固体氧化物燃料电池发电系统动态建模与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell, SOFC)发电技术以其环保高效的特性而具有广阔的应用前景和重大的研究意义。SOFC发电系统的热电特性的有效管理与控制是系统安全、长寿命、高效率运行的重要保障。为此,本文以千瓦级纯氢平板式SOFC独立发电系统为研究对象,从热电两方面深入地进行了动态建模与控制研究。
     在热方面:首先,本文提出了一种结构新颖、易于电堆空间温度管理的SOFC系统结构,并采用模块化的建模方法搭建了面向热管理的系统动态模型。其次,基于系统模型对系统进行了面向控制的稳态分析与优化,探索出了系统效率最优点与最优操作参数之间的内在规律,并优化出了在整个输出功率范围内系统效率最优值和对应的最优操作参数值。优化结果与同行的结果相比,无论是系统效率还是电堆工作温度的安全性均有明显的提高。然后,本文通过开环动态响应分析发现热管理系统具有多变量、强耦合、非线性和大惯性等特性。为了应对这些复杂特性,本文通过相对增益阵选定了最优的控制变量对,并设计了单神经元自适应PID反馈控制器以有效地克服系统的强耦合、非线性和大惯性的特性。同时还针对电堆电流的高频干扰作用基于最优操作参数设置了前馈补偿器,从而设计出具有强鲁棒性且易于工程实现的多变量解耦控制策略。最后,本文以稳态优化结果为最优控制目标,通过仿真研究验证了多变量解耦控制策略的有效性和高效性。在任意输出功率点,热管理控制系统都能使系统温度安全且效率最优,从而为SOFC电特性的控制奠定了坚实的基础。
     在电方面:本文在电化学阻抗谱实验过程中发现了SOFC三相界面处双电层的分数阶特性,由此大胆地跳出整数阶领域在分数阶领域搭建了SOFC电特性的分数阶动态模型。该分数阶模型较传统的整数阶模型有更高的建模精度,从而为SOFC输出功率的控制设计提供了精确性高的数学模型。但将分数阶模型用于相关控制设计时,其存在数据存储量大、运算时间长、难以工程实现的缺陷。为此,本文提出了一种面向控制的分数阶微分的快速数值计算方法——恒权重记忆法。与经典的短记忆法和变步长记忆法相比,恒权重记忆法数据存储量小、运算时间短且计算精度更高,很好地满足了分数阶控制系统设计与实现的要求。在此基础上,本文针对SOFC输出功率的非线性以及电堆电流变化幅度不能过大的限制,设计了一种很有创意的带约束的自适应广义预测控制策略。与传统PID和单神经元自适应PID控制策略相比,无论是功率跟踪的快速性还是电堆的温度安全性,本文所设计的广义预测控制策略均要更优。
     总之,本文通过动态建模、稳态优化分析与控制设计实现了SOFC独立发电系统热电特性的有效管控,提高了系统的使用寿命和运行效率。
Solid oxide fuel cell (SOFC) systems have many advantages given their lowemissions and high efficiency, so they are an attractive alternative for a great many ofpower applications. For the improvement of the safety, lifetime, and efficiency of SOFCsystems, the management and control about the thermal and electrical characteristics ofthe system are greatly important issues. Therefore, this research focuses on the dynamicmodeling and control for a kW scale pure hydrogen planar SOFC stand-alone system inthe perspective of thermal and electrical characteristics.
     On the one hand, the research is addressed in the perspective of thermalcharacteristics. Firstly, a novel SOFC system is proposed which is helpful for the controlof the stack spatial temperature, and an oriented thermal management dynamic model ofthe system is developed. Secondly, On the basis of the dynamic model, the steady stateanalysis and optimization of the system are explored in detail. The optimal systemefficiencies and operating parameters are obtained for all output power points. The systemefficiencies and stack operating temperatures optimized in the study are better than thosereported in literatures. Thirdly, the open-loop dynamics of the system is also conducted,and it is revealed that the system is a multi-variable, coupling, nonlinear, and delay system.In the context, a multi-variable decoupling control system with feedforward-feedbackcontrol structure is designed based on single neuron adaptive PID control algorithms. Inthe control system, the optimal input-output pairings are selected by using the relative gainarray (RGA) of the system, and three feedforward compensators are developed to rejectthe strong disturbance of stack current. Additionally, the single neuron adaptive PIDcontrollers have perfect robustness for the coupling, nonlinear, and delay behaviors of thesystem. Finally, through simulation, it is demonstrated that the control system canmaximize the system efficiency and ensure temperature safety at any output power point,which is a solid foundation for the control of SOFC electrical characteristics.
