金属硫族半导体纳米材料的液相控制合成及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫族半导体纳米材料由于其独特的物理和化学性能,在许多领域具有广泛的应用前景。而且他们也可作为微/纳米器件的组装单元,对微/纳米器件的性能起到决定性的作用,因此研究半导体纳米材料的结构、形貌及控制合成技术具有重要的意义。由于铜的硫族化合物(如氧化亚铜、硫化铜、硒化铜)、氧化锌及铅的硫族化合物(硫化铅、硒化铅和碲化铅)等材料在催化、光电转化、发光、压电、气敏、热电等有着广泛的应用前景而成为材料化学等领域的研究热点之一。以往的研究表明材料的性能和应用不仅取决于其本身的结构、晶型及组成,而且其尺寸和形貌对材料的性能和应用也起到决定性的作用,因而对半导体纳米材料的尺寸和形貌进行可控的合成不仅具有理论上的意义而且可拓宽纳米材料的应用范围。在本文的研究中,我们使用简单而且温和的水溶液湿化学反应方法,控制合成了具有规整形貌和结构的氧化亚铜纳米/微米晶体,并以此为基础通过简单的化学转化制备了具有新颖拓扑结构的硫化铜多面体中空纳米晶和多种形貌的硒化铜中空微/纳米晶,进一步使用温和的乙醇湿化学反应合成了直径小于10纳米的一维纳米氧化锌单晶材料并研究了其光学性能,最后通过微波辐照辅助法制备了具有枝形结构的硫化铅、硒化铅和碲化铅的树枝形微晶。本文的主要研究内容包括:
     1.不同形貌和粒径的Cu2O模板物微/纳米材料的可控合成。
     制备了具有立方体、八面体、球形多孔和一维纳米结构的Cu2O纳米/微米材料。当以抗坏血酸作还原剂制备Cu2O立方体时,随PVP的增加,立方体的颗粒的大小变小。而且,随着加入的NaOH的浓度的增加,Cu2O纳米颗粒的尺寸也相应的增加。使用盐酸羟胺作还原剂时,得到八面体的Cu2O微晶,改变反应条件得到一维和立方体Cu2O的混合物及多孔颗粒。
     2.中空笼状硫化铜和硒化铜多面体的模板牺牲法控制合成及形成机理。
     基于以上工作的基础,以Cu2O立方体模板首次通过模板牺牲法合成了具有高度对称结构的Cu7S4十八面体中空半导体材料,并通过反应参数的控制,成功地通过化学“雕刻”技术得到了具有窗口结构的十八面体中空硫化铜多面体,研究表明我们可以在不同尺度的纳米表面进行化学“打孔”。论文进一步以立方体、八面体和球形形貌的Cu2O作为模板牺牲物,合成了具有立方体、八面体及球形结构的中空Cu2-xSe晶体。基于Kirkendall效应和晶体生长理论对其中空结构和多面体结构的形成机理进行了讨论。这些工作已经先后以快讯发表在JACS和Chem. Commun.,JACS审稿人给予较高评价,认为该工作是一项原创性的工作,可排在功能材料合成前20(top20)。
     3.具有极小直径的一维ZnO纳米材料的合成及光学性能研究。
     在室温条件下制备了直径为5-10纳米,长径比可调的一维ZnO纳米材料,研究了反应时间和反应物浓度等对产物形貌的影响。研究表明一维氧化锌纳米颗粒的长径比随反应时间的延长而变大,随着NaOH含量的增加,产物的长径比相应的有所增加。其光学性能研究表明所制备的一维ZnO具有完美的晶体结构。论文进一步通过水热合成法制备了直径约为10纳米的一维ZnO纳米材料,并且讨论了不同溶剂、反应温度、反应物的比例对形貌的影响。研究表明乙醇胺的加入有助于该一维材料的自组转。相关研究发表在Nanotechnology,并获当月下载top10。
     4.三维结构PbE(E=S,Se,Te)的微波合成。
     以硫脲为硫源成功制备了三维结构的PbS树枝晶,对比实验表明PbS树枝晶的形成过程受动力学条件控制,反应前驱物的浓度对形貌有着非常大的影响。如果反应前驱物浓度低,可得到立方体和四边形片状纳米颗粒;提高反应前驱物的浓度可观察到从立方体到树枝晶的转变过程。用硒粉和碲粉为前驱物,在外加还原剂的条件下,首次制备了PbSe和PbTe树枝晶。
Binary metal chalcogenide semiconductors have attracted much attention due to their unique physical, chemical properties and the widely applications in many fields, such as electronics, magnetics, optics, etc. If applied as basic building blocks, they also play an important role on the properties of assembling nano-/micro- apparatus. Therefore, it was important to investigate the structures, morphologies and synthetical technologies of nano semiconductors. As typical materials of binary semiconductors, copper chalcogenides (e.g. Cu2O, copper sulfide and copper selenide), ZnO and lead chalcogenides (e.g. PbS, PbSe and PbTe) have attracted considerable attention owing to their wide applications in catalysts, photoelectric transition, luminescence, piezoelectricity, gas sensor, thermoelectricity materials, etc. It was well known that the properties of materials were mainly determined by composition, structure of crystal itself according to previous studies, however, the size and shape of materials also played important roles to determine their applications and properties. Thus, controlled synthesis on the size and shape of nano-semiconductors will largely increased their scientific significances and widen the corresponding technical applications. In this study, we managed to produce Cu2O nanocrystals with uniform shapes via facile and warmly wet-chemical methods, and then transferred Cu2O nanocrystals into Cu7S4 and Cu2-xSe with novel hollow polyhedral morphologies. In addition, we prepared ZnO nanorod of small diameter (<10nm) with varied aspect ratio in ethanol solution under ambient temperature condition or low temperature hydrothermal condition. In the end, dendrites of lead chalcogenides (PbS, PbSe and PbTe) were synthesized by microwave-assistant heating routes. The main contents of this dissertation could be summarized in four sections:
     1. Shape- and size-controlled synthesis of Cu2O nano-/ micro-crystals.
     Cubic, octahedral, sphere-like and fiber-like of Cu2O particles have been prepared under different reaction conditions. The shape and size of Cu2O particles were strongly dependent on different reaction parameters, for example, the precursor’s concentration, the type of reductive regent, the concentration of PVP and NaOH, even the mixing sequence of reaction component.
     2. The synthesis of copper sulfide and copper selenide nano/micro hollow cages with uniform polyhedral and sphere shapes.
     Firstly, hollow single-crystal semiconductor of Cu7S4 with high symmetric 18-facet polyhedron structure was prepared by reacting cubic Cu2O template with Tu. Then, 18-facet polyhedra of Cu7S4 with hollow window structure and various sizes were synthesized at high temperature hydrothermal condition. Finally, cubic-like, octahedral-like and sphere-like Cu2-xSe hollow cages were successfully fabricated from shape-controlled Cu2O as sacrificial cores, precursors or templates by a single technique at room temperature. A plausible formation mechanism of these hollow structures could be based on the Kirkendall effect. These studies were published by JACS and Chem. Commun. The reviewers of JACS gave high comments about the study of Cu7S4 polyhedron.“The authors present valuable results of an original research in the area of chemical synthesis of functional materials, and I believe this paper fell within top 20% in this field.”
