封闭异氰酸酯固化剂的合成与固化机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为实现功能性交联剂(稳定化异氰酸酯)与水性高分子共混或共聚创生新型单组分水性胶黏剂,本文采用2,4,6-三氯苯酚(2,4,6-TCP)作为封闭剂对多亚甲基多苯基异氰酸酯(PAPI)封闭的方法制备低温解封的封闭型异氰酸酯作为功能性交联剂。
     首先,本文采用一氯代苯酚(2-氯苯酚/邻氯苯酚和4-氯苯酚/对氯苯酚)作为封闭剂分别封闭常用的甲苯二异氰酸酯(TDI),系统地研究了邻/对氯苯酚封闭异氰酸酯的各个影响因素,详细讨论了封闭剂与异氰酸酯基的摩尔比、封闭剂结构、封闭反应温度、封闭反应时间、催化剂、反应介质对封闭反应的影响。采用二正丁胺回滴法、傅里叶转换红外光谱分析等方法对封闭结果进行了表征,并对封闭产物的稳定性进行了研究。
     其次,选用性能更佳、毒性较低的多亚甲基多苯基异氰酸酯作为原料,分别采用氯代苯酚(2-氯苯酚/邻氯苯酚和4-氯苯酚/对氯苯酚)和二氯代苯酚(2,4-二氯苯酚和2,6-二氯苯酚)作为封闭对其进行封闭,结果表明,二氯代苯酚由于其酚羟基的邻、对位较一氯代苯酚的又多了一个吸电子取代基,封闭反应的速率加快。
     确定酚羟基邻、对位全部由吸电子基团Cl原子取代的2,4,6-三氯苯酚作为最终的封闭剂对PAPI进行封闭,以实现低温解封闭的目的。讨论了—OH与——NCO的摩尔比、反应温度、溶剂、反应时间、催化剂等因素对异氰酸酯封闭反应的影响,利用红外光谱分析手段进行了表征。结果表明:较适宜的封闭剂与异氰酸根的摩尔比为(1.1~1.2):1;升高温度有利于封闭反应的进行,较佳的反应温度为80℃;极性溶剂有利于封闭反应的进行,溶剂的极性越大,封闭反应越容易进行;延长反应时间,有利于封闭率的增加,但到一定程度,反应趋于平衡;添加有机锡类催化剂能大大提高封闭反应的速率,缩短封闭反应时间。并对封闭物进行了1H NMR和13C NMR表征,结果表明:产物中存在着氨基甲酸酯键。
     本文还建立了直接红外光谱法测定异氰酸酯封闭率的方法。利用848cm-1处的四取代苯环上两个孤立氢原子C—H面外变形特征吸收峰做定量分析峰,以红外光谱法计算体系中残留的异氰酸酯基的含量,该法具有简便、量小、准确、快速的特点,具有一定的实际应用价值。
     本文对封闭型异氰酸酯试样选择不同的条件,对其用邻甲苯胺法进行升温解封测试最低的解封温度。探讨了封闭异氰酸酯的解封闭温度以及影响封闭产物解封闭的主要因素,如不同解封溶剂、催化剂、升温速率等。FTIR谱图揭示出随着解封闭反应的进行,2250cm-1处的——NCO基团的特征吸收峰增强。热分析结果表明,2,4,6-三氯苯酚封闭PAPI封闭物的初始解封温度为75℃。试验结果表明:存在极性溶剂的条件下进行解封反应,所得最低的解封温度要比热分析得出的解封闭温度低很多。
     采用自乳化法合成水性化2,4,6-三氯苯酚封闭的PAPI,并利用激光粒度仪和扫描电子显微镜进行表征。激光粒度和扫描电镜分析结果表明,封闭异氰酸酯乳化后形成的乳胶粒为圆球状,并且以氢氧化钾为中和剂制备的水性封闭异氰酸酯乳液平均粒径小,但粒径分布宽,而以三乙胺为中和剂制备的平均粒径大,粒径分布窄;通过DSC测试,发现该封闭产物的起始解封温度为70℃,并且在120℃时能够完全解封。
     最后,利用DSC法研究了水性高分子-封闭异氰酸酯体系的反应机理,结果表明,对于乳白胶-封闭异氰酸酯体系,其动力学参数△E=4.190kJ/mol,n=0.7;对于聚乙烯醇-封闭异氰酸酯体系,其动力学参数△E=14.483kJ/mol,n=0.87。
In order to achieve novelty one-component aqueous polymer-isocyanate adhesive, functionality curing agents, stabilization isocyanats, were blended or copolymerized with aqueous adhesive. In this paper, low temperature deblockable blocked-isocyanate, i.e., functionality curing agent, was prepared by2,4,6-trichlorophenol (2,4,6-TCP) blocked polymethylene polyphenlene isocyanate (PAPI).
