气固反应器中基于声发射信号的故障检测与诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过程工业是我国国民经济的重要支柱产业之一,而多相流反应器在过程工业的连续生产中更是起到了举足轻重的作用,对其进行准确的在线故障检测与诊断是保障大型工业装置长期连续稳定运行的重要手段。随着现代工业生产的发展和科学技术的进步,多相流反应器的设计正朝着多功能、高集成、自动化的方向飞速发展。随之产生的问题是反应器内高度复杂的流体动力学行为,进而形成具有非线性、多尺度、动态性等特征的复杂系统,给多相流反应器的实时故障检测与诊断带来不小的困难。另一方面,传统检测手段(温度、压力等)仅针对过程的工艺参数进行采集,难以达到工业故障检测灵敏、准确、及时的高标准,不能满足现代工业生产的需求。因此,针对上述问题,系统研究过程工业中多相流反应器故障的产生机理、特征、影响因素以及应对策略,开发一种简单快捷、灵敏准确的故障早期检测技术不仅极富挑战性,同时也具有重大的理论意义和实用价值。
     本论文针对化工过程中三种应用广泛的多相流反应器(聚丙烯卧式搅拌床反应器、聚乙烯流化床反应器和催化裂化循环流化床反应器),以先进的无损声发射技术为在线测量手段,综合应用非线性动力学分析和多元统计理论,系统地研究了颗粒性质(大小、组成)与各类故障(结块、结焦)之间的定性与定量关系。论文不仅建立了以声发射信号为基础的新型检测方法和诊断模型,而且提出了各类故障的应对策略,研究结果对于工业多相流反应器的连续安全生产、优化工艺操作和提高产品质量都具有重要的指导意义。论文主要开展了以下四方面的研究工作:
     1.深入研究了颗粒性质改变前后,多相流系统流体动力学信息发生的特定变化,建立了针对颗粒结块故障的声发射早期结块识别系统(Acoustic Emission-Early Agglomeration Recognition System, AE-EARS)、以及针对颗粒结焦的催化剂结焦量在线检测模型。
     1) AE-EARS以非线性动力学分析和现代统计理论为依托,主要由基于吸引子比较法的统计值S与基于复杂性分析的故障系数C两大模块构成。其设计思路是从状态比较的角度出发,通过比较当前状态下声发射信号与正常工况下的差异,最终判断多相流反应器内的流体动力学行为是否发生了状态改变。
     2)吸引子比较法通过构建声发射信号的混沌吸引子以描述反应器内的流体动力学行为,在多维空间中计算当前状态与正常状态下吸引子之间的“距离”,并设计统计量S以实现结块的预警。当S值接近于0时,在零假设的前提下,说明当前的评估状态与正常生产状态相似;当S值大于3时,说明当前评估状态下反应器内的流体动力学行为已经发生了改变,即产生了结块。
     3)故障系数法通过引入复杂性分析中关联维与Kolmogorov熵理论,定义故障系数C为当前评估状态与已知正常状态下特征参数(关联维、K-熵)的相对状态比值,并通过设定阈值函数对当前的评估状态进行故障判别。
     4)为建立催化剂结焦量在线检测模型,在深入分析颗粒撞击壁面产生声发射信号的功率谱特征与催化剂结焦量之间的复杂关系基础上,结合多元数据处理中偏最小二乘法(Partial Least Squares, PLS)实现了声发射信号中有用信息的提取,成功地建立了声发射信号与催化剂结焦量之间的定量预测模型。
     2.采用AE-EARS系统,对聚丙烯卧式搅拌床反应器内的结块进行在线预警,并结合生产工艺,针对性地提出了结块故障的应对策略。
     1)针对吸引子比较法在实际应用过程中各主要参数(窗口时间Tw、嵌入维数m、卷积带宽(,、片段长度L)的选择问题,提出了一种以优化理论为基础的参数设置方法,它以计算得到最大的S值、重复实验S值的标准方差最小为优化目标,以S值随大颗粒质量分数的增加而增加为约束条件,采用网格搜索法为优化手段,具有简洁、易于操作等优点。
     2)通过各种针对性的方法降低了外界操作参数对S值产生的干扰,极大地提升了AE-EARS对外界操作变量波动的鲁棒性,使之能适用于复杂工业装置的结块预警。基于离散小波除噪法对由搅拌桨转速的波动而产生的干扰进行了消除,并使得在小范围内(±10%)S值基本不受搅拌桨转速的影响;通过对原始声发射信号进行标准归一化处理来消除大部分由床层重量波动而产生的影响;通过合理选择声发射传感器的位置来大大降低S值对底部循环气波动的敏感性,声发射传感器可接受的范围为距离釜底1/8D至1/2D高度,最佳位置为1/4D,其中D为卧式搅拌釜的内径。
     3)基于S值的AE-EARS系统能敏感地检测卧式搅拌床反应器内床层颗粒粒径的微小变化,在结块发生的早期提供精确的预警。在此基础上,AE-EARS不仅能够指示在牌号切换过程中多相体系是否达到了稳定状态,而且借助多传感器技术能够准确定位“异常事件”的发生位置,并在大型年产25 wt聚丙烯工业热模装置上进行了验证。
     3.考察了AE-EARS在气相聚乙烯流化床反应器内对于结块的检测能力,并根据流化状态下颗粒运动的特点,通过调整参数、降低误报率等方法优化了AE-EARS的模型性能。
     1)根据细颗粒在加热状态下发生团聚的机理,在实验室冷模装置内模拟流化床内颗粒结块的动态过程,并获得了各故障系数C的阈值(aD2=0.3,aK2=1.2)。在此基础上,对于工业聚乙烯流化床内结块的故障进行了检测,实验结果证明,基于复杂性分析的故障系数C能用于结块的早期检测,且上述阈值具有一定的通用性。
     2)综合比较了状态统计值S与故障系数C在流化床反应器中对于结块早期识别的能力。经实验室冷模和工业热模装置的全方位测试,证明统计值S无论是在结块识别的精度(S:95%,C:90%),还是预警的及时性(工业测试中S比C提前20-30 min)方面都显示出更加优异的性能。
     3)通过“过滤”方法对S值进行处理,能够有效提高检测精度,由原先95%提高至99%。
     4.以催化裂化循环流化床中颗粒撞击壁面的声发射信号为基础,催化剂结焦量在线检测模型为分析手段,分别在实验室冷模与工业热模装置上针对FCC颗粒的结焦量进行了在线检测,为长期的故障诊断积累了宝贵的工业数据。
     1)对不同结焦量催化剂颗粒进行了各项颗粒性质的表征,结果发现:结焦前后催化剂颗粒的粒径分布没有发生较大改变,而颗粒的比表面积、孔容以及孔径在结焦后均有不同程度的下降。结合扫描电镜结果推测,焦物大部分沉积于固体颗粒表面的孔道内,且呈现出非连续性的分布状态。
     2)借助多次累加平均法对传统的功率谱分析进行了改进,获得了高分辨率、低噪音的功率谱图。在实验室冷模装置内,对不同结焦量的FCC颗粒进行了流化实验,采集并计算得到了不同表观气速下催化剂颗粒的声发射信号功率谱图。实验结果表明:功率谱特征峰的频率位置随催化剂颗粒结焦量的增大而向低频方向线性移动。由此,将催化剂颗粒的结焦量与特征峰的频率位移相关联,获得了较好的预测效果,不同气速下的平均相对误差不超过8.12%。