     3. Preparation of ZnO nanorods with various aspect ratios.
     We studied the reactive time and concentration effect on morphologies of ZnO nanorods at room temperature. It was found that the aspect ratio would be increased if the reactive time was prolonged or the reactant concentration was increased. The optical properties showed that the ZnO nanorods possess perfect crystalline structure. We also discussed the effect of different solvent, reactive temperature and reactant ratio on morphologies of ZnO nanorods.
     4. Dendrites of lead chalcogenides (PbS, PbSe and PbTe)
     Dendrite of PbS with 3-D structure was synthesized by microwave assistant heating method in EG solution. It was found that the formation of PbS was dependent on the kinetics condition, and the precursor concentration also played an important role on the morphologies of PbS. The cubic or plate-like PbS nanoparticles would be obtained if low concentration of precursor was used. The transferred process from cube to dendrite of PbS would be clearly observed when increasing the concentration of precursors. We also synthesized the dendrites of PbSe and PbTe if Se and Te powder replaced sulfur source and another reducing agent was added in this system.
引文
1. 朱静, 等, 纳米材料和器件. 清华大学出版社: 北京, 2003; p 1-2.
    2. 张立德, 牟季美, 纳米材料和纳米结构. 北京, 2001; p 51-94.
    3. 夏建白, 半导体纳米材料和物理. 物理 2003, 32, (10), 693-699.
    4. Cushing, B. L.; Kolesnichenko, V. L.; O'connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004, 104, (9), 3893-3946.
    5. Oh, J.; Jung, Y.; Lee, J.; Tak, Y., Nanoporous alumina formation using multi-step anodization and cathodic electrodeposition of metal oxides on its structure. Nanotechnology in Mesostructured Materials 2003, 146, 205-208.
    6. Wang, Y. H.; Mo, J. M.; Cai, W. L.; Yao, L. Z.; Liu, Y. M., Synthesis and characterization of Nano-Hg2Cl2/Al2O3 ordered array system. Chemical Journal of Chinese Universities-Chinese 2002, 23, (7), 1401-1403.
    7. Michailowski, A.; AlMawlawi, D.; Cheng, G. S.; Moskovits, M., Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chemical Physics Letters 2001, 349, (1-2), 1-5.
    8.11. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., One-dimensional nanostructures: Synthesis, characterization, and applications. Advanced Materials 2003, 15, (5), 353-389.
    9. Tanaka, D. A. P.; Tanco, M. A. L.; Niwa, S.; Wakui, Y.; Mizukami, F.; Namba, T.; Suzuki, T. M., Preparation of palladium and silver alloy membrane on a porous alpha-alumina tube via simultaneous electroless plating. Journal of Membrane Science 2005, 247, (1-2), 21-27.
    10. Zhao, L. L.; Steinhart, M.; Yosef, M.; Lee, S. K.; Schlecht, S., Large-scale template-assisted growth of LiNbO3 one-dimensional nanostructures for nano-sensors. Sensors and Actuators B-Chemical 2005, 109, (1), 86-90.
    11. Zhao, L. L.; Steinhart, M.; Yu, J.; Gosele, U., Lead titanate nano- and microtubes. Journal of Materials Research 2006, 21, (3), 685-690.
    12. Araki,H.; Fukuoka, A. S., Y.; Inagaki S.; Sugimoto, N.; Fukushima, Y.; Ichikawa, M., Template synthesis and characterization of gold nano-wires and-particles in mesoporous channels of FSM-16. Journal of Molecular Catalysis A: Chemical 2003, 199, 95-102.
    13. Murphy, C. J.; Jana, N. R., Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials 2002, 14, (1), 80-82.
    14. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B 2001, 105, (19), 4065-4067.
    15. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials 2001, 13, (18), 1389-1393.
    16. Jana, N. R.; Gearheart, L.; Murphy, C. J., Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001, 17, (22), 6782-6786.
    17. Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chemical Communications 2001, (7), 617-618.
    18. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., Gold nanorods: Electrochemical synthesis and optical properties. Journal of Physical Chemistry B 1997, 101, (34), 6661-6664.
    19. Kim, F.; Song, J. H.; Yang, P. D., Photochemical synthesis of gold nanorods. Journal of the American Chemical Society 2002, 124, (48), 14316-14317.
    20. Cao, M. H.; Hu, C. W.; Wang, Y. H.; Guo, Y. H.; Guo, C. X.; Wang, E. B., A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chemical Communications 2003, (15), 1884-1885.
    21. Gou, L. F.; Murphy, C. J., Solution-phase synthesis of Cu2O nanocubes. Nano Letters 2003, 3, (2), 231-234.
    22. Gao, Y.; Jiang, P.; Liu, D. F.; Yuan, H. J.; Yan, X. Q.; Zhou, Z. P.; Wang, J. X.; Song, L.; Liu, L. F.; Zhou, W. Y.; Wang, G.; Wang, C. Y.; Xie, S. S., Synthesis, characterization and self-assembly of silver nanowires. Chemical Physics Letters 2003, 380, (1-2), 146-149.
    23. Zhou, Y.; Wang, C. Y.; Zhu, Y. R.; Chen, Z. Y., A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chemistry of Materials 1999, 11, (9), 2310-+.
    24. Djalali, R.; Li, S. Y.; Schmidt, M., Amphipolar core-shell cylindrical brushes as templates for the formation of gold clusters and nanowires. Macromolecules 2002, 35, (11), 4282-4288.
    25. Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391, (6669), 775-778.
    26. Eichen, Y.; Braun, E.; Sivan, U.; Ben-Yoseph, G., Self-assembly of nanoelectronic components and circuits using biological templates. Acta Polymerica 1998, 49, (10-11), 663-670.
    27. Richter, J.; Seidel, R.; Kirsch, R.; Mertig, M.; Pompe, W.; Plaschke, J.; Schackert, H. K., Nanoscale palladium metallization of DNA. Advanced Materials 2000, 12, (7), 507-+.
    28. Richter, J.; Mertig, M.; Pompe, W.; Vinzelberg, H., Low-temperature resistance of DNA-templated nanowires. Applied Physics a-Materials Science & Processing 2002, 74, (6), 725-728.
    29. Richter, J.; Mertig, M.; Pompe, W.; Monch, I.; Schackert, H. K., Construction of highly conductive nanowires on a DNA template. Applied Physics Letters 2001, 78, (4), 536-538.
    30. Pompe, W.; Mertig, M.; Kirsch, R.; Wahl, R.; Ciacchi, L. C.; Richter, J.; Seidel, R.; Vinzelberg, H., Formation of metallic nanostructures on biomolecular templates. Zeitschrift Fur Metallkunde 1999, 90, (12), 1085-1091.
