基于代理模型的锻造模具结构智能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锻造是金属塑性加工中常用的加工方法,由于材料经过锻造加工之后具有各项优良的机械性能,所以广泛应用于各种机械产品的加工。锻造模具是锻造生产中的主要装备,其设计和制造的质量以及使用寿命决定了锻件的质量和成本。对锻件质量的控制,主要是要对锻造模具进行控制。
     影响锻造工艺及锻件质量的因素可归纳为模具结构形状设计、模具材料、模具加工、锻件复杂程度、设备性能等因素。由于在金属塑性变形过程中材料的流动主要受模具形状的影响及控制,因此,合理选择与设计模具结构的形状参数就显得尤为重要。
     随着数值模拟仿真技术日益成熟,基于模拟的设计方法在塑性成形工程中得到了广泛应用。这种设计方法是应用有限元技术对金属塑性成形过程中的应力应变进行计算,在后处理结果中直观地分析成形过程中金属的流动规律以及设计变量对成形过程的影响,判断是否会产生成形缺陷,预测成形载荷,然后对工艺参数和模具形状的进行修改。
     为了提高锻造模具的设计效率、降低制造成本和提高产品质量,有必要对锻造工艺及其模具结构中影响锻件质量的各项工艺参数进行优化。目前,基于有限元分析的优化设计方法在锻造成形工艺及其模具设计中的已成为一种趋势。作为基于有限元分析的优化方法之一,基于目标函数值的拟合优化方法因其通用性好而最具推广价值。基于目标函数值的拟合优化方法,其特点是优化与有限元程序分离,通用性强。可直接利用现有的商用有限元分析软件,充分发挥其强大的有限元计算功能。基于目标函数值的拟合优化方法,其实质是代理模型方法,即用拟合的方法建立近似模型,通过近似模型逼近目标函数和设计变量之间的函数关系,然后求解这个近似模型的极值点来逼近真实的极值点。
     基于目标函数值的拟合优化方法中,关键是要通过一定的拟合方法,建立起能够正确反映设计变量与目标函数之间关系的近似模型。
     为了能够正确地反映设计变量各个参数的重要性,必须采用合理的试验设计方法获得所需的样本点。得到足够的样本点后,通过一定的机理模型,采用数值模拟程序进行求解,获得所关心的目标函数值。然后选择合适的近似模型构建方法进行拟合。最后,对得到的近似模型进行优化分析(低维的采用常规线性规划或非线性规划,高维的采用智能优化算法)。
     由于金属塑性成形问题的多因素高维非线性无法用常规优化迭代方法寻优,而智能优化方法可以不用求导数,且全局探索能力强,非常适用于塑性成形问题的优化。另外,充分考虑到Kriging模型适于对高维非线性问题进行插值拟合的特点。本文将Kriging模型与遗传算法(Genetic Algorithms,GA)相耦合,提出Kriging-GA优化策略,用于锻造模具结构参数的优化设计。Kriging-GA优化策略由三部分组成:近似模型的构建;多目标问题的变换;遗传算法寻优。Kriging模型的构建与遗传算法寻优通过在Matlab下编程进行耦合。
     与遗传算法比较而言,粒子群算法容易实现,并且由于其不需要遗传交叉、变异等操作,使之需要调整的参数较少。另外,粒子群算法具有收敛速度快的优点。本文将Kriging模型与粒子群优化算法(Particle Swarm Optimization,PSO)相耦合,首次提出了Kriging-PSO优化策略,在Matlab下编程实现。
     将Kriging-GA优化策略用于汽车法兰盘锻模和汽车曲轴锻模的优化中,与多项式响应面方法进行了对比。研究结果表明,Kriging-GA优化法较多项式响应面方法的预测精度高,但收敛慢。在此基础上,将Kriging-PSO优化策略应用于该汽车曲轴锻模的优化问题作为对比。结果表明,与Kriging-GA法所得优化结果基本一致,但收敛速度提高数十倍。最后,将Kriging-PSO优化策略应用于射孔弹冷挤压的预挤压成形和终成形组合凹模的优化设计中,验证了Kriging-PSO优化策略的有效性。
Forging is the commonly used processing method in metal plastic processing. Due to the material after forging have excellent mechanical properties, so this method widely applied in all kinds of mechanical products processing. As forging die is the main equipment in forging production, the quality of its design and manufacturing and service life determines the quality and cost of forgings. The quality of forgings mainly depends on the quality of forging die.