     Firstly, on the basis of the previously study, we studied systematicly the various influencing factors when P-chlorophenol and O-chlorophenol blocked toluene diisocyanate (TDI), and discussed the effects of molar ratio of blocking agents and isocyanate, the structure of blocking agents, blocking reaction temperature, blocking reaction time, catalyst, reaction medium on the blocking reaction. The blocked adducts were characterized by the methods of di-n-butylamine back titration and Fourier transform infrared (FTIR) spectroscopy. And stability of blocked adducts was studied.
     Next, PAPI was checked as reagent because of its better performance and lower toxicity than TDI, which was blocked by blocking agents such as2-chlorophenol,4-chlorophenol,2,4-dichlorophenol and2,6-dichlorophenol. The experimental results showed that the reaction velocity of dichlorophenol as blocking agent was faster than that of monochlorophenol, since one more attracting electron substituent group, Cl atom, was at adjacent and contraposition of phenol hydroxyl.
     2,4,6-trichlorophenol was selected as a final blocking agent of polymethylene polyphenlene isocyanate to the purpose of low temperature deblocking. The effects of molar ratio of—OH/—NCO, reaction temperature, solvent, reaction time and catalyst on this blocking reaction were discussed. Fourier transform infrared was used to characterize these blocking adducts. Experimental results showed that it was propitious to the blocking reaction when the optimal molar ratio of-OH/-NCO was (1.1-1.2):1and the optimal reaction temperature at80℃. Meanwhile, experimental results also exhibited that the polar solvents could accelerate the blocking reaction and the reaction velocity was faster when the solvent polarity was stronger, and that it made for increasing blocking rate when the reaction time was prolonged, but to some extent, the reaction reached the equilibrium. In addition, experimental results also showed that the catalysts of organic tin could quicken significantly the blocking reaction velocity and reduced the blocking reaction time. TCP-blocked PAPI adduct was characterized by1H NMR and13C NMR. The results showed that there was-NH/-COO—formed in adducts.
     The method that determine blocking ratio using Fourier transform infrared was founded in this paper. The quantitative analysis peak was checked the characteristic absorption peak of the two isolated H on the four-substituent benzene which was at848cm-1. Then the rudimental content of—NCO was calculated. This method was of easy, little quantity, precision and rapidness.
     In different conditions, o-toluidine method was used to test the deblocking temperature of blocked isocyanate. It was discussed that the deblocking temperature of blocked isocyanate and the key influencing factors of deblocking, such as different solvents, catalyst and heating velocity, etc. Deblocking temperature was analyzed by DSC instrument, Fourier Transform Infrared Spectroscope and Thermal Gravimetric Analysis. The FTIR results showed that the characteristic absorption peak of—NCO which was presented at2250cm-1was increased gradually along with the deblocking reaction. The thermal analysis indicated that the initial deblocking temperature of2,4,6-TCP blocked PAPI was75℃. And the experimental results showed that the deblocking temperature would be declined when the blocked adduct in polar solvents.
     The emulsifiable2,4,6-TCP blocked PAPI was synthesized by the method of self-emulsification. The shape and size of the latex particles waterborne blocked isocyanates were characterized by laser particle size analysis instrument and scanning electron microscope (SEM). The results showed that, when TEA was neutralizing agent, the latex particle size was larger and distribution was narrower than that of KOH was neutralizing agent. And differential scanning calorimetry was showed that the blocking adduct was deblocked at70℃and deblocked perfectly at120℃.
     Finally, the curing mechanism of aqueous polymer-blocked isocyanate was studied by differential scanning calorimetry. The experimental results demonstrated that the dynamic parameters were deduced that ΔE=4.190kJ/mol, n=0.7for the system of poly vinyl acetate emulsion adhesive-blocked PAPI and ΔE=14.483kJ/mol, n=0.87for polyvinyl alcohol-blocked PAPI.
