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet,2005,111:782-794
    [185]Ma K H, Lee G A, Lee S Y, Gwag J G, Kim T S, Kong W S, Seo K I, Lee G S, Park Y J. Development and characterization of new microsatellite markers for the oyster mushroom (Pleurotus ostreatus). J Microbiol Biotechnol,2009, Doi:10.4014/jmb.0811.604
    [186]Manninen O, Kalendar R, Robison J, Schulman A. Application of BARE-1 retrotransposon markers to the mapping of major resistance gene for net blotch in barley. Mol Gen Genet,2000,264:325-334
    [187]Matsumoto T, Fukumasa-Nakai Y. Mitochondrial DNA polymorphism and inheritance in Lentinula edodes and Pleurotus ostereatus. Rept Tottori Mycol Inst, 1993,31:153-161
    [188]Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario LM, Intini M, Suzuki K. Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience,2005,46(2):90-96
    [189]May G, Taylor J W. Patterns of mating and mitochondrial DNA inheritance in the agaric basidiomycete Coprinus cinereus. Genetics,1988,118:213-22
    [190]Miller-Taillon P, Patricia, Gu Z, Li Q, Hillier L D, Kwok P Y. Overlapping genomic sequences:a treasure trove of single-nucleotide polymorphisms. Genome Res,1998,8:748-754
    [191]Miller W J, Capy P. Mobile genetic elements:Protocols and genomic applications. Methods in Molecular Biology. New Jersey:humana press,2004,260: 146-171
    [192]Miyazaki K, Huang F, Zhang B, Shiraishi S, Sakai M, Shimaya C, Kazuo Shishido. Genetic map of a basidiomycete fungus, Lentinula edodes (shiitake mushroom), constructed by tetrad analysis. Breeding Sci,2008,58(1):23-30
    [193]Miyazaki Y, Nakamura M, Babasaki K. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomecete Leninula edodes. Fungal Genet Biol,2005,42: 493-503
    [194]Muraguchi H, Kamada T. The ich1 gene of the mushroom Coprinus cinereus is essential for pileus formation in fruiting. Development,1998,125(16):3133-3141
    [195]Muraguchi H, Ito Y, Kamada T, Yanagia S O. A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms. Fungal Genet Biol,2003,40:93-102
    [196]Murata H, Yamada A. marYl, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microb,2000,66(8):3642-3645
    [197]Murata H, Miyazaki Y, Babasaki K. The long terminal repeat (LTR) sequence of marYl, a retroelement from ectomycorrhizal homobasidiomycete Tricholoma matsutake is highly conserved in various higher fungi. Biosci Biotechnol Biochem, 2001,65(10):2297-2300
    [198]Murata H, Babasaki K, Yamada A. Highly polymorphic DNA markers to specify strains of the ectomycorrhizal basidiomycete Tricholoma matsutake based on σmarY1, the long terminal repeat of gypsy-type retroelement marYl. Mycorrhiza,2005,15: 179-186
    [199]Matsumoto T, Fukumasa-Nakai Y. Mitochondrial DNA polymorphism and inheritance in Lentinula edodes and Pleurotus ostreatus. Rept Tottori My col Inst, 1993,31:153-161
    [200]Myers R M, Maniatis T, Lerman L S. Detection and localization of single base changes by DGGE. Methods Enzymol,1987,155:501-527
    [201]Nakamura T, Fukuda M, Matsugo S, Uzuka Y. Analysis of mitochondrial DNA restriction fragment length polymorphisms for examining genetic variability among isolates of Phellinus linteus. Mycoscience,2002,43(6):443-445
    [202]Nakayashiki H, Kiyotomi K, Tosa Y, Mayama S. Transposition of the Retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics, 1999,153:693-703
    [203]Naqvi N I, Chattoo B B. Development of a sequence characterized amplified region based indirect selection method for a dominant blast-resistance gene in rice. Genome,1996,39:26-30
    [204]Neuveglise C, Sarfati J, Latge J P, Paris S. Afutl, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res,1996,24(8):1428-1434
