PZT/PMnS-PZN-PZT压电纤维及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交叉指型压电纤维复合材料是压电纤维/聚合物复合材料的发展新趋势,它采用压电复合材料与交叉指型电极相结合的方式,不仅克服了压电陶瓷材料脆性大及压电聚合物压电性能差等缺点,还大大增强了复合材料的驱动能力和各项异性,可作为传感和驱动元件应用于结构健康检测、结构减震和机器人控制等方面,并可应用于曲面结构,大大扩展了压电材料的应用范围。
     本文采用塑性聚合物-挤制成型法制备了不同截面形状、不同截面尺寸的PZT5、PMnS-PZN-PZT压电纤维,排列浇注法制备了交叉指型压电纤维复合材料,研究了烧结气氛及烧结温度对压电纤维微观结构的影响,探讨了纤维的截而形状和直径尺寸对纤维压电、铁电性能的影响。分析了复合材料中压电相性能、压电相含量及聚合物厚度对压电纤维复合材料铁电性能的影响。上要研究内容和结论如下:
     1、采用塑性聚合物-挤制成型法制备了菱形截面和圆形截而的PZT5及PMnS-PZN-PZT压电纤维,研究了烧结气氛及烧结温度对纤维结构与性能的影响。结果表明:在保证充足铅气氛的条件下,PZT5及PMnS-PZN-PZT J(?)电纤维在一定温度范围内均形成纯的钙钛矿相,烧结温度不同,压电纤维的微观形貌及铁电、压电性能不同,但变化幅度不大。截面形状及截面尺寸对压电纤维的烧结温度范围没有影响,PZT5压电纤维的烧结温度范围1250-1280℃,PMnS-PZN-PZT的烧结温度范围1210~1230℃。
     2、纤维截面形状、直径尺寸对纤维性能有一定的影响,结果表明:随着纤维截面尺寸减小,纤维的剩余极化强度增大,压电常数减小。对于PZT5压电纤维,菱形截面纤维的压电、铁电性能较同尺寸的圆形截而压电纤维的性能差。对于PMnS-PZN-PZT压电纤维,菱形截面纤维的压电、铁电性能较同尺寸的圆形截面压电纤维的性能好。
     3、不同材料体系压电纤维,其压电铁电性能不同。PZT5体系的压电纤维材料其压电和铁电性能较同截面形状、同尺寸的PMnS-PZN-PZT体系压电纤维好。材料本身的性能对压电纤维性能起着决定性作用。
     4、采用排列-浇注法制备压电纤维复合材料PFC,丝网印刷法制备交叉指型电极(IDE),研究压电相的性能对交叉指型压电纤维复合材料性能的影响。结果表明:单根纤维的铁电性能直接影响其复合材料的铁电性能,压电相为PZT5-Φ360(Pr=41μC/cm2)和PMnS-PZN-PZT-Φ260(Pr=9.85μC/cm2)的样品,压电纤维含量相同,厚度基本相同时,其剩余极化强度分别为7.8μC/cm2和0.89μC/cm2。
     5、研究复合材料中压电纤维含量、聚合物厚度、纤维截面形状及纤维直径尺寸对交叉指型压电纤维复合材料铁电性能影响。结果表明:压电纤维含量越大,复合材料剩余极化强度越大,聚合物的厚度越小,复合材料的铁电性能越好。以PZT5纤维为压电相,纤维含量相同时,聚合物厚度为0.32mm和0.17mm的复合材料,其剩余极化强度分别为7.8μC/cm2和11.3μC/cm2;以PMnS-PZN-PZT纤维为压电相的复合材料,其厚度相同时,当纤维间距为0.5mm和2mm,其剩余极化强度分别为0.27μC/cm2和0.09μC/cm2。纤维截面形状、尺寸对复合材料的影响,是通过影响电极与压电相间聚合物的厚度、电极与压电相的接触面积及纤维性能等而实现的。
Interdigitated electrodes piezofiber composite(IDEPFC) which adopts the technology of the combination of ceramic fibers and interdigitated electrodes(IDEs) is the latest development trend of fiber/polymer piezoelectric composites. It combines high piezoelectric properties of piezoelectric ceramic and flexibility of polymer, and the driving and orthotropic properties are greatly increased. The composites are widely used as the sensing and driving element in dynamic structural health monitoring, structure damping, and the controlling of pilotless plane. They can also be used on the shape-changing structures and the application of the piezoelectric materials have been enlarged greatly.