     3)在频率位移模型的基础上,借助PLS回归对实验室内30组不同结焦量颗粒声发射信号的功率谱进行了建模,并进行了独立验证。实验结果表明:不同气速下模型的相关系数为0.906,交叉验证均方根(RMSECV)为0.0535,满足工业检测的要求。
     4)在工业催化裂化的循环流化床中对催化剂颗粒结焦量的在线检测模型进行了验证。工业测试结果表明:基于PLS回归模型的声发射功率谱信号能便捷、准确地实现再生器进出口两端催化剂结焦量的在线检测,与传统采样分析法相比,具有明显优势。
Process industry is one of the most important mainstay industries in our national economy, and multiphase flow reactors even play an important role in the continuous production within process industry.The accurate on-line faults detection and diagnosis of the reactors is an indispensable technique which is used to ensure the stable operation of the industrial plants. With the development of chemical engineering and modern scientific technology, the design of the multiphase flow reactors is evolving to the direction of multifunction, highly integrated and automation. The followed problem is that the hydrodynamic behaviors in the reactors turn to be much more complex, which causes big troubles on the on-line detection and diagnosis for the multiphase flow reactors. On the other hand, the traditional detection means, such as temperature and pressure, were only designed to record the process parameters, and could not meet the high standards (for examples, sensitive, accurate, and early warning) for the faults detection in modern industry. Therefore, in order to address these issues, it is not only challenging, but with practical and theoretical significance to develop a novel measurement tool and systematically investigate the mechanisms, characteristics, factors and corresponding strategies for the faults detection and diagnosis for the multiphase flow reactors.
     Based on the advanced non-invasive acoustic emission technique, combining the experimental study and theoretical analysis, this thesis had an in-depth study of the faults (agglomeration, coking) which were generated because of the qualities changing of particles (size, composition) in the three main multiphase flow reactors in chemical production, such as horizontal stirred bed reactors for polypropylene, fluidized beds for polyethylene and circulating fluidized beds for fluid catalytic carking. From this study, we not only established the new methods and diagnosis models based on the acoustic signals, but also proposed several corresponding means for the individual faults, which had an important guiding significance on the safely continuous production, optimization of the process and development of the new products. The results in this thesis can be summarized as following.
     1. After the in-depth research of the hydrodynamic information changes between the state that the particles quality had changed and the state in normal operation, we built up an Acoustic Emission-Early Agglomeration Recognition System, AE-EARS, for the chunks and large agglomerates detection and an on-line quantitative detection model for the amount of coke deposit on catalyst particles.