    [205]Neuveglise C, Feldmann H, Bon E, Gaillardin C, Casaregola S. Genomic evolution of the long terminal repeat retrotranspo sons in Hemiascomycetous Yeasts. Genome Res,2002,12:930-943
    [206]Okuda Y, Murakami S, Matsumoto T. A genetic linkage map of Pleurotus pulmonarius based on AFLP markers, and localization of the gene region for the sporeless mutation. Genome,2009,52(5):438-446
    [207]Olson M, Hood L, Cantor C, Botstein D. A common language for physical mapping of the human genome. Science,1989,245:1434-1435
    [208]Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using polymerase chain reaction. Genomics, 1989,5:874-879
    [209]Osipova E S, Koveza O V, Troitskii A V, Dolgikh Y I, Shamina Z B, Gostimskii S A. Analysis of specific RAPD and ISSR fragment s in somaclonal maize (Zea mays) and development of SCAR markers based on them. Genetika,2003,39 (12): 1664-1672
    [210]Paetkau D. Microsatellites obtained using strand extension:An enrichment protocol. Biotechniques,1999,26:690-697
    [211]Paran I, Michelmore R W. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    [212]Park S K, Penas M M, Ramirez L, Pisabarro A G. Genetic linkage map and expression analysis of genes expressed in the lamellae of the edible basidiomycetes Pleurotus ostreatus. Fungal Genet Biol,2006,43:376-387
    [213]Pfaff T, Kahl G. Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Gen Genomics,2003,269:243-251
    [214]Porceddu A, Albertini E, Barcaccia G, Marconi G, Bertoli FB, Veronesi F. Development of SSAP markers based on an LTR-like sequence from Medicago sativa L. Mol Gen Genet,2002,267:107-114
    [215]Provan J, Powell W, Waugh R. Microsatellite analysis of relationships within cultivated potato (Solanum tuberosum). Theor Appl Genet,1996,92 (8):1078-10841
    [216]Qin L, Tang Q, Chen M, Pan Y. Use of inter simple sequence repeats markers to develop strain-specific SCAR markers for Lentinula edodes. FEMS Microbiol Lett, 2006,257:112-116
    [217]Rajiv K. DNA polymorphisms in Lentinula edodes, the shiitake mushroom. Applied Environ Microbiol,1991,57:1735-1739
    [218]Rassmann K, Schlotterer C, Tautz D A. Isolation of simple sequence loci for use in polymerase chain reaction-based DNA fingerprinting. Electrophoresis,1991,12: 1113-118
    [219]Riccioni C, Rubini A, Belfiori B, Passeri V, Paolocci F, Arcioni S. Tmtl:the first LTR-retrotransposon from a Tuber spp. Curr Genet,2008,53:23-34
    [220]Rohlf F J. NTSYS-pc:Numerical Taxonomy and Multivariate Analysis System.Version 2.1. Exeter Publications,2000, New York, USA
    [221]Roy M, Dubios M P, Proffit M, Vincenot L, Desmarais E, Selosse M A. Evidence from population genetics that the ectomycorrhizal basidiomycete Laccaria amethystina is an actual multihost symbiont. Mol Ecol,2008,17:2825-2838
    [222]Rubini A, Topini F, Riccioni C, Paolocci F, Arcioni S. Isolation and characterization of polymorphic microsatelliteloci in white truffle (Tuber magnatum). Mol Ecol Notes,2004,4:116-118
    [223]Schneider K, Borchardt D C, Schafer-Pregl R, Nagl N, Glass C, Jeppsson A, Gebhardt C, Salamini F. PCR-based cloning and segregation analysis of functional gene homologues in Beta vulgaris. Mol Gen Genet,1999,262:515-524
    [224]Schulman A H, Flavell A J, Ellis T H. The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol,2004,260:145-73
    [225]Scott K D, Eggler P, Seaton G, Rossetto M, Ablet E M, Lee L S, Henry R J. Analysis of SSRs derived from ESTs. TheorAppl Genet,2003,100:723-726
    [226]Scott L J, Cross M, Shepherd M, Maguire T, Henry R J. Increasing the efficiency of microsatellite discovery from poorly enriched libraries in coniferous forest species. Plant Mol Bio Rep,1999,17:351-354