     The influence factors of forging process and forgings quality can be summarized as the mold structure and shape design, mould material, mould processing, forgings complexity, equipment performance, and other factors. The material flow during metal plastic deformation process mainly is influenced and controlled by the mold shape, therefore, reasonable selection and design of the mold structure shape parameters are particularly important.
     With the numerical simulation technology has become more mature, simulation-based design method in plastic forming technology has been widely used. This design approach is to calculate stress and strain in the metal forming process using finite element technology, and to determine whether the defects would have formed and to predict forming load, and then modify the process parameters and mold shapes through an intuitive analysis of metal forming process flow pattern and design variables on the impact of forming process in Post-processing results.
     In order to improve the forging die design efficiency and reduce manufacturing costs and improve product quality, it is necessary to optimize the forging process parameters in forging process and die structure that affect the quality of the forgings. At present, the optimum design method based on finite element analysis in forging process and its die design has become a trend.
     As one of the optimization method based on finite element analysis, the fitting optimization methods based on the objective function value is the method to be popularized currently because of its good general characteristics. The fitting optimization methods based on the objective function value, which is characterized by separation of optimization and the finite element program and versatility, can be directly use the existing commercial FEM software, give full play to its powerful finite element functions. The fitting optimization methods based on the objective function value is essentially agent model method. This method is to establish approximate model by fitting and to approximate the functional relationship between objective function and variables and then solving this approximate model to approximate the true extreme point.
     The key in the fitting optimization methods based on the objective function value is to establish the approximate model which can correctly reflect the relationship between the design variables and target function.
     In order to correctly reflect the importance of each parameter design variables, the reasonable experimental design method must be adopt to obtain the necessary sample points. After get enough sample point, the objective function value can be obtained using numerical simulation program for solving through a certain mechanism model. Then select the appropriate method to build approximate models. Finally, the approximate models were optimized analysis.
     Conventional optimization iterative method can not be used in the metal forming optimization problems because multi-factor、high-dimensional and non-linear. Intelligent optimization method is ideal for optimization of metal forming problems because it can not calculate derivative and the good global exploration ability. In addition, the Kriging model is suitable for high-dimensional nonlinear interpolation problems. This paper, the Kriging model coupled with genetic algorithms is proposed Kriging-GA optimization strategies for forging die structure parameters of optimal design. In this paper, Kriging-GA optimization strategies for optimal design of forging die structure parameters are proposed by the Kriging model and genetic algorithms coupled. Kriging-GA optimization strategy consists of three parts: building approximate model; the transformation of the multi-objective problem; genetic algorithm optimization. Kriging model Construction and genetic algorithm optimization program carried out by coupling using Matlab.
     Comparison with genetic algorithms, particle swarm algorithm has the advantages of easy to realize and fast convergence and few parameters need to be adjusted because it does not need genetic crossover and mutation operation. This article first propose Kriging-PSO optimization strategy coupled with kriging model and the particle swarm algorithms and achieve under Matlab programming.
     The Kriging-GA strategy and Polynomial response surface method were compared with applied in optimization for automotive flange forging die and crankshaft forging die. The results show that, Kriging-GA method has more accuracy but slow convergence than the polynomial response surface methods. On this basis, the Kriging-PSO optimization strategies applied to the crankshaft forging die as a contrast to the optimization problem. The results showed that results obtained with the Kriging-GA and with the Kriging-PSO had basically the same, but the Kriging-PSO convergence speed fast several dozen times. Finally, the Kriging-PSO optimization strategy used in cold extrusion of pre-perforated shells and end-forming combination of extrusion die of the optimal design to verify the Kriging-PSO optimization strategy is effective.
引文
[1] Lee C H,Kobayashi S. New solutions to rigid plastic deformation problems using a matrix method [J]. Transactions of ASTM. Journal of Engineering for Industry,1973,95:865-873.
    [2] Zienkwicz O C,Godbole P N. A penalty function approach to problem of plastic flow of metals with large surface deformations [J]. J. Strain Analysis,1975,10:180-187.
    [3] Osakada K,Nakano J,Mori K. Finite element method for rigid-plastic analysis of metal forming-formulation for finite deformation [J]. Int. J. Mech. Sci.,1982,24(8):459-468.
    [4] S I Oh. Finite element analysis of metal forming Proeesses with arbitrarily shaped dies [J]. International Journal of Mechanieal Seienees,1982,24(8):479-488.
    [5] J J Park , S Kobayashi. Three-dimension finite element analysis of block compression[J].International Journal of Mechanical Sciences,1984,26(3):165-176.