     On the other hand, the research is conducted in the perspective of electricalcharacteristics. During electrochemical impedance spectroscopy (EIS) experiments, a surprising fact was discovered that the electrical double layer in SOFC triple phaseboundary (TPB) has fractional order dynamic behavior. Therefore, a fractional orderdynamic model of SOFC electrical characteristics is proposed based on fractionalderivatives theory. The fractional order model has greater accuracy than conventionalinteger order models, so the fractional order model is an attractive model for the controlsynthesis of SOFC electrical characteristics. However, when factional order model is usedfor control design, the numerical solution of fractional derivatives is a bottleneck as itslarge computation burden. To overcome the bottleneck, an equal weight memory principleis proposed in the research. Compared to short memory and variable memory principles,the equal weight memory principle has higher accuracy and less computation burden,which is satisfying for control design. And then, On the basis of the fractional orderdynamic model, an adaptive generalized predictive control (AGPC) algorithm is designedpaying special attention to the nonlinear behavior of SOFC output power and theconstraints on stack current. The simulation results demonstrate that the dynamicresponses of the AGPC system are quick and smooth, and the stack is temperature safetyfor the change of the current is slow and smooth. By comparison, conventional PID andsingle neuron adaptive PID algorithms can not reach those goals.
     To sum up, in this research the management and control of the thermal and electricalbehaviors of SOFC systems are well explored, and the efficiency and lifetime of thesystem are greatly improved.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2] Fuelcelltoday. http://www. fuelcelltoday. com/.
    [3]李箭.固体氧化物燃料电池:发展现状与关键技术[J].功能材料与器件学报,2007,13(6):683-690.
    [4]韩敏芳,尹会燕,唐秀玲等.固体氧化物燃料电池发展及展望[J].真空电子技术,2005,05(4):23-28.
    [5]汪婉宜,鄭耀宗.固態氧化物燃料電池國際現況分析[J].能源報導,2011,11(12):6-16.
    [6]彭珍珍,杜洪兵,陈广乐等.国外SOFC研究机构及研发状况[J].硅酸盐学报,2010,38(3):542-548.
    [7] P. Aguiar, C. S. Adjiman, N. P. Brandon. Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell: II. Model-baseddynamic performance and control[J]. Journal of Power Sources,2005,147(1-2):136-147.
    [8] H. Cao, X. Li, Z. Deng, et al. Dynamic modeling and experimental validation forthe electrical coupling in a5-cell solid oxide fuel cell stack in the perspective ofthermal coupling[J]. International Journal of Hydrogen Energy,2011,36(7):4409-4418.
    [9] C. K. Lin, T. T. Chen, Y. P. Chyou, et al. Thermal stress analysis of a planar SOFCstack[J]. Journal of Power Sources,2007,164(1):238-251.
    [10] Nationalfuelcellresearchcenter. http://www. nfcrc. uci. edu/2/Default. aspx#.
    [11] E. Achenbach. Response of a solid oxide fuel cell to load change[J]. Journal ofPower Sources,1995,57(1–2):105-109.
    [12] K. Promislow, B. Wetton. A simple, mathematical model of thermal coupling infuel cell stacks[J]. Journal of Power Sources,2005,150:129-135.
    [13] Acumentrics. http://www. acumentrics. com/sofc-products-overview. htm.
    [14] Bloomenergy. http://www. bloomenergy. com.
    [15] Delphi. http://delphi. com/manufacturers/cv/fuelcells/.
    [16] Siemens. http://www. energy. siemens. com/hq/en/power-generation/fuel-cells/.
    [17]魏增福,郑金.燃料电池发电的研究现状与应用前景[J].广东电力,2009,22(12):1-7.
    [18] V. Power. http://www. versa-power. com/products. htm.
    [19] Ztek. http://www. ztekcorp. com/.
    [20] H. L. De, K. Mayer, U. Stimming, et al. Operation of anode-supported thinelectrolyte film solid oxide fuel cells at800℃and below[J]. Journal of PowerSources,1998,71(12):302-305.
    [21] Ebz. http://ebz-dresden. de/en/fuel-cells/01-home/01-home. html.
    [22] C. Power. http://www. cerespower. com/.
    [23] S. Hexis. http://www. hexis. com/de/galileo-1000-n.
    [24] Kepco. http://www. kepco. org/.
    [25] M. H. Industries. http://www. mhi. co. jp/en/technology/business/power/sofc/development_situation. html.