     1) AE-EARS, which was based on the nonlinear dynamic analysis and modern statistical theory, was composed with the statictical value S based on the attractor comparison method and the malfunction coefficients C. The inspiration of the system was from the idea of states comparison. It was based on the finding or calculating the differences between the evaluated state and the normal state, then the system could decide the current process conditions whether or not had changed.
     2) The attractor comparison method was based on a general distance concept between multidimensional distributions. By comparing the attractor of a reference AE time series at the normal operating conditions with the attractor of evaluated AE time series acquired during operation of HSBR, we were able to get the "distance" (which was called S value in a statistical way) between the two distributions. When the S value was close to zero, under the null hypothesis, it means that evaluated situation is similar to the normal operating condition; when the S value was larger than 3 the hydrodynamic behaviors in the evaluated situation had changed and agglomeration might have formed.
     3) Based on the reconstruction of the attractors in multi-dimension space, correlation dimension and Kolmogorov entropy were introduced to monitor the dynamic process of malfunction in multiphase flow reactors.
     4) The on-line model for coke deposit measurement was established based on the improved power spectrum density, whose data transformed from the acoustics signals by FFT. The partial least square, PLS, method was used to quantitatively correlate the PSD data and coke deposit amount.
     2. By using the AE-EARS, we were able to give early warnings of agglomeration in both lad-scale and industrial horizontal stirred bed reactors (HSBR). Furthermore, by combining the detection results and the background of the production process, several corresponding means were proposed to resolve the particle problems.
     1) The parameters of this method for AE measurement were set by an optimization method. Based on the analysis of the general range of these four parameters, we had taken the biggest S values and the smallest stand deviations of S as optimization objective, and the S values increase with increasing fraction of PP4 as constraint function.
     2) External factors affecting the performance of the method had been reduced. A denoising algorithm based on a discrete wavelet transform was used to remove a part of noise from the agitator which made the method insensitive to small changes in the agitator speed. Normalization the AE signals before calculating the S values was able to remove most of the influence of the bed mass. By carefully choosing the positions for AE sensors could decrease the sensitivity of the S values to the air flow rate which means that a novel detection technique was absolutely necessary for selecting an optimal position for sensors during a lab-scale research. The allowable range for AE sensors was 1/8 D to 1/2 D above the bottom; and the optimal position for sensors was 1/4 D, where D was the diameter of the HSBR.
     3) The AE technique based on the attractor comparison method was sensitive to small changes in the particle size distribution, which meant it could offer "early and accurate warning" of agglomeration in HSBR. Furthermore, the monitoring method might not only be used to indicate if a stationary situation had reached during a grade transition, but also had the probability to locate the agglomeration in HSBR with multiple-sensors. However, further research was needed before applying the method in an industrial HSBR for agglomeration detection.
     3. The performance of AE-EARS in the fluidized beds agglomeration detection had been investigated. According to the unique characteristics in fluidized state, we had optimized the output of AE-EARS by adjusting the parameters and reducing the false alarm rate.
     1) According to the theory that under heating conditions fine particles of polyethylene will adhere to each other to form larger chunks, lab-scale experiments were carried out to simulate the situation in real reactors. Meanwhile, the threshold functions for the parameters were obtained (aD2=0.3, aK2=1.2).
     2) The performance of the statistical S and malfunction coefficient C were compared in both lad-scale and industrial fluidized bed reactors. The results showed that whether on the sensitivity to agglomeration, or the timeliness to send warnings, the S method showed higher quality than C.
     3) Based on the "filtering" process for the original S, the accuracy of the proposed method was highly improved, from 95% to 99%.
     4. Based on the acoustic signals emitted by the collisions between the FCC particles and the internal wall of the circulating fluidized beds, supplemented with on-line quantitative detection model, the experiments both in lab-scale and industrial plants to measure the amount of coke deposit on catalyst particles were studied.
     1) Particle properties of the catalyst which had different amount of coke were characterized by several measurements. The particle size distribution showed no big changes between the fresh catalyst and the coked one. The BET tests told us that the surface area, pore volume and size had all dropped after the reaction. Therefore, it could be inferred that most of the coke deposited in the pores on the surface of the catalyst particles, and the distribution showed non-continuous status.
     2) A model to predict the amount of coke deposit on catalyst was established to describe the correlation between the characteristic frequency of AE signals from the particles-wall collisions and different amount of coke deposit. Experiments in a cold mode fluidized bed showed that this model was useful for online measurement of the amount of coke deposit on catalyst. The average absolute relative deviation (AARD) was below 8.12% when the predicted amount of coke deposit was compared with the true one.
     3) The correlation between acoustic power spectrum density and the amount of coke deposit were investigated in lab-scale experiments by PLS regressions method. The best PLSR results, obtained under the different superficial gas velocities showed for a correlation coefficient of 0.906, and a root mean square error of cross validation (RMSECV) of 5.35%, which fully met the requirements of industrial applications.
     4) The PLS model had been verified in the industrial plants, and the final results could be used to illustrated that the proposed method could meet the requirements of on-line measurement of the amount of coke deposit on catalyst in circulating fluidized bed reactors.