    [227]Selkoe K A, Toonen R J. Microsatellite for ecologists:a practical guide to using and evaluating microsatellite markers. Ecol Lett,2006,9:615-629
    [228]Sha T, Zhang H, Ding H, Li Z, Cheng L, Zhao Z. Genetic diversity of Tricholoma matsutake in Yunnan Province. Chinese Sci Bull,2001,52(9):1212-1216
    [229]Sheldon AL. Equibility indices:dependence on the species count. Ecology,1969, 50:466-467
    [230]Shishido K, Nobusaka R, Kaneko S, Sato Y, Akiyama R, Miyazaki Y, Ninomiya M, Katsukawa S. Long terminal repeat of the mushroom retrotransposon functions as a dual terminator to transcription). Biosci Biotechnol Biochem,2007,71 (9):2321-2324
    [231]Singer M F. SINEs and LINEs:highly repeated short and long interspersed sequences in mammalian genomes. Cell,1982,28(3):433-434
    [232]Smith, J S C, Chin, E C L, Shu, H, Smith O S, wall S J, Senior M L, Mitchell S E, Kresovich S, Zeigle J. An evaluation the utility of SSR loci as molecular markers in maize (Zea mays L.):comparison with data from RFLPs and pedigree. Theor Appl Genet,1997,95:163-173
    [233]Sokal R R, Michener C D. A statistical method for evaluating systematic relationships. Univ Kans Sci Bull,1958,38:1409-1438
    [234]Steimel J, Chen W, Harrington T C. Development and characterization of microsatellite markers for the poplar rust fungi Melampsora medusae and Melampsora Iarici-populina. Mol Ecol Notes,2005,5:484-486
    [235]Strand M, Prolla T A, Liskay R M, Petes T D. Detabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repairs.1993, Nature, 365:272-276
    [236]Su H, Wang L, Ge Y, Feng E, Sun J, Liu L. Development of strain-specific SCAR markers for authentication of Ganoderma lucidum. World JMicrobiol Biotechnol,2008a,24:1223-1226
    [237]Su H, Wang L, Liu L, Chi X, Zhang Y. Use of inter-simple sequence repeat markers to develop strain-specific SCAR markers for Flammulina velutipes. JAppl Genet,2008b,49(3):233-235
    [238]Sun S J, Gao W, Lin S Q, Zhu J, Xie B G, Lin Z B. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Appl Microbiol Biotechnol,2006,72:537-543
    [239]Suoniemi A, Tanskanen J, Schulman A H. Gypsy-liker etrotransposons are wide spread in the plant kingdom. Plant J,1998,3:699-705
    [240]Tamura K, Nishioka M, Hayashi M, Zhang Z, Lian C, Hougetsu T, Harada K. Development of microsatellite markers by ISSR-suppression-PCR method in Brassica rapa. Breed Sci,2005,55 (2):247-252
    [241]Tanaka A, Miyazaki K, Murakami H, Shiraishi S. Sequence characterized amplified region markers tightly linked to the mating factors of Lentinula edodes. Genome,2004,47(1):156-62
    [242]Tauraz D. Hypervariability sequences simple repeats as a general source for polymorphic DNA markers. Nucleic Acids Res,1989,17:6463-6471
    [243]Terashima K, Cha J Y, Nagasawa E, Miura K. Genetic variation in Armillaria mellea subsp. nipponica estimated using IGS-RFLP and AFLP analyses. Mycoscience,2006,47:94-97
    [244]Terashima K, Matsumoto T, Hasebe K. Genetic diversity and strain-typing in cultivated strains of Lentinula edodes (the shiitake mushroom) in Japan by AFLP analysis. Mycol Res,2002a,106:34-39
    [245]Terashima K, Matsumoto T, Hayashi E, Fukumasa-Nakai Y. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycol Res,2002b,106: 911-917
    [246]Terashima K, Matsumoto T. Strain typing of shiitake (Lentinula edodes) cultivars by AFLP analysis, focusing on a heat-dried fruiting body. Mycoscience, 2004,45:79-82
    [247]Terashima K, Matsumoto T, Hayashi E, Kawasaki S, Fukumasa-Nakai Y. Construction of a linkage map of Lentinula edodes (shiitake) with the HEGS (high-efficiency genome scanning) system:use of versatile AFLP and PCR-based gene markers. Mycoscience,2006,47:336-346.