    [26] E. Achenbach. Three-dimensional and time-dependent simulation of a planar solidoxide fuel cell stack[J]. Journal of Power Sources,1994,49(1–3):333-348.
    [27] P. Aguiar, C. S. Adjiman, N. P. Brandon. Anode-supported intermediatetemperature direct internal reforming solid oxide fuel cell. I: model-basedsteady-state performance[J]. Journal of Power Sources,2004,138(1-2):120-136.
    [28] A. Selimovic, M. Kemm, T. Torisson, et al. Steady state and transient thermalstress analysis in planar solid oxide fuel cells[J]. Journal of Power Sources,2005,145(2):463-469.
    [29] R. J. Braun. Optimal Design and Operation of Solid Oxide Fuel Cell Systems forSmall-scale Stationary Applications[D]. Wisconsin: UNIVERSITY OFWISCONSIN-MADISON,2002.
    [30] W. J. Sembler, S. Kumar. Optimization of a Single-Cell Solid-Oxide Fuel CellUsing Computational Fluid Dynamics[J]. Journal of Fuel Cell Science andTechnology,2011,8(2):21007-21012.
    [31] K. Sedghisigarchi, A. Feliachi. Dynamic and transient analysis of powerdistribution systems with fuel Cells-part I: fuel-cell dynamic model[J]. IEEETransactions on Energy Conversion,2004,19(2):423-428.
    [32] M. Sorrentino, Y. G. Guezennec, C. Pianese, et al. Development of aControl-Oriented Model for Simulation of SOFC-Based Energy Systems[C].Orlando:2005ASME International Mechanical Engineering Congress andExposition,2005.
    [33] W. Caisheng, M. H. Nehrir. A Physically Based Dynamic Model for Solid OxideFuel Cells[J]. IEEE Transactions on Energy Conversion,2007,22(4):887-897.
    [34] L. Petruzzi, S. Cocchi, F. Fineschi. A global thermo-electrochemical model forSOFC systems design and engineering[J]. Journal of Power Sources,2003,118(1-2):96-107.
    [35] M. M. Hussain, X. Li, I. Dincer. A numerical investigation of modeling an SOFCelectrode as two finite layers[J]. International Journal of Hydrogen Energy,2009,34(7):3134-3144.
    [36] M. Ni. Modeling of SOFC running on partially pre-reformed gas mixture[J].International Journal of Hydrogen Energy,2012,37(2):1731-1745.
    [37] P. Hofmann, K. D. Panopoulos. Detailed dynamic Solid Oxide Fuel Cell modelingfor electrochemical impedance spectra simulation[J]. Journal of Power Sources,2010,195(16):5320-5339.
    [38] Y. Qi, B. Huang, J. Luo. Dynamic modeling of a finite volume of solid oxide fuelcell: The effect of transport dynamics[J]. Chemical Engineering Science,2006,61(18):6057-6076.
    [39] Y. W. Kang, J. Li, G. Y. Cao, et al. A reduced1D dynamic model of a planar directinternal reforming solid oxide fuel cell for system research[J]. Journal of PowerSources,2009,188(1):170-176.
    [40] M. S. S. Ahmad Hajimolana. Dynamics and Control of a Tubular Solid-Oxide FuelCell[J]. Industrial&Engineering Chemistry Research,2009,48(13):6112-6125.
    [41] H. Xi, J. Sun. Dynamic Analysis of Planar Solid Oxide Fuel Cell Models WithDifferent Assumptions of Temperature Layers[J]. Journal of Fuel Cell Science andTechnology,2009,6(1):11011-11012.
    [42] J. Padull, G. W. Ault, J. R. Mcdonald. An integrated SOFC plant dynamic modelfor power systems simulation[J]. Journal of Power Sources,2000,86(1-2):495-500.
    [43] F. Jurado. Modeling SOFC plants on the distribution system using identificationalgorithms[J]. Journal of Power Sources,2004,129(2):205-215.
    [44] B. Huang, Y. Qi, M. Murshed. Solid oxide fuel cell: perspective of dynamicmodeling and control[J]. Journal of process control,2011,21(10):1426-1437.
    [45] F. Jurado. A method for the identification of solid oxide fuel cells using aHammerstein model[J]. Journal of Power Sources,2006,154(1):145-152.
    [46] A. Nakajo, Z. Wuillemin, J. Van, et al. Simulation of thermal stresses inanode-supported solid oxide fuel cell stacks. Part I: Probability of failure of thecells[J]. Journal of Power Sources,2009,193(1):203-215.