引文
器中各种传感器的原理、功能以及优缺点等,其中详细地介绍了本文所使用的声
    发射传感器,包括其基本原理、现有应用及其评价。最后再针对本文所涉及的三
    种多相流反应器的工艺及工业背景进行了综述,并由此提出了研究的课题。第三章介绍实验装置及实验方案。第四章从理论上介绍本文所使用的故障检测方法,包括声发射早期结块识
    别系统与催化剂结焦量的在线检测模型。第五章通过对卧式搅拌釜声发射信号的分析,借助AE-EARS,实现了卧式
    搅拌床反应器内结块的预警。第六章通过对流化床声发射信号的分析,借助AE-EARS,解决了流化床反
    应器内结块的监控问题。第七章改进了传统的功率谱分析并与偏最小二乘回归模型相结合,建立了
    循环流化床内催化剂颗粒和声发射信号功率谱图的数学模型,实现了对结焦量的
    在线监控,并在此基础上对结焦量波动而产生的故障进行了试探性研究。第八章全文总结和展望。
    [1]W. B. Howard. Process Safety Technology and the Responsibility of Industry. Chemical Engineering Progress.1988,84, (9):25-33.
    [2]V. venkatsubramanian, R. Rengaswamy, S. N. Kavuri. A review of process fault detection and diagnosis Part Ⅲ:Process history based methods. Computers & Chemical Engineering.2003,27, (3):327-346.
    [3]V. Venkatsubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri. A review of process fault detection and diagnosis Part Ⅰ:Quantitative model-based methods. Computers & Chemical Engineering.2003,27, (3):293-311.
    [4]白维峰,韩捷,董辛旻.基于矢谱和蚁群算法的旋转机械故障特征提取.机械设计与制造.2009,10:35-37.
    [5]曹翌佳,刘伟,王靖岱,阳永荣.基于吸引子比较法的卧式搅拌床反应器声发射故障诊断.化工学报.2009,(03):585-592.
    [6]李尔国,俞金寿.Pca在过程故障检测与诊断中的应用.华东理工大学学报:社会科学版.2001,5:5.
    [7]马新明,韩占忠,刘平.基于支持向量机的输电线路故障诊断分类.电气开关.2009,47,(5):61-63.
    [8]谭伦慧,张礼达.基于bp模糊神经网络的水轮发电机组故障诊断方法.水力发电.2009.8: 56-58.
    [9]阴玉清.基于人工神经网络的过热器故障诊断系统.内蒙古科技与经济.2009,18:87-88.
    [10]郑志强,袁海文,黄姣英,崔勇.基于多模型结构的电控系统执行器的故障诊断.电机与控制学报.2009,5:744-748.
    [11]陈甘棠,王樟茂.多相流反应工程.杭州:浙江大学出版社,1996,1.
    [1]V. venkatsubramanian, R. Rengaswamy, S. N. Kavuri. A review of process fault detection and diagnosis Part Ⅲ:Process history based methods. Computers & Chemical Engineering.2003,27, (3):327-346.
    [2]V. Venkatsubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri. A review of process fault detection and diagnosis Part I:Quantitative model-based methods. Computers & Chemical Engineering.2003,27, (3):293-311.
    [3]P. M. Frank, S. X. Ding, T. Marcu. Model-based fault diagnosis in technical processes. Transactions of the Institute of Measurement and Control.2000,22, (1): 57-101.
    [4]Z. Fathi, W. F. Ramirez, J. Korbicz. Analytical and Knowledge-Based Redundancy for Fault-Diagnosis in Process Plants. AIChE Journal.1993,39, (1):42-56.
    [5]白维峰,韩捷,董辛F.基于矢谱和蚁群算法的旋转机械故障特征提取.机械设计与制造.2009,10:35-37.
    [6]曹翌佳,刘伟,王靖岱,阳永荣.基于吸引子比较法的卧式搅拌床反应器声发射故障诊断.化工学报.2009,(03):585-592.
    [7]陈国华,蓝玉龙.隐核最小二乘分类器在故障诊断中的应用.计算机仿真2009,9:153-155.
    [8]黄孝彬,牛征,牛玉广,刘吉臻.利用主元方法进行传感器故障检测的行为分析.传感技术学报.2003,16,(4):419-423.
    [9]马新明,韩占忠,刘平.基于支持向量机的输电线路故障诊断分类.电气开关.2009,47,(5):61-63.
    [10]谭伦慧,张礼达.基于bp模糊神经网络的水轮发电机组故障诊断方法.水力发电.2009.8:56-58.
    [11]汤自安.基于专家系统的消防控制故障诊断研究.智能建筑2009,9:54-57.
    [12]徐涛,王祈.基于mspca的传感器故障诊断与数据重构.计算机工程与应用.2008,44,(11):168-169.
    [13]阴玉清.基于人工神经网络的过热器故障诊断系统.内蒙古科技与经济.2009,18:87-88.
    [14]郑志强,袁海文,黄姣英,崔勇.基于多模型结构的电控系统执行器的故障诊断.电机与控制学报.2009,5:744-748.
    [15]I. Nimmo. Industry initiative addresses 'abnormal events'. Hydrocarbon Processing.1998,77, (10):71-88.