    31. McMillan, R. A.; Howard, J.; Zaluzec, N. J.; Kagawa, H. K.; Mogul, R.; Li, Y. F.; Paavola, C. D.; Trent, J. D., A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. Journal of the American Chemical Society 2005, 127, (9), 2800-2801.
    32. McMillan, R. A.; Paavola, C. D.; Howard, J.; Chan, S. L.; Zaluzec, N. J.; Trent, J. D., Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Materials 2002, 1, (4), 247-252.
    33. Gates, B.; Wu, Y. Y.; Yin, Y. D.; Yang, P. D.; Xia, Y. N., Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. Journal of the American Chemical Society 2001, 123, (46), 11500-11501.
    34. Gates, B.; Mayers, B.; Wu, Y. Y.; Sun, Y. G.; Cattle, B.; Yang, P. D.; Xia, Y. N., Synthesis and characterization of crystalline Ag2Se nanowires through a template-engaged reaction at room temperature. Advanced Functional Materials 2002, 12, (10), 679-686.
    35. Jiang, Z. Y.; Xie, Z. X.; Zhang, X. H.; Huang, R. B.; Zheng, L. S., Conversion of Se nanowires to Se/Ag2Se nanocables and Ag2Se nanotubes. Chemical Physics Letters 2003, 378, (3-4), 313-316.
    36. Jiang, X. C.; Mayers, B.; Herricks, T.; Xia, Y. N., Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires. Advanced Materials 2003, 15, (20), 1740-+.
    37. Mayers, B.; Jiang, X. C.; Sunderland, D.; Cattle, B.; Xia, Y. N., Hollow nanostructures of platinum with controllable dimensions can be synthesized by templating against selenium nanowires and colloids. Journal of the American Chemical Society 2003, 125, (44), 13364-13365.
    38. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, (5601), 2176-2179.
    39. Wiley, B.; Sun, Y. G.; Chen, J. Y.; Cang, H.; Li, Z. Y.; Li, X. D.; Xia, Y. N., Shape-controlled synthesis of silver and gold nanostructures. Mrs Bulletin 2005, 30, (5), 356-361.
    40. Sun, Y. G.; Xia, Y. N., Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 2003, 128, (6), 686-691.
    41. Sun, Y. G.; Mayers, B.; Xia, Y. N., Metal nanostructures with hollow interiors. Advanced Materials 2003, 15, (7-8), 641-646.
    42. Zou, G. F.; Li, H.; Zhang, Y. G.; Xiong, K.; Qian, Y. T., Solvothermal/hydrothermal route to semiconductor nanowires. Nanotechnology 2006, 17, (11), S313-S320.
    43. Zhou, G. J.; Lu, M. K.; Xiu, Z. L.; Wang, S. F.; Zhang, H. P.; Zhou, Y. Y.; Wang, S. M., Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. Journal of Physical Chemistry B 2006, 110, (13), 6543-6548.
    44. Xia, T. A.; Li, Q.; Liu, X. D.; Meng, J. A.; Cao, X. Q., Morphology-controllable synthesis and characterization of single-crystal molybdenum trioxide. Journal of Physical Chemistry B 2006, 110, (5), 2006-2012.
    45.. Wang, Y. G.; Ma, J. F.; Tao, J. T.; Zhu, X. Y.; Zhou, J.; Zhao, Z. Q.; Xie, L. J.; Tian, H., Hydrothermal synthesis and characterization of CdWO4 nanorods. Journal of the American Ceramic Society 2006, 89, (9), 2980-2982.
    46. Wang, H. N.; Du, F. L., Hydrothermal synthesis of ZnSe hollow micropheres. Crystal Research and Technology 2006, 41, (4), 323-327.
    47. Gou, X. L.; Cheng, F. Y.; Shi, Y. H.; Zhang, L.; Peng, S. J.; Chen, J.; Shen, P. W., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)(2) nano-/microstructures via facile solution route. Journal of the American Chemical Society 2006, 128, (22), 7222-7229.
    48. Chen, M. H.; Gao, L., Synthesis of leaf-like Ag2S nanosheets by hydrothermal method inwater-alcohol homogenous medium. Materials Letters 2006, 60, (8), 1059-1062.
    49. Yu, Y.; Wang, R. H.; Chen, Q.; Peng, L. M., High-quality ultralong Sb2S3 nanoribbons on large scale. Journal of Physical Chemistry B 2005, 109, (49), 23312-23315.
    50. Xie, Q.; Dai, Z.; Liang, H. B.; Xu, L. Q.; Yu, W. C.; Qian, Y. T., Synthesis of ZnO three-dimensional architectures and their optical properties. Solid State Communications 2005, 136, (5), 304-307.
    51. Wei, F.; Li, G. C.; Zhang, Z., Hydrothermal synthesis of spindle-like ZnS hollow nanostructures. Materials Research Bulletin 2005, 40, (8), 1402-1407.
    52. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A water-ethanol mixed-solution hydrothermal route to silicates nanowires. Journal of Solid State Chemistry 2005, 178, (7), 2332-2338.
    53. Rhee, C. H.; Bae, S. W.; Lee, J. S., Template-free hydrothermal synthesis of high surface area nitrogen-doped titania photocatalyst active under visible light. Chemistry Letters 2005, 34, (5), 660-661.
    54. Liu, H. J.; Ni, Y. H.; Han, M.; Liu, Q.; Xu, Z.; Hong, J. N.; Ma, X., A facile template-free route for synthesis of hollow hexagonal ZnS nano- and submicro-spheres. Nanotechnology 2005, 16, (12), 2908-2912.
    55. Jiang, C. L.; Zhang, W. Q.; Zou, G. F.; Xu, L. Q.; Yu, W. C.; Qian, Y. T., Hydrothermal fabrication of copper sulfide nanocones and nanobelts. Materials Letters 2005, 59, (8-9), 1008-1011.
    56. Yang, H. F.; Yan, Y.; Zhang, F. Q.; Chen, Y.; Tu, B.; Zhao, D. Y., In situ hydrothermal synthesis of semiconductor CdS and CdSe nanocrystals by using mesostructured SiO2/CdO composites as precursor. Acta Chimica Sinica 2004, 62, (21), 2177-2181.
    57. Wu, R.; Zheng, Y. F.; Zhang, X. G.; Sun, Y. F.; Xu, J. B., EDTA-assisted hydrothermal synthesis of FeS2/NiSe2 nonacomposites and the optical and electrical properties of their thin films. Acta Physica Sinica 2004, 53, (10), 3493-3497.
    58. Wang, Q. S.; Xu, Z. D.; Nie, Q. L.; Yue, L. H.; Chen, W. X.; Zheng, Y. F., Hydrothermal preparation and characterization of Cd0.9Mn0.1S nanorods. Solid State Communications 2004, 130, (9), 607-611.
    59. Lu, J.; Wei, S.; Yu, W. C.; Zhang, H. B.; Qian, Y. T., Hydrothermal route to InAs semiconductor nanocrystals. Inorganic Chemistry 2004, 43, (15), 4543-4545.