    [47] Y. Suzue, N. Shikazono, N. Kasagi. Micro modeling of solid oxide fuel cell anodebased on stochastic reconstruction[J]. Journal of Power Sources,2008,184(1):52-59.
    [48] D. Ding, W. Zhu, J. Gao, et al. High performance electrolyte-coated anodes forlow-temperature solid oxide fuel cells: Model and Experiments[J]. Journal ofPower Sources,2008,179(1):177-185.
    [49] S. H. Chan, K. A. Khor, Z. T. Xia. A complete polarization model of a solid oxidefuel cell and its sensitivity to the change of cell component thickness[J]. Journal ofPower Sources,2001,93(1-2):130-140.
    [50] M. Ni, M. K. Leung, D. Y. Leung. Parametric study of solid oxide fuel cellperformance[J]. Energy Conversion and Management,2007,48(5):1525-1535.
    [51] J. H. Nam, D. H. Jeon. A comprehensive micro-scale model for transport andreaction in intermediate temperature solid oxide fuel cells[J]. Electrochimica Acta,2006,51(17):3446-3460.
    [52] H. Y. Zhu, R. J. Kee. Modeling Electrochemical Impedance Spectra in SOFCButton Cells with Internal Methane Reforming[J]. Journal of the ElectrochemicalSociety,2006,153(9):1765-1772.
    [53] W. Choi, J. W. Howze, P. Enjeti. Development of an equivalent circuit model of afuel cell to evaluate the effects of inverter ripple current[J]. Journal of PowerSources,2006,158(2):1324-1332.
    [54] A. Haddad, R. Bouyekhf, M. A. El, et al. Non-linear dynamic modeling of protonexchange membrane fuel cell[J]. Journal of Power Sources,2006,163(1):420-432.
    [55] K. Takano, S. Nagata, K. Nozaki, et al. Numerical simulation of a disk-type SOFCfor impedance analysis under power generation[J]. Journal of Power Sources,2004,132(1-2):42-51.
    [56]胡会利,李宁.电化学测量[M].第1版.北京:国防工业出版社,2007.
    [57] M. E. Orazem, B. Tribollet. Electrochemical Impedance Spectroscopy[M],1st.Hoboken, New Jersey: John Wiley&Sons, Inc.,2008.
    [58] M. Haschka. Application of a Sigma-point Kalman-filter for the Online Estimationof Fractional Order Impedance Models for Solid Oxide Fuel Cells[J]. Journal ofVibration and Control,2008,14(9-10):1363-1374.
    [59] V. Feliu, S. Feliu. A method of obtaining the time domain response of anequivalent circuit model[J]. Journal of Electroanalytical Chemistry,1997,435(1-2):1-10.
    [60] H. G. Coster, T. C. Chilcott, A. C. Coster. Impedance spectroscopy of interfaces,membranes and ultrastructures[J]. Bioelectrochemistry and Bioenergetics,1996,40(2):79-98.
    [61] M. Haschka, B. Ruger, V. Krebs, et al. Diagnosis of SOFC-Systems UsingFractional Calculus[C]. Mogensen: Proceedings of the6thEuropean Solid OxideFuel Cell Forum2,2004.
    [62] S. Westerlund, L. Ekstam. Capacitor Theory[J]. IEEE Transactions Dielectrics andElectrical Insulation,1994,1(5):826-839.
    [63] B. M. Vinagre, V. Feliu. Modeling and control of dynamic systems using fractionalcalculus_application to electrichemical proscess and flexible structures[C]. LasVegas: Proceedings of41stIEEE conference on decision and control,2002.
    [64] N. Fouquet, C. Douleta, G. D. Nouillanta, et al. Model based PEM fuel cellstate-of-health monitoring via ac impedance measurements[J]. Journal of PowerSources,2006,159(2):905-913.
    [65] J. Sabatier, M. Aoun, A. Oustaloup, et al. Fractional system identification for leadacid battery state of charge estimation[J]. Signal Processing,2006,86(10):2645-2657.
    [66] M. U. Iftikhar, D. Riu, F. Druart, et al. Dynamic modeling of proton exchangemembrane fuel cell using non-integer derivatives[J]. Journal of Power Sources,2006,160(2):1170-1182.
    [67] I. Podlubny. Fractional differential equations[M].2nd. San Diego: Academic Press,1999.
    [68]王振滨.分数阶线性系统及其应用:[博士学位论文].上海:上海交通大学图书馆,2004.
    [69] K. R. C. Polynomial operators, stieltjes convolution, and fractional calculus inhereditary mechanics[J]. Acta Mechanica,1986,58(1):251-264.