    [16]I. Nimmo. Adequately Address Abnormal Operations. Chemical Engineering Progress.1995,91, (9):36-45.
    [17]P. M. Frank. Fault-Diagnosis in Dynamic-Systems Using Analytical and Knowledge-Based Redundancy-a Survey and Some New Results. Automatica.1990,26, (3):459-474.
    [18]P. M. Frank, X. C. Ding. Frequency-Domain Approach to Optimally Robust Residual Generation and Evaluation for Model-Based Fault-Diagnosis. Automatica.1994,30, (5):789-804.
    [19]侯琳熙,舒伟杰,王靖岱,阳永荣.基于声波信号混沌分析的气固流化床故障诊断.浙江大学学报.2007,(05):827-830.
    [20]王靖岱,蒋斌波,阳永荣,舒伟杰.声波的多尺度解析与气固流化床故障检测.化工学报.2006,(07):1560-1564.
    [21]周韶园,王树青,张建明.Pea—Chmm在化工过程故障诊断中的应用.浙江大学学报:工学版.2005,39,(10):1475-1480.
    [22]S. J. Bailey. From Desk-Top to Plant Floor, a Crt Is the Control Operators Window on the Process. Control Engineering.1984,31, (6):86-90.
    [23]F. B. Lees. Loss Prevention in the Process Industries. Process Engineering. 2006, (Aug):55-55.
    [24]R. F. Luo, M. Misra, T. Soderstrom, D. M. Himmelblau. Sensor fault detection via multiscale analysis of prediction model residuals. Industrial & Engineering Chemistry Research.2003,42, (14):3372-3380.
    [25]李尔国,俞金寿.Pca在过程故障检测与诊断中的应用.华东理工大学学报:社会科学版.2001,5:5-11.
    [26]J. Gertler, Q. Luo. Robust Isolable Models for Failure Diagnosis. AIChE Journal. 1989,35, (11):1856-1868.
    [27]F. Kimmich, A. Schwarte, R. Isermann. Fault detect ion for modern Diesel engines using signal- and process model-based methods. Control Engineering Practice.2005, 13, (2):189-203.
    [28]R. Isermann. Process Fault-Detection Based on Modeling and Estimation Methods-a Survey. Automatica.1984,20, (4):387-404.
    [29]M. A. Kramer. Malfunction Diagnosis Using Quantitative Models with Non-Boolean Reasoning in Expert Systems. AIChE Journal.1987,33, (1):130-140.
    [30]A. S. Willsky, H. L. Jones. Generalized Likelihood Ratio Approach to Detection and Estimation of Jumps in Linear-Systems. Ieee Transactions on Automatic Control. 1976,21, (1):108-112.
    [31]R. L. Hoffman, K. Fukunaga. Pattern Recognition Signal Processing for Mechanical Diagnostics Signature Analysis. Ieee Transactions on Computers.1971, C 20, (9):1095-1102.
    [32]J. Gertler, J. Cao. PCA-based fault diagnosis in the presence of control and dynamics. AIChE Journal.2004,50, (2):388-402.
    [33]R. K. Mehra, J. Peschon. Innovations Approach to Fault Detection and Diagnosis in Dynamic Systems. Automatica.1971,7, (5):637-640.
    [34]A. S. Willsky. Survey of Design Methods for Failure Detection in Dynamic-Systems. Automat ica.1976,12, (6):601-611.
    [35]J. Gertler, D. Singer. A New Structural Framework for Parity Equation-Based Failure-Detection and Isolation. Automatica.1990,26, (2):381-388. [36] J. C. Hoskins, D. M. Himmelblau. Artificial Neural Network Models of Knowledge Representation in Chemical-Engineering. Computers & Chemical Engineering.1988,12, (9-10):881-890.
    [37]R. Milne. Strategies for Diagnosis. Ieee Transactions on Systems Man and Cybernetics.1987,17, (3):333-339.
    [38]J. Werther. Measurement techniques in f luidized beds. Powder Technology.1999, 102, (1):15-36.
    [39]T. Kai, S. Furusaki. Methanation of Carbon-Dioxide and Fluidization Quality in a Fluid Bed Reactor-the Influence of a Decrease in Gas Volume. Chemical Engineering Science.1987,42, (2):335-339.
    [40]M. S. Fraguio, M. C. Cassanello, S. Degaleesan, M. Dudukovic. Flow Regime Diagnosis in Bubble Columns via Pressure Fluctuations and Computer-Assisted Radioactive Particle Tracking Measurements. Industrial & Engineering Chemistry-Research.2009,48, (3):1072-1080.
    [41]J. C. Schouten, C. M. van den Bleek. Monitoring the quality of fluidization using the short-term predictabili ty of pressure fluctuations. AIChE Journal.1998, 44, (1):48-60.
    [42]J. R. van Ommen, M.0. Coppens, C. M. van den Bleek, J. C. Schouten. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal.2000, 46, (11):2183-2197.
    [43]J. Nijenhuis, R. Korbee, J. Lensselink, J. H. A. Kiel, J. R. van Ommen. A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineering Science.2007,62, (1-2):644-654.