     In this article, PZT5and PMnS-PZN-PZT piezoelectric fibers with different cross-section shape and different diameters were fabricated by visous polymer processing(VPP). The PFCs were prepared by arranging fibers and casting epoxy resin and the interdigitated electrodes were fabricated by the method of screen printing. The effect of sintering condition, corss-section shape and fiber diameter on fiber phase, microstructure, piezoelectric and ferroelectric properties were studied. The influence of the fiber's properties, the fiber content and the composite's thickness to the ferroelectric property of composite were analyzed. Specific work and conclusions are as follows:
     1. PZT5and PMnS-PZN-PZT piezoelectric fibers with cross-section shape of rhombic and circular were fabricated by VPP. The influence of sintering temperature to fiber structures and properties were studied. The rusults show that, with enough lead provision when sintering and in a range of sintering temperature, we can get pure perovskite phase. The phase, microstructure, piezoelectric and ferroelectric properties of the fibers change with different sintering temperature and the performance changes a little. Fiber cross-section shape and diameter almost have no effect on the optimum sintering temperature. The optimum sintering temperature of PZT5fibers is from1250℃to1280℃, PMnS-PZN-PZT fiber is from1210℃to1230℃.
     2. Cross-section shape and diameter of fiber have effect on fiber's performance. The results show that, with the decrease of fiber diameter, the remnant polarization of the PZT5and PMnS-PZN-PZT fibers are increased and their piezoelectric induced strain coefficients d33are decreased. To PZT5piezoelectric fiber, those which have cross-section shape of rhombic have worse piezoelectric and ferroelectric properties than those in the same size with circle cross-section shape. To PMnS-PZN-PZT fiber, those which have rhombic cross-section shape have higher piezoelectric and ferroelectric properties than those in the same size with circle cross-section shape.
     3. The piezoelectric and ferroelectric properties of fibers are different with different materials. The performance of PZT5piezoelectric fiber is better than that of PMnS-PZN-PZT fiber with the same cross-section shape and the same size. Material's properties decide the properties of the fibers.
     4. The PFCs were prepared by arranging fibers and casting epoxy resin and the interdigitated electrodes were fabricated by the method of screen printing. The effect of fiber's performance on the property of the composite were studied. The results show that:the ferroelectric property of single fiber affect the composite's property directly. The remnant polarization of composites with the fibers PZT5-Φ360(Pr=41μC/cm2) and PMnS-PZN-PZT-Φ260(Pr=9.85nμC/cm2) are7.8μC/cm2and0.89μC/cm2respectively, and the composites have the same fiber content and the thickness of the composites are lmm and0.9mm respectively.
     5. The influence of the fiber content, the thickness of polymer, fiber cross-section shape and diameter size to the ferroelectric property of the composite were analyzed. The results show that, the composite with larger fiber content and thinner polymer thickness has better ferroelectric property. The remnant polarization of the composite with PZT5fibers are7.8μC/cm2and11.3μC/cm2, the composite had the same fiber content and polymer thickness are0.32mm and0.17mm respectively. The remnant polarization of the composite with PMnS-PZN-PZT fibers are0.27μC/cm2and0.09μC/cm2respectively, and the composite have the same polymer thickness and the fiber spacing are0.5mm and2mm respectively. The influence of fiber cross-section shape and diameter size to the property of composite can be ascribe to the polymer thickness and contact area between the electrodes and fibers.
引文
[1]Gavrilya V, Fesenko E G. Piezoelectric effect in lead titanate single crystals[J]. Soviet Physics Crystallography,1971,16(3):549-552.
    [2]Kogan S M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals[J]. Soviet Physics Solid State,1964,5(10):2069-2070.
    [3]Lam K H, Chan H L W, Luo H S, et al. Piezoelectrically actuated ejector using PMN-PT single crystal[J]. Sensors and Actuators A-Physical,2005,121(1):197-202.
    [4]Lyubimov V N. Properties of surface elastic waves in piezoelectric crystals[J]. Soviet Physics Crystallography,1971,15(6):969-971.
    [5]Nakamura K, Adachi Y. Piezoelectric transformers using LiNbO3 single crystals[J]. Electronics and Communications in Japan Part III-Fundamental Electronic Science,1998, 81(7):1-6.
    [6]Ouchi H. Piezoelectric properties and phase relations of Pb(Mgt/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics with barium or strontium substitutions[J]. Journal of the American Ceramic Society,1968,51(3):16-19.
    [7]Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics[J]. Nature,2004,432(7013):84-87.
    [8]Chen H Y, Long J W, Meng Z Y. Effect of Zr/Ti ratio on the properties of PMMN-PZT ceramics near the morphotropic phase boundary[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2003,99(1-3):433-436.
    [9]Jin D Z, Chen X M. BaTiO3 ceramics toughened by dispersed coarse particles[J]. Ceramics International,2003,29(4):371-375.