    [70] A. Carpinteri, F. Mainardi. Fractals and fractional calculus in continuummechanics[M].1st. Wien: Springer,1997.
    [71] R. L. Bagley, R. A. Calico. Fractional order state equations for the control ofviscoelastically damped structures[J]. Journal Guidance Control and Dynamics,1991,14(2):304-311.
    [72] K. B. Oldham. A signal-independent electroanalytical method[J]. AnalyticalChemists,1972,44(1):196-198.
    [73] J. Bisquert, A. Compte. Theory of the electrochemical impedance of anomalousdiffusion[J]. Journal of Electroanalytical Chemistry,2001,499(1):112-120.
    [74] A. Benchellal, T. Poinot, J. C. Trigeassou. Modelling and Identification ofDiffusive Systems using Fractional Models[J]. Advances in Fractional Calculus,2007,6(3):213-225.
    [75] L. J. Gray, S. H. Liu. Self-affine fractal model for a metal-electrolyte interface[J].Physical Review B,1987,35(10):5379-5381.
    [76] A. B. Alkhasov, R. P. Meilanov, M. R. Shabanova. Heat conduction equation infractional-order derivatives[J]. Journal of Engineering Physics and Thermophysics,2011,84(2):332-341.
    [77] F. Mueller. The Dynamics and Control of Integrated Solid Oxide Fuel CellSystems: Transient Load Following and Disturbance Rejection[D]. California:University of California, Irvine,2008.
    [78] D. Georgis, S. S. Jogwar, A. S. Almansoori, et al. Design and control of energyintegrated SOFC systems for in situ hydrogen production and power generation[J].Chemical Engineering Energy Systems Engineering,2011,35(9):1691-1704.
    [79] L. Magistri, A. Traverso, F. Cerutti, et al. Modelling of Pressurised Hybrid SystemsBased on Integrated Planar Solid Oxide Fuel Cell(IP-SOFC) Technology[J]. FuelCells,2005,5(1):80-96.
    [80] F. Mueller, J. Brouwer, F. Jabbari, et al. Dynamic Simulation of an Integrated SolidOxide Fuel Cell System Including Current-Based Fuel Flow Control[J]. Journal ofFuel Cell Science and Technology,2006,3(2):144-154.
    [81] A. K. Murshed, B. Huang, K. Nandakumar. Control relevant modeling of planersolid oxide fuel cell system[J]. Journal of Power Sources,2007,163(2):830-845.
    [82] P. Adhikari, M. Abdelrahman. Modeling, Control, and Integration of a PortableSolid Oxide Fuel Cell System[J]. Journal of Fuel Cell Science and Technology,2012,9(1):11010-11014.
    [83] X. J. Wu, Q. Huang, X. J. Zhu. Power decoupling control of a solid oxide fuel celland micro gas turbine hybrid power system[J]. Journal of Power Sources,2011,196(3):1295-1302.
    [84] M. Sorrentino, C. Pianese. Model-based development of low-level controlstrategies for transient operation of SOFC systems[J]. Journal of Power Sources,2011,196:9036-9045.
    [85] P. Kazempoor, V. Dorer, F. Ommi. Evaluation of hydrogen and methane-fuelledsolid oxide fuel cell systems for residential applications: System design alternativeand parameter study[J]. International Journal of Hydrogen Energy,2009,34(20):8630-8644.
    [86] R. Gaynor, F. Mueller, F. Jabbari, et al. On control concepts to prevent fuelstarvation in solid oxide fuel cells[J]. Journal of Power Sources,2008,180(1):330-342.
    [87] A. K. Murshed, B. Huang, K. Nandakumar. Estimation and control of solid oxidefuel cell system[J]. Computers&Chemical Engineering,2010,34(1):96-111.
    [88] X. W. Zhang, S. H. Chan, H. K. Ho, et al. Nonlinear model predictive controlbased on the moving horizon state estimation for the solid oxide fuel cell[J].International Journal of Hydrogen Energy,2008,33(9):2355-2366.
    [89] B. M. Sanandaji, T. L. Vincent, A. M. Colclasure, et al. Modeling and control oftubular solid-oxide fuel cell systems: II. Nonlinear model reduction and modelpredictive control[J]. Journal of Power Sources,2010,196(1):208–217.
    [90] T. J. Zhang, F. Gang. Rapid Load Following of an SOFC Power System via StableFuzzy Predictive Tracking Controller[J]. IEEE TRANSACTIONS ON FUZZYSYSTEMS,2009,17(2):357-371.