    [44]Y. J. Cao, J. D. Wang, Y. J. He, W. Liu, Y. R. Yang. Agglomeration Detection Based on Attractor Comparison in Horizontal Stirred Bed Reactors by Acoustic Emission Sensors. AIChE Journal.2009,55, (12):3099-3108.
    [45]F. Scala, R. Chirone. Characterization and early detection of bed agglomeration during the fluidized bed combustion of olive husk. Energy & Fuels.2006,20, (1): 120-132.
    [46]C. Hulet, J. R. Llinas, J. L. Selo, C. Briens, S. Thomas, A. Mouillet. Multivariate analysis of process signals for early detection of agglomeration in a gas phase fluidized bed for polyethylene. Chemical Engineering and Processing. 2008,47, (8):1224-1233.
    [47]张玉平,金锋,张岩,张宝芬.两相流相浓度检测技术的研究.北京理工大学学报.2002,(03):383-386.
    [48]张秉海,王智.核料位计的工作原理及相关知识.石油化工自动化.2007,(05):84-85.
    [49]蒋自力.核料位计和核密度计在石油化工装置中的应用.石油化工自动化.2000,(02):58-62.
    [50]王景敏,胡为民.γ射线料位计测量精度的研究和设计.核电子学与探测技术.2003,(04):361-363.
    [51]C. Boyer, A. M. Duquenne, G. Wild. Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chemical Engineering Science.2002,57, (16):3185-3215.
    [52]张斌,翁惠新,阳永荣.声发射技术测量卧式搅拌床反应器中的料位.化学反应工程与工艺.2009,(01):80-83.
    [53]K. Albion, L. Briens, C. Briens, F. Berruti. Flow regime determination in horizontal pneumatic transport of fine powders using non-intrusive acoustic probes. Powder Technology.2007,172, (3):157-166.
    [54]M. Halstensen, P. de Bakker, K. H. Esbensen. Acoustic chemometric monitoring of an industrial granulation production process-a PAT feasibility study. Chemometrics and Intelligent Laboratory Systems.2006,84, (1-2):88-97.
    [55]S. Mylvaganam. Some applications of acoustic emission in particle science and technology. Particulate Science and Technology.2003,21, (3):293-301.
    [56]董高庆.压电加速度计的原理、结构及其使用.测试技术学报.1997,(04):52-62.
    [57]王芳,于恒修,任聪静,王靖岱,阳永荣.基于静电测量的聚乙烯气固流化床结片检测.浙江大学学报(工学版).2009,(09):1697-1702.
    [58]M. Baerns. Effect of Interparticle Adhesive Forces on Fluidization of Fine Particles. Industrial & Engineering Chemistry Fundamentals.1966,5, (4):508-516.
    [59]A. Gajewski. Investigation of the electrification of polypropylene particles during the fluidization process. Journal of Electrostatics.1985,17:289-298.
    [60]G. Hendrickson. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chemical Engineering Science.2006,61, (4):1041-1064.
    [61]H. Z. Li, Y. S. Xia, Y. K. Tung, M. Kwauk. Microvisualization of Clusters in a Fast Fluidized-Bed. Powder Technology.1991,66, (3):231-235.
    [62]H. Z. Li, Q. S. Zhu, H. Liu, Y. F. Zhou. The Cluster-Size Distribution and Mot ion Behavior in a Fast Fluidized-Bed. Powder Technology.1995,84, (3):241-246.
    [63]J. W. R. Boyd, J. Varley. The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science.2001,56, (5): 1749-1767.
    [64]J. V. Briongos, J. M. Aragon, M. C. Palancar. Fluidised bed dynamics diagnosis from measurements of low-frequency out-bed passive acoustic emissions. Powder Technology.2006,162, (2):145-156.
    [65]G. D. Cody, R. J. Bellows, D. J. Goldfarb, H. A. Wolf, G. V. Storch. A novel non-intrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit. Powder Technology. 2000,110, (1-2):128-142.
    [66]K. H. Esbensen, M. Halstensen, T. T. Lied, A. Saudland, J. Svalestuen, S. de Silva, B. Hope. Acoustic chemometrics-from noise to information. Chemometries and Intelligent Laboratory Systems.1998,44, (1-2):61-76.
    [67]K. Naelapaa, P. Veski, J. G. Pedersen, D. Anov, P. Jorgensen, H. G. Kristensen, P. Bertelsen. Acoustic monitoring of a fluidized bed coating process. International Journal of Pharmaceutics.2007,332, (1-2):90-97.
    [68]C. J. Ren, X. J. Jiang, J. D. Wang, Y. R. Yang, X. H. Zhang. Determination of critical speed for complete solid suspension using acoustic emission method based on multiscale analysis in stirred tank. Industrial & Engineer ing Chemistry Research. 2008,47, (15):5323-5327.
    [69]M. Whitaker, G. R. Baker, J. Westrup, P. A. Goulding, D. R. Rudd, R. M. Belchamber, M. P. Collins. Application of acoustic emission to the monitoring and end point determination of a high shear granulation process. International Journal of Pharmaceutics.2000,205, (1-2):79-91.