引文
[1]刘玉海,赵辉,李国平等.异氰酸酯[M].北京:化学工业出版社.2004:1-324
    [2]许戈文等.水性聚氨酯材料[M].北京:化学工业出版社.2010:1-95
    [3]朱吕民,聚氨酯合成材料[M].南京:江苏科学技术出版社.2004:1-118
    [4]李绍雄,刘益军,聚氨酯树脂及其应用[M].北京:化学工业出版社.2003:1-735
    [5]Douglas A. Wicks, Zeno W. Wicks Jr. Blocked isocyanates III:Part A. Mechanisms and chemistry[J]. Progess in Organic Coatings.1999,36:148-172
    [6]S. Subramani, Young-Jun Park, Young-Soo Lee, etc. New development of polyurethane dispersion derived from blocked aromatic diisocyanate[J]. Progress in Organic Coatings.2003,48:71-79
    [7]Luc Ubaghs, Helmut Keul, Hartwig HOcker, Novel intramolecular blocked isocyanates as stable one- component systems for poly(urea urethane)s[J]. Polymer. 2005,46:1459-1465
    [8]T. Philip Gnanarajan, N. Padmanabha Iyer, A. Sultan Nasar, etc., Preparation and properties of poly(urethane-imide)s derived from amine-blocked-polyurethane prepolymer and pyromellitic dianhydride[J]. European Polymer Journal.2002,38: 487-495
    [9]M. Vigano, M. Levi, S. Turri, etc., New copolymers of N,N- dimethylacrylamide with blocked isocyanates for oligonucleotide immobilization in DNA microarray technology [J]. Polymer.2007,48:4055-4062
    [10]Prosper Edou Engonga, Veronique Marchetti, Philippe Gerardin,etc. Grafting of perfluoroalkyl chains onto wood using blocked isocyanates[J]. Journal of Fluorine Chemistry.2000,101:19-25
    [11]Douglas A. Wicks, Zeno W. Wicks Jr. Multistep chemistry in thin films; the challenges of blocked isocyanates[J]. Progress in Organic Coating.2001,43:131-140
    [12]Felix Schmitt, Andreas Wenning, Jorn-Volker Weiss. Dimeric isocyanates in polyurethane powder coatings[J]. Progress in Organic Coatings.1998,34:227-235
    [13]Vagner Roberto Botaro, Alessandro Gandini. Chemical modification of the surface of cellulosic fibres.2. Introduction of alkenyl moieties via condensation reactions involving isocyanate functions[J]. Cellulose.1998,5:65-78
    [14]张寒露,杨雪,王源升.苯酚与PAPI封闭反应条件的研究[J].聚氨酯工业.2005,20(5):25-27
    [15]张剑秋,柳臻,张宝华.含氯苯酚封闭TDI及其解封初探[J].青岛大学学报.1999,14(2):29-32
    [16]宋聪梅,罗振扬,陈曦等PAPI的封闭与解封反应[J].聚氨酯工业.2000,(1):9-13
    [17]胡福增,林广新,马才友.异氰酸酯的封闭反应和解封反应[J].化学世界.1993,(2):66-69
    [18]熊万斌,刘仁,刘晓亚.异氰酸酯封闭及解封闭反应的研究[J].上海涂料.2005,43(4):6-8
    [19]朱园勤,瘳青,李立平.封端异氰酸酯化学[J].化学与粘合.2004,3:166-171
    [20]阎宏永,刘翠云,付青存等.异氰酸酯改性与应用[J].涂料工业.2007,37(8):63-66
    [21]顾继友,高振华.异氰酸酯的封闭浅谈[J].聚氨酯工业.2002,17(4):10-12