    [248]Urbanelli S, Della R V, Punelli F, Porretta D, Reverberi M, Fabbri A A, Fanelli C. DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the Pleurotus eryngii complex. Appl Microbiol, Biotechnol,2007,74:592-600
    [249]van der Nest M A, Steenkamp E T, Wingfield B D, Wingfield M J. Development of simple sequence repeat (SSR) markers in Eucalyptus from amplified inter-simple sequence repeats (ISSR). Plant Breeding,2000,119:433-436
    [250]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M. AFLP:a new technique for DNA fingerprinting. Nuc Acid Res,1995,23 (21):4407-4414
    [251]Voytas D F, Cummings M P, Konerczny A K, Ansubel F M, Rodermel S R. Copia-like retrotransposons are ubiquitous amongplants. Proc Natl Acad Sci USA, 1992,89:7124-7128
    [252]Wang J, Guo L, Zhang K, Wu Q, Lin J. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea. Bioresource Technol,2008,99: 8525-8527
    [253]Wang L, Hu X, Feng Z, Pan Y. Development of AFLP markers and phylogenetic analysis in Hypsizygus marmoreus. J Gen Appl Microbiol,2009,55:9-17
    [254]Wang Q, Zhang B, Lu Q. Conserved Region Amplification Polymorphism (CoRAP), a Novel Marker Technique for Plant Genotypingin Salvia miltiorrhiza. Plant Mol Biol Rep,2009,27:139-143
    [255]Wartell R M, Hosseini S H, Moran C P. Detecting base pair substitutions in DNA fragments by temperature-gradient gel electrophoresis. Nucleic Acids Res,1990,18: 2699-2705
    [256]Waugh R, McLean K, Flavell A J, Pearce S R, Kumar A, Thomas B B, Powell W. Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet,1997,253:687-694
    [257]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nuc Acid Res,1990,18:7213-7218.
    [258]Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nuc Acid Res,1990,18:6531-6535
    [259]Wu S B, Collins G, Sedgley M. A molecular linkage map of olive (Olea europaea L.) based on RAPD, microsatellite, and SCAR markers. Genome,2004,47 (1):26-35
    [260]Xu J, Kerrigan R W, Horgen P A. Localization of the mating type gene in Agaricus bisporus. Appl Environ Microbiol,1993,59(9):3044-3049
    [261]Xu X F, Lin F X, Chen S M, Li A Z, Lin F C. Reappraisal of phylogenetic status and genetic diversity analysis of Asian population of Leninula edodes. Prog Nat Sci, 2006,16(3):274-280
    [262]Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N. SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet,2001,102:865-870
    [263]Yan P S, Luo X C, Zhou Q. RAPD molecular differentiation of the cultivated strains of the jelly mushrooms, Auricularia auricula and A. polytricha. World J Microbiol Biotechnol,2004,20:795-799
    [264]Yan P S, Jiang J H. Preliminary research of the RAPD molecular marker-assisted breeding of the edible basidiomycete Stropharia rugoso-annulata. World J Microbiol Biotechnol,2005,21:559-563
    [265]Yu M, Ma B, Luo X, Zheng L, Xu X, Yang Z. Molecular diversity of Auricularia polytricha revealed by inter-simple sequence repeat and sequence-related amplified polymorphism markers. Curr Microbiol,2008,56: 240-245
    [266]Zabeau M. Selective restriction fragment amplification:a general method for DNA fingerprinting. European Patent,0534858A1.2005-4-27
    [267]Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation:a review. Mol Ecol,2002,11:11 16
    [268]Zhang R, Huang C, Zheng S, Zhang J, Ng TB, Jiang R, Zuo X, Wang H. Strain-typing of Lentinula edodes in China with inter simple sequence repeat markers. Appl Microbiol Biotechnol,2007,74:140-145
    [269]Zhang Y, Molina F. Strain typing of Lentinula edodes by random amplified polymorphic DNA assay. FEMS Microbiol Lett,1995,131:17-20
    [270]Zheng L, Jia D, Fei X, Luo X, Yang Z. An assessment of the genetic diversity within Ganoderma strains with AFLP and ITS PCR-RFLP. Microbiol Res,2009,164: 312-321
    [271]Zhu P, Oudemans P V. A long terminal repeat retrotransposon Cg ret from the phytopathogenic fungus Colletotrichum gloeosporioides on cranberry. Curr Genet, 2000,38:241-247
    [272]Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics,1994, 20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700