    [6] R. Duggirala. Design of forging Dies for forming Flashless Ring Gear Blanks Using Finite Element Methods [J]. Journal of Material Shaping Technology,1989,17:33-47.
    [7] N Y Kim,S Kobayashi . Preform Design in H-Shaped Cross Sectional Axiaymmetric Forging by the Finite Element Method [J]. International Journal of Machine Tools & Manufacture,1990,30(2):243-268.
    [8] F Fereshteh-Saniee,M Jaafari. Analytical,numerical and experimental analyses of the closed-die forging[J]. Journal of Materials Processing Technology,2002,125-126:334-340.
    [9] B I Tomov,V I Gagov,R H Radev. Numerical simulations of hot die forging Proeesses using finite element method [J]. Journal of Materials Proeessing Teehnology,2004 ,153-154:352-358.
    [10] B Tomov,R Radev,V Gagov. Influence of flash design upon Process Parameters of hot die forging [J]. Journal of Materials Processing Technology,2004,157-158:620-623.
    [11] E Ervasti,U Stahlberg. A quasi-3D method used for increasing the material yield in closed-die forging of a front axle beam [J] . Journal of Materials Processing Technology,2005,160:119-122.
    [12] J H Song,Y T Im . Process design for closed die forging of bevel gear by finite element analyses[J]. Journal of Materials Processing Technology,2007,192-193:l-7.
    [13]赵国群.金属体积成形过程的正反向数值模拟[D].上海交通大学博士学位论文,1991.
    [14]赵国群,张鸿光等.金属体积成形过程刚-粘塑性有限元模拟系统[J].机械工程学报,1992,6:14-19.
    [15]赵国群,阮雪榆等.多工位连续金属体积成形过程有限元模拟[J].锻压技术,1992,2:2-5.
    [16]陈军.虚拟模具制造及其金属成形过程三维仿真技术研究[D].上海交通大学博士学位论文,1996.
    [17]陈军,彭颖红等.金属体积成形预成形工艺三维塑性有限元模拟[J].锻压机械,1997,6:41-44.
    [18]王广春.环形件摆动辗压变形的三维刚塑性有限元分析[D].哈尔滨工业大学博士学位论文,1996.
    [19]王广春,吕炎等.有限元法在摆动辗压中的初步应用[J].塑性工程学报,1996,l:3-10.
    [20] G C Wang,et. al. Methods of Dealing with Some Problems in Analyzing Rotary Forging with the FEM and initial Application to a Ring Workpiece [J],Journal of Materials processing Technology,1997,71:299-304.
    [21]王广春,赵国群等.环形件摆动辗压变形机理三维刚塑性有限元分析[J].塑性工程学报,1999,16(4):50-55.
    [22] G C Wang,G Q Zhao. A Three-Dimensional Rigid-Plastic FEM Analysis of Rotary forging Deformation of a Ring Workpiece [J]. Journal of Materials Processing Technology,1999,95:112-115.
    [23]赵新海,王同海.管接头复合成形新工艺及有限元模拟[J].山东工业大学学报,1998,28(2):165-168.
    [24]刘郁丽,杨合,詹梅.单榫头叶片锻造过程应力应变场的三维有限元分析[J].西北工业大学学报,2002,20(1):137-140.
    [25]刘郁丽,杨合,詹梅.单榫头叶片叶身精锻成形规律[J].机械工程学报,2002,38(6):111-114.
    [26]刘郁丽,杨合,詹梅,等.叶片精锻三维刚粘塑性有限元模拟系统的研究[J].西北工业大学学报,2003,21(1):106-109.
    [27]刘郁丽,杨合,詹梅.摩擦对叶片精锻预成形毛坯放置位置影响规律的研究[J].机械工程学报,2003,39(1):97-100.
    [28]胡亚民,夏华.摩托车带爪齿轮坯的精锻成形数值模拟与工艺研究[J].塑性工程学报,2006,13(2):48-50.
    [29] Bhavin V. Mehta, Ibrahim Al-Zkeri, Jay S. Gunasekera, et al. 3D flow analysis inside shear and streamlined extrusion dies for feeder plate design [J]. Journal of materials processing technology, 2001,113(1-3):93-97.
    [30] B. K. Lee, H. H. Kwon, H. Y. Cho. A study on the automated process planning system for cold forging of non-axisymmetric parts using FVM simulation [J]. Journal of materials processing technology, 2002,130-131:524-531.