    [22]张学同,罗运军,谭惠民.封闭异氰酸酯几种反应的动力学[J].化学进展.2002,14(5):339-346
    [23]王文清.聚醚二元醇与异氰酸酯封端反应的研究[J].化学世界.2008,(7):412-414
    [24]M. N. Radhakrishnan Nair, M. R. Gopinathan Nair. Synthesis and characterisation of soluble block copolymers from NR and TDI based polyurethanes[J]. J Mater Sci. 2008,43:738-747
    [25]A. Despres, A. Pizzi, L. Delmotte.13C NMR Investigation of the Reaction in Water of UF Resins With Blocked Emulsifiable Isocyanates[J]. Journal of Applied Polymer Science.2006,99:589-596
    [26]文香莲,吴崇光,金衍芬等.端基封闭异氰酸酯的研究[J].工程塑料应用.1994,22(2):15-17
    [27]左晓兵,宁春花,周弟等.多异氰酸酯封闭物的合成及脱封反应研究[J].高校化学工程学报.2008,22(3):543-546
    [28]刘琳,李岩.封闭型多异氰酸酯树脂的合成[J].建筑材料学报.2005,8(6):642-645
    [29]杨芳,祝阳,杨济活.封闭型聚氨酯的研究[J].化工新型材料.2005,33(12):66-68
    [30]刘景芳,李树材.封闭型水性聚氨酯的研究进展[J].涂料工业.2003,33(10):36-39
    [31]张维庆,周诗彪,景春雷等.封闭型异氰酸酯胶粘剂的研制[J].化工中间体.2007,(5):12-14
    [32]童身毅.封闭型异氰酸酯树脂化学[J].现代涂料与涂装.2002,(3):30-34
    [33]宋聪梅,陈曦,陆明霞等.壬基苯酚与PAPI封闭反应条件的研究[J].聚氨酯工业.1999,14(4):16-18
    [34]朱园勤,瘳青,李立平.水杨酸乙酯双封端异氰酸酯产物的合成及鉴定[J].精细化工.2004,21(7):532-536
    [35]张彦华.封闭异氰酸酯的制备及其解封闭研究[D].东北林业大学硕士论文.2006,6
    [36]王文清.聚醚型异氰酸酯固化剂的合成及性能研究[D].华中师范大学硕士论文.2006,11
    [37]C. Jiang, M. Driffield, E. L. Bradley,等The behavior of MEKO-blocked isocyanate compounds in aluminum flake pigmented, polyester-polyurethane can coating systems[J]. J. Coat. Technol. Res.2010,7 (1):57-65
    [38]岳彦山,张岩,赵殊等.对氯苯酚封闭多亚甲基多苯基多异氰酸酯[J].中国胶粘剂.2010,19(1):1-5
    [39]赵殊,岳彦山.对硝基苯酚封闭多亚甲基多苯基多异氰酸酯的研究[J].中国胶粘剂.2009,18(6):8-11
    [40]张海龙,张彪,戴震等.封闭型异氰酸酯的反应机理与应用[J].涂料技术与文摘.2009,30(2):14-17
    [41]R. Gertzmann, C. Gurtler. A catalyst system for the formation of amides by reaction of carboxylic acids with blocked isocyanates[J]. Tetrahedron Letters.2005,46:6659-6662
    [42]Govindarajan Sankar, A. Sultan Nasar. Effect of isocyanate structure on deblocking and cure reaction of N-methylaniline-blocked diisocyanates and polyisocyanates[J]. European Polymer Journal.2009,45:911-922
    [43]Ligang Yin, Yanlong Liu, Zhuo Ke,等.Preparation of a blocked isocyanate compound and its grafting onto styrene-b-(ethylene-co-l-butene)-b-styrene triblock copolymer[J]. European Polymer Journal.2009,45:191-198
    [44]Sonja Petrak, Victar Shadurka, Wolfgang H. Binder. Cleavage of blocked isocyanates within amino-type resins:Influence of metal catalysis on reaction pathways in model systems[J]. Progress in Organic Coatings.2009,66:296-305