    60. Lu, W. G.; Fang, J. Y.; Stokes, K. L.; Lin, J., Shape evolution and self assembly of monodisperse PbTe nanocrystals. Journal of the American Chemical Society 2004, 126, (38), 11798-11799.
    61. Yu, S. H., Hydrothermal/solvothermal processing of advanced ceramic materials. Journal of the Ceramic Society of Japan 2001, 109, (5), S65-S75.
    62. Hu, J. Q.; Deng, B.; Tang, K. B.; Lu, Q. Y.; Jiang, R. R.; Qian, Y. T., Hydrothermal preparation and characterization of nanocrystalline Silver gallium sulfides. Solid State Sciences 2001, 3, (3), 275-278.
    63. Zhang, J.; Sun, L. D.; Pan, H. Y.; Liao, C. S.; Yan, C. H., ZnO nanowires fabricated by a convenient route. New Journal of Chemistry 2002, 26, (1), 33-34.
    64. Biswas, S.; Hait, S. K.; Bhattacharya, S. C.; Moulik, S. P., Synthesis of nanoparticles of CuI, CuCrO4, and CuS in water/AOT/cyclohexanone and water/TX-100+i-propanol/cyclohexanone reverse microemulsions. Journal of Dispersion Science and Technology 2004, 25, (6), 801-816.
    65. Chakraborty, I.; Moulik, S. P., Preparation and characterization of PbS nanoparticles in AOT micellar medium. Journal of Nanoparticle Research 2004, 6, (2-3), 233-240.
    66. Chen, D.; Tang, K. B.; Zhang, S. Y.; Zheng, H. G.; Qian, Y. T., Surfactant-assisted synthesis and characterization of SrCrO4 nanostructures. Journal of Nanoscience and Nanotechnology 2006, 6, (3), 738-742.
    67. Curri, M. L.; Agostiano, A.; Manna, L.; Della Monica, M.; Catalano, M.; Chiavarone, L.; Spagnolo, V.; Lugara, M., Synthesis and characterization of CdS nanoclusters in a quarternary microemulsion: The role of the cosurfactant. Journal of Physical Chemistry B 2000, 104, (35), 8391-8397.
    68. Curri, M. L.; Agostiano, A.; Mavelli, F.; Della Monica, M., Reverse micellar systems: self organised assembly as effective route for the synthesis of colloidal semiconductor nanocrystals. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2002, 22, (2), 423-426.
    69. Fu, X.; Wang, D. B.; Wang, J.; Shi, H. Q.; Song, C. X., High aspect ratio CdS nanowires synthesized in microemulsion system. Materials Research Bulletin 2004, 39, (12), 1869-1874.
    70. Hota, G.; Jain, S.; Khilar, K. C., Synthesis of CdS-Ag2S core-shell composite nanoparticles using AOT n-heptane water microemulsions. Colloids and Surfaces a-Physicochemical andEngineering Aspects 2004, 232, (2-3), 119-127.
    71. Karanikolos, G. N.; Alexandridis, P.; Itskos, G.; Petrou, A.; Mountziaris, T. J., Synthesis and size control of luminescent ZnSe nanocrystals by a microemulsion-gas contacting technique. Langmuir 2004, 20, (3), 550-553.
    72. Khiew, P. S.; Huang, N. M.; Radiman, S.; Ahmad, M. S., Synthesis and characterization of conducting polyaniline-coated cadmium sulphide nanocomposites in reverse microemulsion. Materials Letters 2004, 58, (3-4), 516-521.
    73. Loukanov, A. R.; Dushkin, C. D.; Papazova, K. I.; Kirov, A. V.; Abrashev, M. V.; Adachi, E., Photoluminescence depending on the ZnS shell thickness of CdS/ZnS core-shell semiconductor nanoparticles. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2004, 245, (1-3), 9-14.
    74. Mitra, D.; Chakraborty, I.; Moulik, S. P., Studies on ZnS nanoparticles prepared in aqueous sodium dodecylsulphate (SDS) micellar medium. Colloid Journal 2005, 67, (4), 445-450.
    75. Ohde, H.; Ohde, M.; Bailey, F.; Kim, H.; Wai, C. M., Water-in-CO2 microemulsions as nanoreactors for synthesizing CdS and ZnS nanoparticles in supercritical CO2. Nano Letters 2002, 2, (7), 721-724.
    76. Rees, G. D.; Evans-Gowing, R.; Hammond, S. J.; Robinson, B. H., Formation and morphology of calcium sulfate nanoparticles and nanowires in water-in-oil microemulsions. Langmuir 1999, 15, (6), 1993-2002.
    77. Sawant, P. D.; Ramaniah, L. M.; Manohar, C., Capacity of nano-reactors of AOT micro-emulsions to form and sustain ultra small semiconductor quantum dots. Journal of Nanoscience and Nanotechnology 2006, 6, (1), 241-247.
    78. Selvan, S. T.; Li, C. L.; Ando, M.; Murase, N., Formation of luminescent CdTe-silica nanoparticles through an inverse microemulsion technique. Chemistry Letters 2004, 33, (4), 434-435.
    79. Selvan, S. T.; Tan, T. T.; Ying, J. Y., Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Advanced Materials 2005, 17, (13), 1620-+.
    80. Wang, F.; Xu, G. Y.; Zhang, Z. Q.; Xin, X., Synthesis of monodisperse CdS nanospheres in an inverse microemulsion system formed with a dendritic polyether copolymer. European Journal of Inorganic Chemistry 2006, (1), 109-114.
    81. Xu, C. Q.; Ni, Y. H.; Zhang, Z. C.; Ge, X. W.; Ye, Q., Synthesis and characterization of spherical MS (M=Cd, Zn) nanocrystalline in a quaternary W/O microemulsion by gamma-ray irradiation. Materials Letters 2003, 57, (20), 3070-3076.
    82. Xu, J.; Li, Y. D., Formation of zinc sulfide nanorods and nanoparticles in ternary W/O microemulsions. Journal of Colloid and Interface Science 2003, 259, (2), 275-281.
    83. Yang, X. H.; Wu, Q. S.; Li, L.; Ding, Y. P.; Zhang, G. X., Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2005, 264, (1-3), 172-178.
    84. Yang, Y. H.; Gao, M. Y., Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method. Advanced Materials 2005, 17, (19), 2354-+.
    85. Zhou, H. C.; Zhuang, J.; Wang, X.; Xu, J.; Li, Y. D., Synthesis and characterization of Ag2S nanocrystals with different morphologies in micromicelles. Acta Chimica Sinica 2003, 61, (3), 372-375.
    86. Liu, J. C.; Raveendran, P.; Shervani, Z.; Ikushima, Y.; Hakuta, Y., Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions. Chemistry-a European Journal 2005, 11, (6), 1854-1860.
    87. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; O'Brien, S., Zinc oxide quantum rods. Journal of the American Chemical Society 2004, 126, (20), 6206-6207.