    [91] R. D. P. Vijay, M. O. Tad. Effect of the Operating Strategy of a Solid Oxide FuelCell on the Effectiveness of Decentralized Linear Controllers[J]. Industrial&Engineering Chemistry Research,2011,50(3):1439-1452.
    [92] H. Xi. Dynamic modeling and control of planar SOFC power systems[D].Michigan: The university of michigan,2007.
    [93] Y. Inui, N. Ito, T. Nakajima, et al. Analytical investigation on cell temperaturecontrol method of planar solid oxide fuel cell[J]. Energy Conversion andManagement,2006,47(15-16):2319-2328.
    [94] M. Fardadi, F. Mueller, F. Jabbari. Feedback control of solid oxide fuel cell spatialtemperature variation[J]. Journal of Power Sources,2010,195(13):4222-4233.
    [95] V. Tsourapas, J. Sun, A. Stefanopoulou. Control Oriented Analysis of a HybridSolid Oxide Fuel Cell and Gas Turbine System[J]. Journal of Fuel Cell Science andTechnology,2009,6(4):41008-41011.
    [96] H. Xi, J. Sun. Analysis and Feedback Control of Planar SOFC Systems for FastLoad Following in APU Applications[C]. Chicago:2006ASME InternationalMechanical Engineering Congress and Exposition,2006.
    [97] F. Mueller, M. Fardadi, B. Shaffer, et al. Transient Performance of IntegratedSOFC System Including Spatial Temperature Control[C]. Brooklyn: Proceedingsof the ASME2010Eighth International Fuel Cell Science, Engineering andTechnology Conference,2010.
    [98] F. Mueller, F. Jabbari, J. Brouwer, et al. Linear Quadratic Regulator for aBottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System[J]. Journal ofDynamic Systems, Measurement, and Control,2009,131(5):51002-51009.
    [99] X. J. Wu, X. J. Zhu, G. Y. Cao, et al. Predictive control of SOFC based on aGA-RBF neural network model[J]. Journal of Power Sources,2008,179(1):232-239.
    [100] T. Das, S. Narayanan, R. Mukherjee. Steady-State and Transient Analysis of aSteam-Reformer Based Solid Oxide Fuel Cell System[J]. Journal of Fuel CellScience and Technology,2010,7(1):011022-10.
    [101] A. Lanzini, P. Leone. Experimental investigation of direct internal reforming ofbiogas in solid oxide fuel cells[J]. International Journal of Hydrogen Energy,2010,35(6):2463-2476.
    [102] J. Larminie, A. Dicks. Fuel Cell Systems Explained[M].2nd. Chichester, WestSussex PO198SQ, England: John Wiley&Sons Ltd,2003.
    [103] D. F. Cheddie, N. D. Munroe. A dynamic1D model of a solid oxide fuel cell forreal time simulation[J]. Journal of Power Sources,2007,171(2):634-643.
    [104] M. Jang, J. Lee, J. Kim, et al. Maximum Efficiency Point Tracking AlgorithmUsing Oxygen Access Ratio Control for Fuel Cell Systems[J]. Journal of PowerElectronics,2011,11(2):194-201.
    [105] B. Tarroja, F. Mueller, J. Maclay, et al. Parametric Thermodynamic Analysis of aSolid Oxide Fuel Cell Gas Turbine System Design Space[J]. Journal ofEngineering for Gas Turbines and Power,2010,132(7):72301-72311.
    [106] P. Kazempoor, V. Dorer, F. Ommi. Evaluation of hydrogen and methane-fuelledsolid oxide fuel cell systems for residential applications: System design alternativeand parameter study[J]. International Journal of Hydrogen Energy,2009,34(20):8630-8644.
    [107] D. Bhattacharyya, R. Rengaswamy. A Review of Solid Oxide Fuel Cell (SOFC)Dynamic Models[J]. Industrial&Engineering Chemistry Research,2009,48(13):6068-6086.
    [108] M. Bavarian, M. Soroush, I. G. Kevrekidis, et al. Mathematical Modeling,Steady-State and Dynamic Behavior, and Control of Fuel Cells: A Review[J].Industrial&Engineering Chemistry Research,2010,49(17):7922-7950.
    [109] T. Riipinen, V. Vaisanen, P. Silventoinen. Requirements for the control system ofan SOFC power conversion unit in stationary power generation[C]. Fort Worth:Applied Power Electronics Conference and Exposition (APEC),2011Twenty-Sixth Annual IEEE,2011.
    [110] R. S. Gemmen, C. D. Johnson. Effect of load transients on SOFCoperation—current reversal on loss of load[J]. Journal of Power Sources,2005,144(1):152-164.