    [70]H. Tsujimoto, T. Yokoyama, C. C. Huang, I. Sekiguchi. Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor. Powder Technology.2000,113, (1-2):88-96.
    [71]H. K. Tonshoff, M. Jung, S. Mannel, W. Rietz. Using acoustic emission signals for monitoring of production processes. Ultrasonics.2000,37, (10):681-686.
    [72]阳永荣,侯琳熙,王靖岱,胡晓萍.声波的多尺度分解与颗粒粒径分布的实验研究.自然科学进展.2005,(03):126-130.
    [73]李建国,赵丽娟,潘永康,周明.流化床在生物物料热力干燥中的应用.化工进展.2005,(02):190-192.
    [74]A. D. Salman, M. J. Hounslow. Fluidized bed applications-Preface. Chemical Engineering Science.2007,62, (1-2):1-1.
    [75]G. D. Cody, D. J. Goldfarb, G. V. Storch, A. N. Norris. Particle granular temperature in gas fluidized beds. Powder Technology.1996,87:211-232.
    [76]G. D. Cody, J. Johri, D. Goldfarb. Dependence of particle fluctuation velocity on gas flow, and particle diameter in gas fluidized beds for monodispersed spheres in the Geldart B and A fluidization regimes. Powder Technology.2008,182, (2): 146-170.
    [77]Q. Q. Ni, M. Iwamoto. Wavelet transform of acoustic emission signals in failure of model composites. Engineering Fracture Mechanics.2002,69, (6):717-728.
    [78]E. P. Serrano, M. A. Fabio. Application of the wavelet transform to acoustic emission signals processing. Ieee Transactions on Signal Processing.1996,44, (5): 1270-1275.
    [79]J. Huang, S. Ose, S. de Silva, K. H. Esbensen. Non-invasive moni tor ing of powder breakage during pneumatic transportation using acoustic chemometrics. Powder Technology.2003,129, (1-3):130-138.
    [80]M. Halstensen, K. Esbensen. New developments in acoustic chemometric predict ion of particle size distribution- 'the problem is the solution'. Journal of Chemometrics.2000,14, (5-6):463-481.
    [81]曹翌佳,石志俭,杨宝柱,段纯刚,王靖岱,阳永荣.气相聚合流化床内聚合物结块的声波检测技术.石油化工.2006,(08):766-769.
    [82]K. Zhang, J. Y. Zhang, B. J. Zhang. Experimental and numerical study of fluid dynamic parameters in a jetting fluidized bed of a binary mixture. Powder Technology. 2003,132, (1):30-38.
    [83]P. Schl ichthaerle, J. Werther. Axial pressure prof iles and sol ids concentration distributions in the CFB bottom zone. Chemical Engineering Science.1999,54, (22): 5485-5493.
    [84]王靖岱,曹翌佳,任聪静,阳永荣,侯琳熙.气固流化床中声发射和流动模式关系.化工学报.2007,(07):1713-1718.[85]陈国辉.催化剂自动加料器在催化装置中的应用.石油化工自动化.2004,(01):41-42+60.
    [86]曹翌佳,刘伟,姜晓静,王靖岱,阳永荣.从噪声到信息——声发射技术在流程工业中的应用.化工进展.2007,(12):1702-1707.
    [87]杨荆泉,陈伟,阳永荣,戎顺熙.气相法聚乙烯冷凝模式操作的模拟研究(I)反应器运行状态的分析.化工学报.2001,(10):877-884.
    [88]黄正梁,刘伟,曹翌佳,王靖岱,阳永荣.气相法聚乙烯流化床反应器中冷凝操作模式的声发射检测.石油化工.2009,(05):521-524.
    [89]P. Mougin, A. Thomas, D. Wilkinson, G. White, K. J. Roberts, N. Herrmann, R. Jack, R. Tweedie. On-line monitoring of a crystallization process. AIChE Journal. 2003,49, (2):373-378.
    [90]J. Dong, D. F. Zhuang, Y. H. Huang, J. Y. Fu. Advances in Multi-Sensor Data Fusion:Algorithms and Applications. Sensors.2009,9, (10):7771-7784.
    [91]X. P. Ma, Y. Z. Miao, C. Liang. The application study of water environment monitoring based on multi-sensor data fusion. Dynamics of Continuous Discrete and Impulsive Systems-Series B-Applicat ions & Algorithms.2006,13:1051-1054.
    [92]G. Girija, J. R. Raol, R. A. Raj, S. Kashyap. Tracking filter and multi-sensor
    data fusion. Sadhana-Academy Proceedings in Engineering Sciences.2000,25: 159-167.
    [93]M. Caracotsios. Theoretical modeling of Amoco's gas phase horizontal stirred bed reactor for the manufacturing of polypropylene resins. Chemical Engineering Science.1992,47:2591-2596.
    [94]C. J. Dittrich, S. M. P. Mutsers. On the residence time distribution in reactors with non-uniform velocity profiles:The horizontal stirred bed reactor for polypropylene production. Chemical Engineering Science.2007,62, (21):5777-5793.