    88. Nair, P. S.; Scholes, G. D., Thermal decomposition of single source precursors and the shape evolution of CdS and CdSe nanocrystals. Journal of Materials Chemistry 2006, 16, (5), 467-473.
    89. Kang, D. W.; Lee, B. C.; Kim, J. Y., Preparation and photoluminescence characteristics of liquid silicone rubber containing cadmium selenide nanoparticles. Polymer-Korea 2006, 30, (3), 266-270.
    90. Chen, H. S.; Hsu, C. K.; Hong, H. Y., InGaN-CdSe-ZnSe quantum dots white LEDs. Ieee Photonics Technology Letters 2006, 18, (1-4), 193-195.
    91. Pan, D. C.; Wang, Q.; Jiang, S. C.; Ji, X. L.; An, L. J., Synthesis of extremely small CdSe and highly luminescent CdSe/CdS core-shell nanocrystals via a novel two-phase thermal approach. Advanced Materials 2005, 17, (2), 176-+.
    92. Lin, Y.; Boker, A.; Skaff, H.; Cookson, D.; Dinsmore, A. D.; Emrick, T.; Russell, T. P., Nanoparticle assembly at fluid interfaces: Structure and dynamics. Langmuir 2005, 21, (1), 191-194.
    93. Crouch, D.; Norager, S.; O'Brien, P.; Park, J. H.; Pickett, N., New synthetic routes for quantum dots. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 2003, 361, (1803), 297-310.
    94. Khanna, P. K.; Jun, K. W.; Gokarna, A.; Baeg, J. O.; Seok, S. I., One-step synthesis of TOP capped PbSe pyramidal nanocrystals. Materials Chemistry and Physics 2006, 96, (1), 154-157.
    95. Lu, W. G.; Fang, J. Y.; Lin, J.; Zhang, J.; Sun, Z. Y.; Stokes, K. L., Syntheses of Ag, PbSe, and PbTe nanocrystals and their binary self-assembly exploration at low size-ratio. Journal of Nanoscience and Nanotechnology 2006, 6, (6), 1662-1666.
    96. Cho, K. S.; Stokes, K. L.; Murray, C. B., Synthesis of PbSe, PbS, PbTe nanocrystals (from quantum dots to nanowires). Abstracts of Papers of the American Chemical Society 2003, 225, U74-U75.
    97. Gerbec, J. A.; Magana, D.; Washington, A.; Strouse, G. F., Microwave-enhanced reaction rates for nanoparticle synthesis. Journal of the American Chemical Society 2005, 127, (45), 15791-15800.
    98. Ding, T.; Zhu, J. J., Microwave heating synthesis of HgS and PbS nanocrystals in ethanol solvent. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2003, 100, (3), 307-313.
    99. Liao, X. H.; Zhu, J. J.; Chen, H. Y., Microwave synthesis of nanocrystalline metal sulfides in formaldehyde solution. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2001, 85, (1), 85-89.
    100. Zhao, Y.; Liao, X. H.; Hong, J. M.; Zhu, J. J., Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods. Materials Chemistry and Physics 2004, 87, (1), 149-153.
    101. He, R.; Qian, X. F.; Yin, J.; Zhu, Z. K., Preparation of Bi2S3 nanowhiskers and their morphologies. Journal of Crystal Growth 2003, 252, (4), 505-510.
    102. Jiang, Y.; Zhu, Y. J., Microwave-assisted synthesis of sulfide M2S3 (M = Bi, Sb) nanorods using an ionic liquid. Journal of Physical Chemistry B 2005, 109, (10), 4361-4364.
    103. Jiang, Y.; Zhu, Y. J.; Xu, Z. L., Rapid synthesis of Bi2S3 nanocrystals with differentmorphologies by microwave heating. Materials Letters 2006, 60, (17-18), 2294-2298.
    104. Liao, X. H.; Wang, H.; Zhu, J. J.; Chen, H. Y., Preparation of Bi2S3 nanorods by microwave irradiation. Materials Research Bulletin 2001, 36, (13-14), 2339-2346.
    1. Yang, M.; Zhu, J. J., Spherical hollow assembly composed of Cu2O nanoparticles. Journal of Crystal Growth 2003, 256, (1-2), 134-138.
    2. Cao, M. H.; Hu, C. W.; Wang, Y. H.; Guo, Y. H.; Guo, C. X.; Wang, E. B., A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods. Chemical Communications 2003, (15), 1884-1885.
    3. Gou, L. F.; Murphy, C. J., Solution-phase synthesis of Cu2O nanocubes. Nano Letters 2003, 3, (2), 231-234.
    4. Gou, L. F.; Murphy, C. J., Controlling the size Of Cu2O nanocubes from 200 to 25 nm. Journal of Materials Chemistry 2004, 14, (4), 735-738.
    5. Chang, Y.; Zeng, H. C., Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu2O microcrystals. Crystal Growth & Design 2004, 4, (2), 273-278.
    6. Yu, D. B.; Wang, D. B.; Zhang, S. Y.; Liu, X. M.; Qian, Y. T., Multi-morphology PbS: frame-film structures, twin nanorods, and single-crystal films prepared by a polymer-assisted solvothermal method. Journal of Crystal Growth 2003, 249, (1-2), 195-200.
    7. Balamurugan, B.; Aruna, I.; Mehta, B. R.; Shivaprasad, S. M., Size-dependent conductivity-type inversion in Cu2O nanoparticles. Physical Review B 2004, 69, (16), -.
    8. Borgohain, K.; Murase, N.; Mahamuni, S., Synthesis and properties of Cu2O quantum particles. Journal of Applied Physics 2002, 92, (3), 1292-1297.
    9. Bose, A.; Basu, S.; Banerjee, S.; Chakravorty, D., Electrical properties of compacted assembly of copper oxide nanoparticles. Journal of Applied Physics 2005, 98, (7), -.
    10. Chandra, R.; Chawla, A. K.; Ayyub, P., Optical and structural properties of sputter-deposited nanocrystalline Cu2O films: Effect of sputtering gas. Journal of Nanoscience and Nanotechnology 2006, 6, (4), 1119-1123.
    11. Kundu, S.; Jana, S.; Biswas, P. K., Quantum confinement effect of in-situ generated Cu2O in a nanostructured zirconia matrix. Materials Science-Poland 2005, 23, (1), 7-14.
    12. Lee, S. M.; Jun, Y. W.; Cho, S. N.; Cheon, J., Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks. Journal of the American Chemical Society 2002, 124, (38), 11244-11245.
    13. Mishina, E.; Nagai, K.; Barsky, D.; Nakabayashi, S., Optical properties of a self-assembled Cu/Cu2O multilayered structure studied in situ during deposition. Physical Chemistry Chemical Physics 2002, 4, (1), 127-133.
    14. Polson, T. A.; Fillinger, A., P-type nanocube cud films and polycrystalline Cu2O films for photoelectrochemical energy conversion. Abstracts of Papers of the American Chemical Society 2005, 229, U519-U520.