    [45]Mayur Valodkar, Sonal Thakore. Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications[J]. Carbohydrate Research.2010,345: 2354-2360
    [46]Z. Ranjbar, Sh. Montazeri, M. Mohammad Raei Nayini,等. Synthesis and characterization of diethylene glycol monobutyl ether—Blocked diisocyanate crosslinkers[J]. Progress in Organic Coatings.2010,69:426-431
    [47]Chunhua Lou, Jiyou Gu, Mingwei Di, et al. Synthesis and characterization of trichlorophenol-blocked polyaryl polyisocyanate[J]. Iranian Polymer Journal.2011, 20(3):247-255
    [48]张春华,亢茂青,王心葵.封端异氰酸酯研究进展—Ⅰ[J].化工新型材料.1996,(12):21-24
    [49]傅荣兴.用封端异氰酸酯制备水性聚氨酯方法[J].涂料工业.1988,(3):37-41
    [50]于洁,范和平,王琛等.封闭型聚氨酯的制备及性能[J].聚氨酯工业.1998,(1):20-23
    [51]张春华,亢茂青,王心葵.封端异氰酸酯研究进展—Ⅱ[J].化工新型材料.1997,(1):24-27
    [52]Douglas A. Wicks, Zeno W. Wicks Jr. Blocked isocyanates Ⅲ Part B:Uses and applications of blocked isocyanates[J]. Progress in Organic Coatings.2001,41:1-83
    [53]Jiang-Jen Lin, George P. Speranza, Michael Cuscurida. Preparation of N-Alkyl-Substituted Poly(oxyalkylene)amines and Their Reactivities toward Blocked Isocyanates[J]. Ind. Eng. Chem. Res.1997,36:4231-4235
    [54]S. Subramani, I.W. Cheong, J.H. Kim. Chain extension studies of water-borne polyurethanes from methyl ethyl ketoxime/s-caprolactam-blocked aromatic isocyanates[J]. Progress in Organic Coatings.2004,51:329-338
    [55]刘景芳,李树材.封闭型水性聚氨酯的研究进展[J].涂料工业.2003,33(10):36-40
    [56]葛俊伟,胡剑青,陈震生等.电泳涂料用异氰酸酯固化剂的封闭剂[J].现代涂料与涂装.2006,3:41-43
    [57]王韬,齐圣光,任碧野等.阴极电泳用阳离子型封闭异氰酸酯的合成与应用[J].涂料工业.2007,37(5):26-29
    [58]葛俊伟,胡剑青,胡飞燕等.电泳涂料用异氰酸酯固化剂的引入工艺[J].现代涂料与涂装.2006,5:6-7
    [59]李田霞,陈存华.环氧树脂阴极电泳涂料的研究[J].化学工业与工程.2007,24(3):207-210
    [60]吴让君,万涛,吴绍林.低温解封聚氨酯的合成及在阴极电泳漆中的应用[J].上海涂料.2008,46(3):5-7
    [61]皮丕辉,许振苗,文秀芳等.种黑色环氧聚氨酯阴极电泳漆[J].电渡与涂饰.2006,25(10):26-29
    [62]陈德本,许琦,周宗华等.用FT-IR研究阳离子复合乳液的电沉积膜[J].高分子材料科学与工程.1997,13(5):95-99
    [63]巩永忠,王雷,苑峰.三氟氯乙烯-乙烯基醚为基体热固性氟粉末涂料的研制[J]. 涂料工业.2007,37(3):8-11
    [64]童身毅.封封闭型异氰酸酯在水性涂料中的应用(Ⅰ)[J].现代涂料与涂装.2004,4:24-28
    [65]王军,姜晓辉.封闭多异氰酸酯在氟碳涂料中的应用[J].现代涂料与涂装.2004,6:1-3
    [66]吕霞娟,姚中恒,安静雯等.常温固化氟碳卷材涂料的研制[J].有机氟工业.2006,3:8-10
    [67]许其军,徐述科,季永中等.用于一浴浸胶的粘合活化型涤纶工业丝的开发fJ].合成纤维.1998,27(5):45-48
    [68]褚杰,程辉.聚酯帘布用多异氰酸酯粘合剂[J].化学世界.1996,10:531-535
    [69]申明霞,李红香,杨开宇等.芳纶纤维表面处理与浸渍工艺研究[J].材料开发与应用.2008,23(1):41-45
    [70]许其军,姚峻,程辉等.涤纶浸胶用封闭异氰酸酯的性能及应用[J].产业用纺织品,2002,20(141):37-39
    [7l]申明霞,刘桂.表面处理对芳纶纤维粘合性能的影响[J].橡胶工业.2008,55(7):423-425