    [111] F. Mueller, F. Jabbari, R. Gaynor, et al. Novel solid oxide fuel cell systemcontroller for rapid load following[J]. Journal of Power Sources,2007,172(1):308-323.
    [112] K. Singhal, S. c. Kendall. High-temperature Solid Oxide Fuel Cells: Fundamentals,Design and Applications[M].1st. Elsevier Science,2004.
    [113] T. X. Ho, P. Kosinski, A. C. Hoffmann, et al. Effects of heat sources on theperformance of a planar solid oxide fuel cell[J]. International Journal of HydrogenEnergy,2010,35(9):4276-4284.
    [114]雄鹰飞,刘国平,王晓春等.一种小型PEM燃料电池流量系统的建模与控制[J].系统仿真学报,2007,19(1):168-172.
    [115] M. Ni, D. Y. Leung, M. K. Leung. Electrochemical modeling and parametric studyof methane fed solid oxide fuel cells[J]. Energy Conversion and Management,2009,50(2):268-278.
    [116] B. Morel, RobergeRéal, S. Savoie, et al. Temperature and performance variationsalong single chamber solid oxide fuel cells[J]. Journal of Power Sources,2009,186(1):89-95.
    [117]胡寿松.自动控制原理[M].第4版.北京:科学出版社,2001.
    [118]邵惠鹤.工业过程高级控制[M].第1版.上海:上海交通大学出版社,2003.
    [119] M. T. Tham. Multivariable Control: An Introduction To Decoupling Control[M].1st. Industrial Digital Control Systems, K. Warwick, D. Rees, Peregrinus: PeterPeregrinus,1999.
    [120]王树青.工业过程控制工程[M].第2版.北京:化学工业出版社,2002.
    [121] S. Skogestad, I. Postlethwaite. Multivariable Feedback Control Analysis andDesign[M].1st. JOHN WILEY&SONS,2001.
    [122]邱道尹,张健,谢俊明等.基于单神经元的自适应PID控制系统设计及仿真[J].华北水利水电学院学报,2011,32(1):58-60.
    [123]陈静,王永骥.基于单神经元自适应PID控制的温控系统研究[J].计算技术与自动化,2006,25(1):20-22.
    [124]刘金琨.先进PID控制及其MATLAB仿真[M].第1版.北京:电子工业出版社,2003.
    [125]康英伟.固体氧化物燃料电池微型热电联供系统的动态建模仿真与控制研究:[博士学位论文].上海:上海交通大学图书馆,2010.
    [126]张颖颖.质子交换膜燃料电池家庭热电联供系统的仿真分析和控制设计研究:[博士学位论文].上海:上海交通大学图书馆,2006.
    [127]金以慧.过程控制[M].第1版.北京:清华大学出版社,2001.
    [128]方康玲,王新民,刘彦春等.过程控制系统[M].第2版.武汉:武汉理工大学出版社,2007.
    [129]曹楚南,张鉴清.电化学阻抗谱导论[M].第1版.北京:科学出版社,2002.
    [130] E. Barsoukov, J. R. Macdonald. Impedance Spectroscopy: Theory, Experiment,and Applications,2nd Edition[M].2nd. Hoboken: Wiley-Interscience,2005.
    [131] S. P. Jiang, J. G. Love, Y. Ramprakash. Electrode behaviour at (La,Sr)MnO3/Y2O3-ZrO2interface by electrochemical impedance spectroscopy[J].Journal of Power Sources,2002,110(1):201-208.
    [132] Q. A. Huang, R. Hui, B. Wang, et al. A review of AC impedance modeling andvalidation in SOFC diagnosis[J]. Electrochimica Acta,2007,52(28):8144-8164.
    [133] J. Macdonald. Impedance spectroscopy[J]. Annals of Biomedical Engineering,1992,20(3):289-305.
    [134] N. Wagner, W. Schnurnberger, B. Muller, et al. Electrochemical impedance spectraof solid-oxide fuel cells and polymer membrane fuel cells[J]. Electrochimica Acta,1998,43(24):3785-3793.
    [135] S. Diethelm, A. Closset, J. Van, et al. Study of oxygen exchange and transport inmixed conducting cobaltates by electrochemical impedance spectroscopy[J]. SolidState Ionics,2000,135(1-4):613-618.
    [136] J. I. Gazzarri, O. Kesler. Electrochemical AC impedance model of a solid oxidefuel cell and its application to diagnosis of multiple degradation modes[J]. Journalof Power Sources,2007,167(1):100-110.