    15. Son, S. U.; Park, I. K.; Park, J.; Hyeon, T., Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chemical Communications 2004, (7), 778-779.
    16. Yang, H. M.; Ouyang, J.; Tang, A. D.; Xiao, Y.; Li, X. W.; Dong, X. D.; Yu, Y. M., Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Materials Research Bulletin 2006, 41, (7), 1310-1318.
    17. Yu, Y.; Huang, W. Y.; Du, F. P.; Ma, L. L., Synthesis and characteristic of cuprous oxide nano-whiskers with photocatalytic activity under visible light. Pricm 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5 2005, 475-479, 3531-3534.
    18. Zhang, J. T.; Liu, J. F.; Peng, Q.; Wang, X.; Li, Y. D., Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chemistry of Materials 2006, 18, (4), 867-871.
    19. Zhang, L. S.; Li, J. L.; Chen, Z. G.; Tang, Y. W.; Yu, Y., Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites. Applied Catalysis a-General 2006, 299, 292-297.
    20. Zhu, J. W.; Chen, H. Q.; Xie, B.; Yang, X. J.; Lu, L.; Wang, X., Preparation of nanocrystalline Cu2O and its catalytic performance for thermal decomposition of ammonium perchlorate. Chinese Journal of Catalysis 2004, 25, (8), 637-640.
    21. wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. Journal of Physical Chemistry B 2000, 104, (6), 1153-1175.
    1. Caruso, F., Hollow capsule processing through colloidal templating and self-assembly. Chemistry-a European Journal 2000, 6, (3), 413-419.
    2. Caruso, F.; Spasova, M.; Susha, A.; Giersig, M.; Caruso, R. A., Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chemistry of Materials 2001, 13, (1), 109-116.
    3. Caruso, F.; Susha, A. S.; Giersig, M.; Mohwald, H., Magnetic core-shell particles: Preparation of magnetite multilayers on polymer latex microspheres. Advanced Materials 1999, 11, (11), 950-+.
    4. Dhas, N. A.; Suslick, K. S., Sonochemical preparation of hollow nanospheres and hollow nanocrystals. Journal of the American Chemical Society 2005, 127, (8), 2368-2369.
    5. Fujiwara, M.; Shiokawa, K.; Tanaka, Y.; Nakahara, Y., Preparation and formation mechanism of silica microcapsules (hollow sphere) by water/oil/water interfacial reaction. Chemistry of Materials 2004, 16, (25), 5420-5426.
    6. Kanungo, M.; Deepa, P. N.; Collinson, M. M., Template-directed formation of hemispherical cavities of varying depth and diameter in a silicate matrix prepared by the sol-gel process. Chemistry of Materials 2004, 16, (25), 5535-5541.
    7. Liang, Z. J.; Susha, A.; Caruso, F., Gold nanoparticle-based core-shell and hollow spheres and ordered assemblies thereof. Chemistry of Materials 2003, 15, (16), 3176-3183.
    8. Schmidt, H. T.; Gray, B. L.; Wingert, P. A.; Ostafin, A. E., Assembly of aqueous-cored calcium phosphate nanoparticles for drug delivery. Chemistry of Materials 2004, 16, (24), 4942-4947.
    9. Wang, L.; Sasaki, T.; Ebina, Y.; Kurashima, K.; Watanabe, M., Fabrication of controllable ultrathin hollow shells by layer-by-layer assembly of exfoliated titania nanosheets on polymer templates. Chemistry of Materials 2002, 14, (11), 4827-4832.
    10. Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, (5601), 2176-2179.
    11. Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 2004, 304,(5671), 711-714.
    12. Yang, J. H.; Qi, L. M.; Lu, C. H.; Ma, J. M.; Cheng, H. M., Morphosynthesis of rhombododecahedral silver cages by self-assembly coupled with precursor crystal templating. Angewandte Chemie-International Edition 2005, 44, (4), 598-603.
    13. Liu, B.; Zeng, H. C., Fabrication of ZnO "dandelions" via a modified kirkendall process. Journal of the American Chemical Society 2004, 126, (51), 16744-16746.
    14. Wang, Y. L.; Cai, L.; Xia, Y. N., Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Advanced Materials 2005, 17, (4), 473-+.
    15. Li, Z. Q.; Yang, H.; Ding, Y.; Xiong, Y. J.; Xie, Y., Solution-phase template approach for the synthesis of Cu2S nanoribbons. Dalton Transactions 2006, (1), 149-151.
    16. Liu, Z. P.; Xu, D.; Liang, J. B.; Shen, J. M.; Zhang, S. Y.; Qian, Y. T., Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. Journal of Physical Chemistry B 2005, 109, (21), 10699-10704.
    17. Zhang, H. T.; Wu, G.; Chen, X. H., Large-scale synthesis and self-assembly of monodisperse hexagon Cu2S nanoplates. Langmuir 2005, 21, (10), 4281-4282.
    18. Liu, Y. F.; Zeng, J. H.; Li, C.; Cao, J. B.; Wang, Y. Y.; Qian, Y. T., Formation of semiconductor Cu2-xSe rod-like crystals through a solvothermal reaction. Materials Research Bulletin 2002, 37, (15), 2509-2516.
    19. Su, H. L.; Xie, Y.; Qiao, Z. P.; Qian, Y. T., Formation of Cu2-xSe(en)(2) in a solvothermal process and conversion to nanocrystalline Cu2-xSe. Materials Research Bulletin 2000, 35, (7), 1129-1135.
    20. Wang, W. Z.; Yan, P.; Liu, F. Y.; Xie, Y.; Geng, Y.; Qian, Y. T., Preparation and characterization of nanocrystalline Cu2-xSe by a novel solvothermal pathway. Journal of Materials Chemistry 1998, 8, (11), 2321-2322.
    21. Li, H. L.; Zhu, Y. C.; Avivi, S.; Palchik, O.; Xiong, J. P.; Koltypin, Y.; Palchik, V.; Gedanken, A., Sonochemical process for the preparation of alpha-CuSe nanocrystals and flakes. Journal of Materials Chemistry 2002, 12, (12), 3723-3727.
    22. Gao, P.; Xie, Y.; Ye, L.; Chen, Y.; Li, Z., Synthesis of single-crystal BaMo2O7 nanowire bundles: A general, low-temperature hydrothermal approach to 1D molybdenum oxide-based nanostructures. Chemistry Letters 2006, 35, (2), 162-163.
    23. Xu, S.; Wang, H.; Zhu, J. J.; Chen, H. Y., Sonochemical synthesis of copper selenides nanocrystals with different phases. Journal of Crystal Growth 2002, 234, (1), 263-266.
    24. Qiao, Z. P.; Xie, Y.; Xu, J. G.; Liu, X. M.; Zhu, Y. J.; Qian, Y. T., Synthesis of nanocrystalline Cu(2-x)Se at room temperature by gamma-irradiation. Canadian Journal of Chemistry-Revue Canadienne De Chimie 2000, 78, (9), 1143-1146.