    [31] S.H. Kim, S.W. Chung, S. Padmanaban. Investigation of lubrication effect on the backwardextrusion of thin-walled rectangular aluminum case with large aspect ratio [J]. Journal of materials processing technology, 2006,180(1-3):185-192.
    [32]周飞,苏丹,彭颖红.有限体积法仿真金属塑性成形的基本理论[J].上海交通大学学报,2002,36(7):915-919.
    [33]周飞,苏丹,彭颖红.有限体积法模拟铝型材挤压成形过程[J].中国有色金属学报,2003,13(1):65-70.
    [34]苏丹,周飞,彭颖红.有限体积法仿真金属锻造过程及其关键技术[J].系统仿真学报,2003,15(4):534-537.
    [35]吴向红,赵国群,马新武等.模具锥角对铝材挤压过程影响规律的研究[J].锻压装备与制造技术,2005,40(5):75-78.
    [36]林高用,冯迪,孙利平等. 5083铝合金法兰盘锻造过程的数值模拟[J].热加工工艺,2008,37(13):54-58.
    [37] R. Szyndler, B. Klimkiewicz. Design of the open-die elongation process using optimization technique [J]. Journal of materials processing technology, 1992,34(1-4):157 -162.
    [38] S. Roy, S. Ghosh, R. Shivpuri. A new approach to optimal design of multi-stage metal forming processes with micro genetic algorithms[J]. International Journal of Machine Tools and Manufacture, 1997,37(1):29 -44.
    [39] C. F. Castro, C. A. C. António, L. C. Sousa. Optimisation of shape and process parameters in metal forging using genetic algorithms[J]. Journal of materials processing technology,2004,146(3):356-364.
    [40] Guoqun Zhao, Ed Wright, Ramana V. Grandhi. Sensitivity analysis based preform die shape design for net-shape forging [J]. International Journal of Machine Tools and Manufacture, 1997,37(9):1251-1271.
    [41]赵国群,贾玉玺.圆盘锻件纯形状锻造模具优化设计[J].机械工程学报,1999,35(4):81-84.
    [42]赵新海,赵国群,王广春,等.锻造预成形多目标优化设计的研究[J].机械工程学报,2002,38(4):61-65.
    [43]王广春,管婧,赵国群.锻造成形微观组织优化建模及应用[J].塑性工程学报,2005,12(5):49-53.
    [44]汤禹成,周雄辉,陈军.基于神经网络响应曲面的预锻模具形状优化与再设计方法[J].上海交通大学学报,2007,41(4):624-628.
    [45]倪红梅,王维刚,李敏,等.基于遗传算法和BP神经网络的裙座锻造结构优化设计[J].压力容器,2008,25(9):20-24.
    [46] Holland J H. Adaptation in natural and artifical systems [M]. MIT Press, 1975.
    [47] Metropolis N, Rosenbluth A W, Rosenbluth M N et al. Equation of state calculations by fast computing machines [J]. The Journal of Chemical Physics, 1953, 21: 1087~1092.
    [48] Kirkpatrick S, Gelatt Jr C D, Vecchi M P. Optimization by simulater annealing [J]. Science, 1983, 220: 671~680.
    [49] Glover F. Future paths for integer programming and links to artificial intelligence [J]. Computers and Operations Research, 1986, 13: 533~549.
    [50] Glover F. Tabu search: part I [J]. ORSA Journal on Computing, 1989, 1: 190~206.
    [51] Glover F. Tabu search: part II [J]. ORSA Journal on Computing, 1990, 2: 4~32.
    [52] Dorigo M. Optimization, learning and natural algorithms [D]. PhD Thesis, Department of Electronics, Politecnico di Milano, Italy, 1992.
    [53] Eberhart R C, Kennedy J. A new optimizer using particle swarm theoty. Proc. on 6th International Symposium on Micromachine and Human Science[C]. Piscataway, NJ: IEEE Service Center, 1995: 39~43.
    [54] D. J. Finney. The analysis of a factorial series of insecticide tests [J]. Annals of applied biology, 1946, 33(2): 160~165.
    [55] C. F. Jeff Wu,Michael Hamada.试验设计与分析及参数优化[M].张润楚,郑海涛,兰燕,等译.北京:中国统计出版社,2003.第2页.
    [56]王晓瑜.进气道喷油式汽油机油气混合过程三维瞬态数值模拟[D].武汉:华中科技大学博士学位论文,2006.
    [57]马逢时,周暐,刘传冰.六西格玛管理统计指南[M].北京:中国人民大学出版社,2007.