    [72]马兴法,吴崇尤,王仲平等.金属与橡胶的硫化粘接研究[J].粘接.1993,11(5):7-11
    [73]陈元武.单组份水性乙烯基聚氨醋木材胶粘剂的研制[J].中国胶粘剂.2003,12(5):5-8
    [74]吕贻胜,李晓萱,伍胜利.封闭型水性多异氰酸酯固化剂的制备及其性能研究[J].涂料工业.2007,37(12):17-19
    [75]赵瑞华,李树材,刘景芳.封闭型水性聚氨酯的合成及性能研究[J].涂料工业.2007,37(11):19-22
    [76]杨志勇,谢益民,周燕.水性聚氨酯技术在造纸工业中的应用[J].西南造纸.2006,35(1):35-37
    [77]丁伟峰,汤心颐,于静娴.水溶性聚氮酯的制备[J].聚氨工业.1991,3:13-16
    [78]顾继友.胶黏剂与涂料[M].哈尔滨:中国林业出版社.1999,5:202-203
    [79]Koji Ishizu, Masataka Makino, Naomasa Hatoyama, Satoshi Uchida. Emulsion-induced ordered microporous films using amphiphilic poly(ethylene oxide)-block-poly(n-butyl isocyanate) block copolymers[J]. J. Appl. Polym. Sci.2008,108:3753-3759
    [80]Youngyoun Ji, Jinhwan Kim, Jin-Young Bae. Flame-retardant ABS resins from novel phenyl isocyanate blocked novolac phenols and triphenyl phosphate[J]. J. Appl. Polym. Sci.2006,102:721-728
    [81]Wuji Wei, Zhirui Guo, Yufeng Zhang, etc.. Study on N-Hydroxyphthalimide as Blocking Agent for Isocyanates[J]. J. Appl. Polym. Sci.2002,84:1346-1352
    [82]J. Girones, M.T.B. Pimenta, F. Vilaseca, etc.. Blocked diisocyanates as reactive coupling agents:Application to pine fiber-polypropylene composites[J]. Carbohydrate Polymers.2008,74:106-113
    [83]J. Girones, M.T.B. Pimenta, F. Vilaseca, etc.. Blocked isocyanates as coupling agents for cellulose-based composites [J]. Carbohydrate Polymers.2007,68:537-543
    [84]Govindarajan Sankar, A. Sultan Nasar. Cure-reaction kinetics of amine-blocked polyisocyanates with alcohol using hot-stage fourier transform infrared spectroscopy[J]. J. Appl. Polym. Sci.2008,109:1168-1176
    [85]陆国元.有机反应与有机合成[M].北京:科学出版社.北京:2009:13
    [86]刘益军.聚氨酯原料及助剂手册[M].北京:化学工业出版社.2005:1-48
    [87]山西省化工研究所.聚氨酯弹性体[M].北京:化学工业出版社,2001:2-7,624-633
    [88]徐培林,张淑琴.聚氨酯材料手册[M].北京:化学工业出版社,2005:101-102
    [89]张春华,亢茂青,王心葵.影响异氰酸酯双封端反应动力学的因素[J].高分子材料科学与工程.1999,15(3):30-33
    [90]张春华,亢茂青,王心葵.异氰酸酯单封端反应的研究[J].精细石油化工.1997,(1):33-36
    [91]张春华,亢茂青,王心葵.苯酚封端THEIC/异氰酸酯加成物反应的研究[J].高分子材料科学与工程.1998,14(6):32-35
    [92]唐朝国.有机化学[M].郑州:郑州大学出版社.2007:246-254
    [93]章烨.有机化学[M].北京:科学出版社.2006:237-246
    [94]华东理工大学有机化学教研组.有机化学[M].北京:高等教育出版社.2006:242-249
    [95]谷文祥.有机化学[M].北京:科学出版社.2007:180-185
    [96]邢存章,赵超.有机化学[M].北京:科学出版社.2008:304-317
    [97]鲁崇贤,杜烘光.有机化学[M].北京:科学家出版社.2009:268-281
    [98]王乃兴. 核磁共振谱学——在有机化学中的应用[M].北京:化学工业出版社.2006:12-126
    [99]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社.2006:106-245