    25. Yan, Y. L.; Qian, X. F.; Yin, J.; Zhu, Z. K., Novel complex-assisted photochemical route to the phase control of nanocrystalline copper selenide. Journal of Materials Science Letters 2003, 22, (24), 1801-1803.
    26. Yan, Y. L.; Qian, X. F.; Yin, J.; Zhu, Z. K., Preparation and characterization of Cu2-xSe nanocrystals by trisodium citrate-assisted photochemical route. Chinese Journal of Inorganic Chemistry 2003, 19, (10), 1133-1136.
    27. Zhu, J. J.; Palchik, O.; Chen, S. G.; Gedanken, A., Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles. Journal of Physical Chemistry B 2000, 104, (31), 7344-7347.
    28. Zhang, P.; Gao, L., Copper sulfide flakes and nanodisks. Journal of Materials Chemistry 2003, 13, (8), 2007-2010.
    29. wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. Journal of Physical Chemistry B 2000, 104, (6), 1153-1175.
    1. Chu, S. Y.; Yan, T. M.; Chen, S. L., Analysis of ZnO varistors prepared by the sol-gel method. Ceram. Intern. 2000, 26, (7), 733-737.
    2. Keis, K.; Vayssieres, L.; Lindquist, S. E.; Hagfeldt, A., Nanostructured ZnO electrodes for photovoltaic applications. Nanostructured Materials 1999, 12, (1-4), 487-490.
    3. Paraguay, D. F.; Miki-Yoshida, M.; Morales, J.; Solis, J.; Estrada, L. W., Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour. Thin Solid Films 2000, 373, (1-2), 137-140.
    4. 曹优明,郑仕远,张辉,陈治龙, 纳米氧化锌的制备方法与应用. 渝西学院学报 2003, 2, (4), 15-18.
    5. 陈晓明,金仲和,邹英寅, 氧化锌压电薄膜传感器设计理论研究. 压电与声光 1994, 16, (2), 37-41.
    6. 徐甲强,刘艳丽,牛新书, 纳米 ZnS 的合成及其气敏性能研究. 功能材料 2002, 33, (4), 425-429.
    7. 姚超,吴凤芹,林西平,汪信, 纳米技术与纳米材料(Ⅵ)—纳米氧化锌在防晒化妆品中的应用. 日用化学工业 2003, 33, (6), 393-397.
    8. 张金昌,王艳辉,陈标华,李成岳,吴迪镛,王祥生, 负载型氧化锌选择催化氧化燃料电池氢源中微量 CO 的研究. 四川大学学报(工程科学版) 2002, 34, (6), 52-56.
    9. 张喜田,刘益春,支壮志,张吉英,申德振,许武,钟国柱,范希武, 热氧化制备纳米氧化锌薄膜的光致发光和室温紫外激光发射,. 半导体学报 2003, 24, (1), 44-48.
    10. 朱胜利,施世泰,徐锦伟, 纳米氧化锌在橡胶制品中的应用研究. 弹性体 2002, 12, (2), 48-51.
    11. Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D., Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, (5523), 1897-1899.
    12. 王卓. 锌的硫属半导体纳米/微米材料和有序排列薄膜的制备及其结构与性能研究. 上海交通大学博士学位论文, 上海, 2004.
    13. Ahmad, T.; Vaidya, S.; Sarkar, N.; Ghosh, S.; Ganguli, A. K., Zinc oxalate nanorods: a convenient precursor to uniform nanoparticles of ZnO. Nanotechnology 2006, 17, (5), 1236-1240.
    14. Raji, P.; Sivakanth, S.; Umesh, K. K.; Ramakrishnan, S. K.; Ramachandran, K., Growth, optical and thermal properties of zinc oxide nano wires. International Journal of Modern Physics B 2005, 19, (28), 4247-4258.
    15. Sun, G. B.; Cao, M. H.; Wang, Y. H.; Hu, C. W.; Liu, Y. C.; Ren, L.; Pu, Z. F., Anionic surfactant-assisted hydrothermal synthesis of high-aspect-ratio ZnO nanowires and their photoluminescence property. Materials Letters 2006, 60, (21-22), 2777-2782.
    16. Xu, J. Q.; Chen, Y. P.; Shen, J. N., Solvothermal preparation and gas sensing properties of ZnO whiskers. Journal of Nanoscience and Nanotechnology 2006, 6, (1), 248-253.
    17. Zhang, J.; Sun, L. D.; Jiang, X. C.; Liao, C. S.; Yan, C. H., Shape evolution of one-dimensional single-crystalline ZnO nanostructures in a microemulsion system. Crystal Growth & Design 2004, 4, (2), 309-313.
    18. Zhang, J.; Sun, L. D.; Pan, H. Y.; Liao, C. S.; Yan, C. H., ZnO nanowires fabricated by a convenient route. New Journal of Chemistry 2002, 26, (1), 33-34.
    19. Cheng, B.; Shi, W. S.; Russell-Tanner, J. M.; Zhang, L.; Samulski, E. T., Synthesis of variable-aspect-ratio, single-crystalline ZnO nanostructures. Inorganic Chemistry 2006, 45, (3), 1208-1214.
    20. Cheng, B.; Samulski, E. T., Hydrothermal synthesis of one-dimensional ZnO nanostructures with different aspect ratios. Chemical Communications 2004, (8), 986-987.
    21. Liu, B.; Zeng, H. C., Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society 2003, 125, (15), 4430-4431.
    22. Pacholski, C.; Kornowski, A.; Weller, H., Self-assembly of ZnO: From nanodots, to nanorods. Angewandte Chemie-International Edition 2002, 41, (7), 1188-+.
    23. Gu, Y.; Kuskovsky, I. L.; Yin, M.; O'Brien, S.; Neumark, G. F., Quantum confinement in ZnO nanorods. Applied Physics Letters 2004, 85, (17), 3833-3835.
    24. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; O'Brien, S., Zinc oxide quantum rods. Journal of the American Chemical Society 2004, 126, (20), 6206-6207.
    25. Liu, B.; Zeng, H. C., Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 2004, 20, (10), 4196-4204.
    26. Kahn, M. L.; Monge, M.; Colliere, V.; Senocq, F.; Maisonnat, A.; Chaudret, B., Size- andshape-control of crystalline zinc oxide nanoparticles: A new organometallic synthetic method. Advanced Functional Materials 2005, 15, (3), 458-468.
    27. Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F., Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters 2000, 76, (15), 2011-2013.
    1. Liu, B.; Zeng, H. C., Fabrication of ZnO "dandelions" via a modified kirkendall process. Journal of the American Chemical Society 2004, 126, (51), 16744-16746.
    2. Liu, B.; Zeng, H. C., Mesoscale organization of CuO nanoribbons: Formation of "dandelions". Journal of the American Chemical Society 2004, 126, (26), 8124-8125.