    [137] Y. Qi, B. Huang, K. T. Chuang. Dynamic modeling of solid oxide fuel cell: Theeffect of diffusion and inherent impedance[J]. Journal of Power Sources,2005,150(4):32-47.
    [138] Z. Yang, L. Wang, S. Li. Investigation into the optimization control technique ofhydrogen-fueled engines based on genetic algorithms[J]. International Journal ofHydrogen Energy,2008,33(22):6780-6791.
    [139] S. Obara, A. G. El-sayed. Compound microgrid installation operation planning of aPEFC and photovoltaics with prediction of electricity production using GA andnumerical weather information[J]. International Journal of Hydrogen Energy,2009,34(19):8213-8222.
    [140] X. J. Sun, G. Y. Cao, X. J. Zhu. A Novel Genetic Algorithm and its Application inFuzzy Variable Structure Control of Fuel Cell[J]. Journal of Intelligent and RoboticSystems,2001,31(1):299-316.
    [141]曾庆山.分数阶控制系统的研究及其在MCFC中的应用:[博士学位论文].上海:上海交通大学图书馆,2004.
    [142] N. J. Ford, A. C. Simpson. The numerical solution of fractional differentialequations: Speed versus accuracy[J]. Numerical Algorithms,2001,26(4):333-346.
    [143] T. Chien-cheng. Design of fractional order digital FIR differentiators[J]. SignalProcessing Letters, IEEE,2001,8(3):77-79.
    [144] F. Jurado. Experience with non-linear model identification for fuel cell plants[J].FUEL CELLS,2005,5(1):105-114.
    [145] T. Kaneko, J. Brouwer, G. S. Samuelsen. Power and temperature control offluctuating biomass gas fueled solid oxide fuel cell and micro gas turbine hybridsystem[J]. Journal of Power Sources,2006,160(1):316-325.
    [146] H. B. Huo, X. J. Zhu, W. Q. Hu, et al. Nonlinear model predictive control of SOFCbased on a Hammerstein model[J]. Journal of Power Sources,2008,185(1):338-344.
    [147] F. Jurado. Predictive control of solid oxide fuel cells using fuzzy Hammersteinmodels[J]. Journal of Power Sources,2006,158(1):245-253.
    [148] X. Li, G. Cao, X. Zhu. Modeling and control of PEMFC based on least squaressupport vector machines[J]. Energy Conversion and Management,2006,47(7-8):1032-1050.
    [149] C. Lubich. Discretized Fractional Calculus[J]. SIAM Journal on MathematicalAnalysis,1986,17(3):704-719.
    [150]林然.分数阶常微分方程的高阶多步法和变分数阶扩散方程的数值方法:[博士学位论文].厦门:厦门大学图书馆,2007.
    [151] J. Stumper, R. Rahmani, F. Fuss. Open circuit voltage profiling as diagnostic toolduring stack lifetime testing[J]. Journal of Power Sources,2010,195(15):4928-4934.
    [152] H. Yakabe, M. Hishinuma, M. Uratani, et al. Evaluation and modeling ofperformance of anode-supported solid oxide fuel cell[J]. Journal of Power Sources,2000,86(1-2):423-431.
    [153] D. W. Clarke, C. Mohtadi, P. S. Tuffs. Generalized predictive control--Part I. Thebasic algorithm[J]. Automatica,1987,23(2):137-148.
    [154] D. W. Clarke, C. Mohtadi, P. S. Tuffs. Generalized Predictive Control--Part IIExtensions and interpretations[J]. Automatica,1987,23(2):149-160.
    [155] E. F. Camacho, C. Bordons. Model Predictice Control[M].1st. Berlin: springer,1999.
    [156]刘斌.非线性系统建模及预测控制若干问题研究:[博士学位论文].浙江:浙江大学图书馆,2004.
    [157]李曦.质子交换膜燃料电池系统的建模与智能控制策略研究:[博士学位论文].上海:上海交通大学图书馆,2005.
    [158] J. M. maciejowski. Predictive Control With Constraints[M].2nd. Prentice Hall,2000.
    [159] D. Feng, C. Tongwen. Performance bounds of forgetting factor least-squaresalgorithms for time-varying systems with finite measurement data[J]. Circuits andSystems I: Regular Papers, IEEE Transactions on,2005,52(3):555-566.
    [160] A. M. Colclasure, B. M. Sanandaji, T. L. Vincent, et al. Modeling and control oftubular solid-oxide fuel cell systems: I. Physical models and linear modelreduction[J]. Journal of Power Sources,2010,196(1):196-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700