    [10]Lian J, Shiosaki T. Pyroelectric properties of Pb[Zr, Ti, (Zn, Nb)]O3 solid-solution ceramics[J]. Ferroelectrics,1991,118(1-4):135-141.
    [11]Park C H, Baz A. Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics[J]. Journal of Vibration and Control,2005,11(3): 331-346.
    [12]Wang R P, Xie R J, Sekiya T, et al. Piezoelectric properties of spark-plasma-sintered (Na K-0.5(0.5))NbO3PbTiO3 ceramics[J]. Japanese Journal of Applied Physics Part I-Regular Papers Short Notes & Review Papers,2002,41(11b):7119-7122.
    [13]Wang Y, Su Y J, Chu "W Y, et al. Effect of electric field, stress and environment on delayed fracture of a PZT-5 ferroelectric ceramic[J]. Science in China Series G-Physics Mechanics & Astronomy,2005,48(1):89-100.
    [14]Chen X D, Yang D, Jiang Y D, et al.0-3 piezoelectric composite film with high d33 coefficient[J]. Sensors and Actuators A,1998,65:194-196.
    [15]Gomez T E, Montero D E, Espinosa F, et al. Ceramic powder-polymer piezocomposites for electroacoustic transduction:modeling and design[J]. Ultrasonics,1998,36:907-923.
    [16]Marra S P, Ramesh K T, Douglas A S. The mechanical and electromechanical properties of calcium-modified lead titanate/poly (vinylidene fluoride-trifiuoroethylene) 0-3 composites [J]. Smart Material and Structures,1999,8:57-63.
    [17]Wan J G, Tao B Q. Design and study on a 1-3 anisotropy piezocomposite sensor[J]. Materials and Design,2000,21:533-536.
    [18]Bowen C R, Topolov V Y. Piezoelectric sensitivity of PbTiO3-based ceramic-polymer composites with 0-3 and 3-3 connectivity[J]. Acta Materialia,2003,51:4965-4976.
    [19]Hashimoto K Y, Yamaguchi M. Elastic, piezoelectric and dielectric properties of composite materials[C]. IEEE Ultrasonics Symposium,1986,697.
    [20]Li Z J, Zhang D, Wu K R. Cement matrix 2-2 piezoelectric composite[J]. Sensory Effect Materials and Structures,2001,34(242):506-512.
    [21]Turcu S, Jadidian B, Danforths C, et al. Piezoelectric properties of novel oriented ceramic-polymer composites with 2-2 and 3-3 connectivity[J]. Journal of Electroceramics, 2003,9(3):165-171.
    [22]Newham R E, Skinner D P, Cross L E. Connectivity and piezoelectric pyroelectric composites [J]. Materials Research Bulletin,1978,13(2):525-535.
    [23]刘小楠,杨世源.PZT/聚合物压电复合材料的研究现状及应用前景[J].材料导报,2007,21(7):16-19.
    [24]Bent A A, Hagood N W. Piezoelectric fiber composites with interdigitated electrodes[J]. Journal of Intelligent Material Systems and Structures,1997,8(11):903-919.
    [25]赵寿根,程伟.1-3型压电复合材料及其研究进展[J].力学进展,2002,32(1):57-68
    [26]党长久,李明轩.1-3型压电复合材料[J].应用声学,1995,14(1):2-7.
    [27]Bent A A, Hagood N W, Rodgers J P. Anisotropic actuation with piezoelectric fiber composites[J]. Journal of Intelligent Material Systems and Structures,1995,6(3):338-349.
    [28]Hagood N W, Bent A A. Development of piezoelectric fiber composites for structural actuation[C].34th AIAA Structures, Structural Dynamics, and Materials con.,1993, A1AA PaperNo.93-1717-cp.
    [29]Wickramasinghe V K, Hagood N W. Durability characterization of active fiber composite actuators for helicopter rotor blade applications[J]. Journal of Aircraft,2004,44(4):931-937.
    [30]Bent A A. Active Fiber Composite Materials Systems for Structural Control Applications[J]. SPIE,1999,3674:166-177.
    [31]Kornmann X, Huber C, Elsener H.R. Piezoelectric ceramic fibers for active fiber composites:A comparative study[J]. Smart Structures and Materials 2003:Smart Structures and Integrated Systems, SPIE,2003,5056:330-337.
    [32]Hagood N W, Kindel R and Ghandi K. Improving transverse actuation of piezoceramics using interdigitated surface electrodes[C]. North American Con. on Smart Structures and Materials, SPIE,1993,1917(25):341-352.
    [33]Sodano H A. Macro-Fiber composites for sensing, actuation and power generation:[Master Dissertation]. Blacksburg faculty of the Virginia polytechnic institute and state university, 2003.