    [100]胡皆汉,郑学仿.实用红外光谱学[M].北京:科学出版社.2011:1-32
    [101]王文波,申书昌,安红,等.红外光谱法测定固相微萃取新型吸附质中单体的摩尔比[J].光谱学与光谱分析.2004,24(1):59-61
    [102]王文波,申书昌,安红.红外光谱法测定聚醚硅油中含氢硅油的含量[J].光谱学与光谱分析.2006,26(4):643-645
    [103]王文波,申书昌,张丽媛,安红,红外光谱法测定柠檬酸壬基酚聚氧乙烯醚单酯二乙醇酰胺的含量[J].光谱学与光谱分析.2007,27(6):1121-1123
    [104]邓崇阳,马培华.单组分拼板胶乳液的研制[J].化学与黏合.2005,27(1):46-48
    [105]曹瑞军,卢风纪.反应型双封闭甲苯二异氰酸醋的制备[J].精细石油化工.1991,(1):27-30
    [106]皮丕辉,许振苗,文秀芳,等.封闭型多异氰酸酯固化交联剂的合成[J].合成材料老化与应用.2006,35(3):31-34
    [107]王黎,蔡钊龙,刘生鹏,等.封闭型异氰酸酯固化剂的制备及应用[J].现代涂料与涂装.2005,(4):3-5
    [108]杨琴,薛国新,徐晓霞,等.聚氨酯乳液预聚阶段的合成研究[J].造纸化学品.2007,19(5):5-8
    [109]孙哲,李贵贤,王刚,等.水分散封闭型多异氰酸酯的合成[J].涂料工业.2008,38(1):34-36
    [110]邓义沙.水性聚氨酯肟类封闭剂的合成与应用[D].湘潭大学硕士学位论文.2008,5
    [111]张敏燕.聚乙酸乙烯酯与异氰酸酯反应的研究[D].苏州大学硕士论文.2006,11
    [112]李庆,樊增禄,豆春霞.反应型水性聚氨酯固色剂的合成及性能[J].印染.2009,24:1-5
    [113]尚尉,杨海涛,谢益民.封闭型水性聚氨酯预聚体在纸张表面处理中的应用[J].造纸科学与技术.2010,29(1):43-45,83
    [114]杨勇,黄小林,冯琳,等.封端型水性聚氨酯抗起毛起球剂的研制与应用[Jl.针织工业.2009,(12):51-54
    [115]周静静,刘明星,吕建平.咪唑封端型水性聚氨酯固化剂的合成及其应用[J].合肥工业大学学报(自然科学版).2010,33(1):122-125
    [116]王晓文,周正发,任凤梅,等.水溶性封闭异氰酸酯单体的解封动力学[J].物理化学学报.2009,25(11):2181-2185
    [117]张岩,赵殊.相转移催化亚硫酸氢钠封闭异氰酸酯[J].粘接.2011,31(4):62-63
    [118]T.Hamamura, N. Inoue, K.Sato[P]. US Patent4357441 (1982)
    [119]J.L.Ohlson, I.E.Isgur[P]. US Patent4421826(1983)
    [120]H.Traeubel, H.Reiff[P]. US Patent5618317(1997)
    [121]A.H.Weinstein, H.A.Colvin, D.K.Parker[P]. US Patent4983684(1991)
    [122]D.K.Parker, A.H.Weinstein, H.A.Colvin[P]. US Patent5043455(1991)
    [123]D.K.Parker, R.T.Musleve[P]. US Patent5208347(1993)
    [124]娄春华,顾继友,邸明伟,朱清梅.三氯苯酚与PAPI封闭反应的条件[J].河北师范大学学报(自然科学版).2011,35(1):67-70
    [125]林旭.木材/异氰酸酯界而作用及其力学性能的研究[D].东北林业大学硕士论文.2007,6
    [126]杨平德.异氰酸酯粘合剂在农作物秸秆人造板工业中的应用研究[Dl.山东大学硕士论文.2006,9
    [127]耿志忠.异氰酸酯与木材各组分反应产物的研究[D].东北林业大学硕士论文.2007,6
    [128]李和平.木材胶黏剂[M].北京:化学工业出版社.2009:1-150
    [129]胡荣祖,史启祯,热分析动力学[M].北京:科学出版社,2008:1-136
    [130]陈小庆,王岚,黄培,等.螺环原碳酸酯/环氧树脂体系固化反应动力学[J].热固性树脂,2005,20(3):23-26
    [131]曾秀妮,段跃新.840S环氧树脂体系固化反应特性[J].复合材料学报.2007,24(3):100-104
    [132]Shailesh Kumar Shukla, Deepak Srivastava. Studies on the blends of modified epoxy resin and carboxyl-terminated polybutadiene (CTPB)—Ⅱ:thermal and mechanical characteristics[J]. J Mater Sci.2007,42:3215-3222
    [133]翁汉元.聚氨酯胶黏剂概况和“十一五”发展规划建议[J].化学推进剂与高分子材料.2006,4(1):1-5
    [134《胶粘剂技术标准与规范》编写组.胶粘剂技术标准与规范[M].北京:化学工业出版社.2004:205-206

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700