    [58] D.C.蒙哥马利.实验设计与分析[M].汪仁官,陈荣昭译.北京:中国统计出版社,1998.
    [59] SAS Institute Inc. JMP试验设计. 2006.
    [60] R. L. Plackett,J. P. Burman. The design of optimum multifactorial experiments[J], Biometrika, 1946, 33 (4):305-325.
    [61]陈颖.无重复试验的饱和析因设计的数据分析[J].应用概率统计,2004,20(8).
    [62]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [63] Mckay M D,Beckman R J,Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J].Technometrics,1979,21(2):239-245.
    [64] M. Keramat,R. Kielbasa. A study of stratified sampling in variance reduction techniques for parametric yield estimation[J]. IEEE Trans.CAS-II, 45(5):575-583,1998.
    [65]俞金寿,蒋爱平,刘爱伦.过程控制系统和应用[M].北京,机械工业出版社,2003.
    [66]昂海松.飞行器先进设计技术[M].北京,国防工业出版社,2008.
    [67]彭颖红,胡洁. KBE技术及其在产品设计中的应用[M].上海,上海交通大学出版社,2007.
    [68]林治平.锻压变形力的工程计算[M].北京:机械工业出版社,1986.
    [69]陈森灿,叶庆荣.金属塑性加工原理[M].北京:清华大学出版社.
    [70]彭成章.铝双辊铸轧过程数值模拟及工艺因素对纯铝带坯显微组织的影响[D].长沙:中南大学博士学位论文.
    [71]林治平.上限法在塑性加工工艺中的应用[M].北京:中国铁道出版社,1991.
    [72]熊正超.径向基函数逼近中的若干问题研究[D].上海:复旦大学博士学位论文,2007.
    [73]吴宗敏.函数的径向基表示[J].数学进展,1998,27(3):202~208.
    [74] K Osakada, G B Yang. Neural Networks for Process Planning of Cold Forging[J]. Annals of the CIRP, 2005.120:105-176.
    [75]太勇.神经网络多参数诊断法及其应用研究[J].机械工程学报,2002,34(1):100-103.
    [76]胡小平,毛征宇,胡燕平.基于人工神经网络的一种板形反馈控制[J].制造业造化,2001,23(3):40-45.
    [77]赵军,郑祖伟,王凤琴.轴对称件拉深成形智能化控制中参数实识识别的GA-ENN建模[J].中国机械工程,2003,14(1):72-74.
    [78]方建军,田建君,郑青春.光机电一体化系统设计[M].北京:化学工业出版社,2003. p143
    [79] CROARKIN C, TOBIAS Paul. NIST/SEMATECH e-Handbook of Statistical Methods[DB/OL].http://www.itl.nist.gov/div898/handbook/,2006.
    [80] KLEIJNEN J P C.An overview of the design and analysis of simulation experiments for sensitivity analysis [J].European Journal of Operational Research, 2005, 164:287-300.
    [81] LEBAAL N, SCHMIDT F, PUISSANT S. Design and optimization of three-dimensional extrusion dies, using constraint optimization algorithm [J]. Finite Elements in Analysis and Design, 2008.
    [82] LOPHAVEN S N, NIELSEN H B, SONDERGAARD J . DACE a matlab Kriging toolbox[OL]. [2002-08-01]. http://www2.imm.dtu.dk/~hbn/dace/dace.pdf.
    [83]张建国,苏多,刘英卫.机械产品可靠性分析与优化[M].北京:电子工业出版社,2008.
    [84]郭仁生,苏君,卢洪胜.优化设计应用[M].北京:电子工业出版社,2003.
    [85]郭仁生.基于Matlab和Pro/Engineer优化设实例解析[M].北京:机械工业出版社,2007.
    [86]陈屹,谢华.现代设计方法及其应用[M].北京:国防工业出版社,2004.
    [87]汪定伟,王俊伟,王洪峰,等.智能优化方法[M].北京:化学工业出版社,2007.
    [88]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2001.
    [89] WANG Hu,LI Guangyao,ZHONG Zhihua.Optimization of sheet metal forming processes by adaptive response surface based on intelligent sampling method[J].Journal of Materials Processing Technology,2008,197:77-88.
    [90] SATHIYA P,ARAVINDAN S,HAQ A N et al. Optimization of friction welding parameters using evolutionary computational techniques[J].Journal of Materials Processing Technology,2009,209:2576-2584.