    [34]Wang Y, Jorge J, Santiago A. Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metal-organic decomposition process[J]. Nanotechnology,2004,5(1):32-36.
    [35]Meyer R J, Yoshikawa S, Shrout T R. Processing and properties of 15-70MHz 1-3 PZT fiber/polymer composites[J]. Material Research Innovations,2000,3(1):324-331.
    [36]Wilkie W K, Bryant R G, High J W, et al. Low-cost piezocomposite actuator for structural control applications[J]. SPIE,2000,3991:323-326.
    [37]Helbig J, Glaubitt W, Spaniol H, et al. Development and technology of doped sol-gel derived lead zirconate titanate fibers[J]. Smart Materials and Structures,2003,12:987-992.
    [38]Su B, Button T W, Schneider A, et al. Embossing of 3D ceramic microstructures[J]. Microsystem Technologies,2002,8(2):359-362.
    [39]杨杰,刘兴钊.PZT压电纤维的制备及性能研究[J].压电与声光,2009,31(4):568-570.
    [40]Manfang Mai, Cheng Lin, Zhaoxian Xiong, et al. Preparation and characterization of lead zirconate titanate ceramic fibers with alkoxide-based Sol-Gel route[C]. MRS International Materials Research Conference,2009.
    [41]李坤,李金华,李锦春,等PLZT压电纤维/环氧树脂1-3复合材料的制备和性能研究[J].无机材料学报,2004,19(2):631-366.
    [42]徐磊PMnS-PZN-PZT压电纤维的制备与性能研究:[硕士学位论文].武汉:武汉理工大学,2010.
    [43]唐耀波KNBT压电纤维的制备与性能研究:[硕士学位论文].武汉:武汉理工大学,2011.
    [44]Mineshige A, Inaba M, Ogumi Z, et al. Preparation of yttria stabilized zirconia microtube by electrochemical vapor deposition[J]. Journal of the American Ceramic Society,1995,78: 3157-3159.
    [45]Liu S, He J. Facile fabrication of porous titania microtube arrays by replication of human hair[J]. Journal of the American Ceramic Society,2005,88:3513-3514.
    [46]Kuttan P, Moses E J. A dip-coating process for the preparation of PZT microtubes[J]. Journal of the American Ceramic Society,2007,90(3):983-985.
    [47]Qiu J, Yamada N, Tani J, et al. Fabrication of piezoelectric fibers with metal core [C]. San Diedo.CA, Proc of SPIE's 10th International Symposium on Smart Structures and Materials, Active Materials:Behavior and Mechanics,2003,5053(2):475-483.
    [48]Sato H. Design of the metal-core piezoelectric fiber. Bellingham:Proceedings of SPIE [C], Smart Structures and Materials 2004:Smart Structures and Integrated Systems,2004,5390: 97-103.
    [49]Qiu J, Park M, Hoshi D, et al. The research of the development of the air flow sensor using the piezoelectric fiber with Pt core[C]. Proceedings of 13th Conference on Electromagnetic Phenomena and Dynamics, Sendai. J P:A E Mof Japan,2004:299-303.
    [50]Goto Y, Tsuge A. Mechanical properties of unidirectionally oriented SiC-whisker-reinforced Si3N4 fabricated by extrusion and hot-pressing [J]. Journal of the American Ceramic Society, 1993,76(6):1420-1424.
    [51]徐磊,周静,庸耀波等.PMnS-PZN-PZT J压电纤维的制备与铁电性能[J].硅酸盐学报,2010,38(8):1411-1414.
    [52]刘维华.塑性聚合物方法压电纤维复合材料的结构与性能研究:[博士学位论文].武汉:武汉理工大学,2008.
    [53]Qi Y, McAlpine M C. Nanotechnology-enabled flexible and biocompatible energy harvesting[J]. Energy and Environmental Science,2010,3:1275-1285.
    [54]万建国.压电复合材料及其在钾能材料结构中的应用研究:[博士学位论文].南京:南京航空航人大学,1997.
    [55]骆英.正交异性压电复合材料功能元件的研究:[博士学位论文].南京:南京航空航天大学,2000.
    [561张志民,张开达等.复合材料结构力学[M].北京:北京航空航天大学出版社,1993.
    [57]李允,沈星,徐蕾.基于ANSYS的1-3型压电复合材料结构优化[J].航天制造技术,2008,4:1-5.
    [58]Xu B M, Ye Y H, Cross L E, et al. Dielectric hysteresis under transverse electric fields in Sol-Gel lead zirconate titanate films deposited on ZrO2 passivated silicon[J]. Integrate Ferroelectrics,1999,24(1):19-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700