    3. Ding, Y. S.; Shen, X. F.; Gomez, S.; Luo, H.; Aindow, M.; Suib, S. L., Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures. Advanced Functional Materials 2006, 16, (4), 549-555.
    4. Gao, P.; Xie, Y.; Ye, L.; Chen, Y.; Li, Z., Synthesis of single-crystal BaMo2O7 nanowire bundles: A general, low-temperature hydrothermal approach to 1D molybdenum oxide-based nanostructures. Chemistry Letters 2006, 35, (2), 162-163.
    5. Shi, H. T.; Qi, L. M.; Ma, J. M.; Wu, N. Z., Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Advanced Functional Materials 2005, 15, (3), 442-450.
    6. Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhu, B. Y., Synthesis of hierarchical superstructures consisting of BaCrO4 nanobelts in catanionic reverse micelles. Advanced Materials 2003, 15, (19), 1647-+.
    7. Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M., Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. Journal of the American Chemical Society 2003, 125, (12), 3450-3451.
    8. Ovsyannikov, S. V.; Shchennikov, V. V.; Kar'kin, A. E.; Goshchitskii, B. N., Phase transitions in PbSe under actions of fast neutron bombardment and pressure. Journal of Physics-Condensed Matter 2005, 17, (40), S3179-S3183.
    9. Ovsyannikov, S. V.; Shchennikov, V. V., High-pressure thermopower of PbTe-based compounds. Physica Status Solidi B-Basic Research 2004, 241, (14), 3231-3234.
    10. Ovsyannikov, S. V.; Shchennikov, V. V., Thermomagnetic and thermoelectric properties of semiconductors (PbTe, PbSe) at ultrahigh pressures. Physica B-Condensed Matter 2004, 344, (1-4), 190-194.
    11. Shchennikov, V. V.; Ovsyannikov, S. V., Thermoelectric power, magnetoresistance of leadchalcogenides in the region of phase transitions under pressure. Solid State Communications 2003, 126, (7), 373-378.
    12. Shchennikov, V. V.; Ovsyannikov, S. V., Thermo- and galvanomagnetic properties of lead chalcogenides at high pressures up to 20 GPa. Jetp Letters 2003, 77, (2), 88-93.
    13. Shchennikov, V. V.; Ovsyannikov, S. V.; Derevskov, A. Y., Thermopower of lead chalcogenides at high pressures. Physics of the Solid State 2002, 44, (10), 1845-1849.
    14. Shchennikov, V. V.; Titov, A. N.; Popova, S. V.; Ovsyannikov, S. V., Electrical properties of (PbS)(0.59)TiS2 crystals at high pressure up to 20 GPa. Physics of the Solid State 2000, 42, (7), 1228-1230.
    15. Vlasov, Y. G.; Bychkov, E. A.; Legin, A. V., Mechanism studies on lead ion-selective chalcogenide glass sensors. Sensors and Actuators B- Chemical 1992, 10, (1), 55-60.
    16. Dokholyan, Z. G.; Paritskii, L. G., Formation of Photographic Images in PbS Films and GaAs Single Crystals. Sov. Phys. Semicond. 1973, 7, (1), 136-137.
    17. Pentia, E.; Pintilie, L.; Matei, I.; etc., Combined chemical-physical methods for enhancing IR photoconductive properties of PbS thin films. Infrared Physics & Technology 2003, 44, 207-211.
    18. Nair, P. K.; Nair, M. T. S.; Garcia, V. M.; etc., Semiconductor thin films by chemical bath deposition for solar energy related applications. Solar Energy Materials and Solar Cells 1998, 52, (3-4), 313-344.
    19. Kuang, D. B.; Xu, A. W.; Fang, Y. P.; Liu, H. Q.; Frommen, C.; Fenske, D., Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Advanced Materials 2003, 15, (20), 1747-+.
    20. Yu, D. B.; Wang, D. B.; Zhang, S. Y.; Liu, X. M.; Qian, Y. T., Multi-morphology PbS: frame-film structures, twin nanorods, and single-crystal films prepared by a polymer-assisted solvothermal method. Journal of Crystal Growth 2003, 249, (1-2), 195-200.
    21. Ma, Y. R.; Qi, L. M.; Ma, J. M.; Cheng, H. M., Hierarchical, star-shaped PbS crystals formed by a simple solution route. Crystal Growth & Design 2004, 4, (2), 351-354.
    22. Zhou, G. J.; Lu, M. K.; Xiu, Z. L.; Wang, S. F.; Zhang, H. P.; Zhou, Y. Y.; Wang, S. M., Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. Journal of Physical Chemistry B 2006, 110, (13), 6543-6548.
    23. Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B., Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. Journal of the American Chemical Society 2005, 127, (19), 7140-7147.
    24. Lee, S. M.; Jun, Y. W.; Cho, S. N.; Cheon, J., Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks. Journal of the American Chemical Society 2002, 124, (38), 11244-11245.
    25. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F. X.; Zhang, J. Z.; Hyeon, T., Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. Journal of the American Chemical Society 2003, 125, (36), 11100-11105.
    26. Lu, W. G.; Fang, J. Y.; Lin, J.; Zhang, J.; Sun, Z. Y.; Stokes, K. L., Syntheses of Ag, PbSe, and PbTe nanocrystals and their binary self-assembly exploration at low size-ratio. Journal of Nanoscience and Nanotechnology 2006, 6, (6), 1662-1666.
    27. Lu, W. G.; Fang, J. Y.; Stokes, K. L.; Lin, J., Shape evolution and self assembly of monodisperse PbTe nanocrystals. Journal of the American Chemical Society 2004, 126, (38), 11798-11799.
    28. Kerner, R.; Palchik, O.; Gedanken, A., Sonochemical and microwave-assisted preparations of PbTe and PbSe. A comparative study. Chemistry of Materials 2001, 13, (4), 1413-1419.
    29. Ni, Y. H.; Liu, H. J.; Wang, F.; Liang, Y. Y.; Hong, J. M.; Ma, X.; Xu, Z., Shape controllable preparation of PbS crystals by a simple aqueous phase route. Crystal Growth & Design 2004, 4, (4), 759-764.
    30. Ni, Y. H.; Liu, H. J.; Wang, F.; Liang, Y. Y.; Hong, J. M.; Ma, X.; Xu, Z., PbS crystals with clover-like structure: Preparation, characterization, optical properties and influencing factors. Crystal Research and Technology 2004, 39, (3), 200-206.
    31. Ni, Y. H.; Wang, F.; Liu, H. J.; Yin, G.; Hong, H. J.; Ma, X.; Xu, Z., A novel aqueous-phase route to prepare flower-shaped PbS micron crystals. Journal of Crystal Growth 2004, 262, (1-4), 399-402.
    32. Ding, T.; Zhang, J. R.; Long, S.; Zhu, J. J., Synthesis of HgS and PbS nanocrystals in a polyol solvent by microwave heating. Microelectronic Engineering 2003, 66, (1-4), 46-52.
    33. wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. Journal of Physical Chemistry B 2000, 104, (6), 1153-1175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700