    [91]茅健,郑华文,曹衍龙,等.基于粒子群算法的圆柱度误差评定方法[J].农业机械学报,2007,38(2):146-149.
    [92]曹卫华,郭正.最优化技术方法及Matlab实现[M].北京:化学工业出版社,2005.
    [93]刘国平,曾强.多目标最优化的粒子群算法[J].杭州师范学院学报(自然科学版). 2005,4(1):30~33.
    [94]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [95]安伟刚.多目标优化方法研究及其工程应用[D].西安:西北工业大学博士学位论文,2005.
    [96]公茂果,焦李成,杨咚咚,等.进化多目标优化算法研究[J].软件学报. 2009,Vol.20(2):271~289.
    [97]周金龙.热锻模具磨损分析与锻造参数设计最佳化研究[D].台湾:成功大学博士学位论文,2005.07.
    [98]赵新海,赵国群,王广春,等.锻造过程优化设计目标的研究[J].锻压装备与制造技术. 2004,1:48-52.
    [99]吕炎.锻模设计手册(第2版)[M].机械工业出版社,2005.
    [100]陈学文,陈军,赵震,等.冷锻技术的发展现状与趋势[J].金属成形工艺. 2003,21(5):9~11.
    [101]颜志光.新型润滑材料与润滑技术实用手册[M].北京:国防工业出版社,1999.
    [102] CROARKIN C, TOBIAS Paul . NIST/SEMATECH e-Handbook of Statistical Methods [DB/OL].http://www.itl.nist.gov/div898/handbook/,2006.
    [103]Γ.Π.捷捷林,Π.И.波卢欣.热体积模锻工艺过程设计最优化和自动化原理[M].肖景容,李德群,译.北京:国防工业出版社,1983.
    [104] SAMOLYK G, PATER Z. Use of SLFET for design of flash gap with v-notched lands in a closed-die forging [J]. Journal of Materials Processing Technology, 2005, 162-163:558-563.
    [105]周杰,刘敏,王平,等.汽车曲轴终锻模阻力墙新型结构参数试验[J].机械工程学报,2007,43(8):229-234.
    [106]罗晴岚,曹红亮.汽车内燃机曲轴锻件生产论述[J].锻压装备与制造技术. 2004,39(2):24-27.
    [107]陈光祖.2009年汽车零部件产业日子怎么过[J].中国汽摩配,2009,1:76.
    [108] BEHRENS B A. Finite element analysis of die wear in hot forging process[J]. CIRP Annals-Manufacturing Technology, 2008,57:305-308.
    [109] DEJAEGHER B, CAPRON X, VERBEKE J S, et al. Randomization tests to identify significant effects in experimental designs for robustness testing[J].Analytica Chimica Acta,2006,564:184-200.
    [110] ALAM F M,MCNAUGHT K R,RINGROSE T J.A comparison of experimental designs in the development of a neural network simulation metamodel[J].Simulation Modelling Practice and Theory,2004,12:559-578.
    [111] RAZA W, KIM K Y. Shape optimization of wire wrapped fuel assembly using kriging metamodeling technique[J]. Nuclear Engineering and Design, 2008,238:1332-11341.
    [112] HOUCK C R, JOINES J A, KAY M G. A genetic algorithm for function optimization:a matlab impl-ementation[DB/OL].http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/,1995.
    [113] Wagner K, Volkl R, Engel U. Tool life enhancement in cold forging by locally optimized surfaces[J]. Journal of Materials Processing Technology,2008,201:2-8.
    [114]王孝文,刘汉贵.挤压组合凹模的设计[M].国防工业出版社,1988.
    [115]马国华,许宏利.基于冷锻数值模拟技术的圆锥滚子预应力组合凹模研究[J].轴承,2009,1:42-46.
    [116]石峰,娄臻亮,张永清.基于遗传算法和神经网络的冷挤压工艺参数模糊优化设计[J] .机械工程学报,2002,38(8):45-49.
    [117]孙宪萍,王雷刚,黄瑶,等.基于遗传算法的挤压模具型腔形状优化设计[J].江苏大学学报(自然科学版),2006,27(6):513-515.
    [118]王强,昌木松,陈忠家,等.圆柱直齿轮挤压组合凹模的优化设计[J].合肥工业大学学报(自然科学版),2008,31(9):1415-1418.
    [119]滕宏春,张凤兰,任先玉.射孔弹壳冷挤压成形参数的理论研究[J].机械工程学报,2001,37(4):89-92.
    [120]郝滨海.挤压模具简明设计手册[M].北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700