    [95]A. H. Chen, H. T. Bi, J. R. Grace, F. K. vanWilligen, J. R. van Ommen. Measurement of charge distribution around a rising bubble in a 2-D f luidized bed. AIChE Journal. 2006,52, (1):174-184.
    [96]米子德,王丰,张清峰.300MW大型循环流化床锅炉特性综述.华北电力技术.2007,(07):1-6.
    [97]史学锋,冯波,陆继东,郑楚光.流化床煤燃烧中的脱硫研究综述.电站系统工程.1998,(06):18-22.
    [98]张利斌,张金钟,李修伦.多相流流化床换热器研究进展.现代化工.2001,(02):17-19.
    [99]J. R. van Ommen, J. C. Schouten, C. M. van den Bleek. Monitoring fluidization dynamics for detection of changes in fluidized bed composition and operating conditions. Journal of Fluids Engineering-Transactions of the Asme.1999,121, (4): 887-894.
    [100]C. L. Briens, L. A. Briens, E. Barthel, J. M. Le Blevec, A. Tedoldi, A. Margaritis. Detection of local fluidization characteristics using the V statistic. Powder Technology.1999,102, (1):95-103.
    [101]王洪涛,韩言青,陈菁.气相法聚乙烯中试装置流化床反应器的改进.合成树脂及塑料.2001,(01):24-26.
    [102]武众.聚乙烯气相流化床生产技术进展.石油化工动态1996,(07):23-28.
    [103]宫小文,苗春兰,杨宝柱,宁凡河.UNIPOL气相法流化床聚乙烯工艺冷凝态技术最新进展.齐鲁石劝化工.2002,(02):146-149.
    [104]阳永荣,陈纪忠,陈伟,戎顺熙,吕德伟.气相法聚乙烯流化床反应器冷凝模式操作工艺.石油化工动态.1997,(02):29-37.
    [105]Y. J. Cao, J. D. Wang, W. Liu, Y. R. Yang. Wall sheeting diagnosis in fluidized beds based on chaos analysis of acoustic emission signals. Journal of Zhejiang University-Science A.2009,10, (9):1341-1349.
    [106]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,[博士学位论文],浙江大学,2005:22-89.
    [107]黎永,循环流化床燃烧条件下焦碳反应性实验研究,[博士学位论文],清华大学,2002:14-45.
    [108]石祥彬,王玉召,王启民.循环流化床锅炉喷氨高效脱硝研究.东北电力技术.2007,(05):1-6.
    [109]谢威,郭瓦力,周世贤,刘代富,刘亚娟.生物质焦油在氧化钙上的催化裂解研究.沈阳化工学院学报.2000,(03):205-208.[110]虞贤波,刘烨,王靖岱,阳永荣,谢在库.声信号多尺度解析与催化剂结焦的检测.石油学报(石油加工).2008,(05):581-585.
    [111]王晓鹏,上官炬,王会娜,朱永军.催化剂上积炭的影响因素.煤化工.2007,(01):51-54.
    [112]闫平祥,刘植昌,高金森,徐春明,于春光,王殿芬.重油催化裂化工艺的新进展.当代化工.2004,(03):136-140.
    [113]魏耀东,宋健斐,张锴,孙国刚,时铭显.催化裂化装置沉降器内顶旋升气管外壁结焦的特性分析.石油化工设备技术.2005,(06):11-14.
    [114]宋健斐,魏耀东,时铭显.催化裂化装置沉降器内结焦物的基本特性分析及其形成过程的探讨.石油学报(石油加工).2006,(02):39-44.
    [115]董新法,姬涛,林维明.CH-4、C0-2与0-2制合成气催化剂研究VI.催化剂表面积炭种类和积炭动力学研究.分子催化.2004,(04):261-265.
    [116]D. Chen, H. P. Rebo, K. Moljord, A. Holmen. The role of coke deposition in the conversion of methanol to olef ins over SAPO-34. Catalyst Deactivation 1997.1997, 111:159-166.
    [117]白正伟.测定混合物组成及组分含量的热重分析法.分析测试学报.2000,(04):83-85.
    [118]孙自强,顾幸生,俞金寿,党晓恒.连续催化重整反应器结焦含量软测量.华东理工大学学报.2001,(05):568-571.
    [1]阳永荣,侯琳熙,杨宝柱,刘诚午,胡晓萍,王靖岱,陈纪忠.流化床反应器声波监测的装置和方法:中国,20031011358.77,2006.
    [2]M. Dodson. Shannon Sampling Theorem. Current Science.1992,63, (5):253-260.
    [3]M. Halstensen, P. de Bakker, K. H. Esbensen. Acoustic chemometric monitoring of an industrial granulation production process-a PAT feasibility study. Chemowetrics and Intelligent Laboratory Systems.2006,84, (1-2):88-97.
    [4]J. R. van Ommen, M.O. Coppens, C. M. van den Bleek, J. C. Schouten. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal.2000, 46, (11):2183-2197.
    [1]R. M. Belchamber, D. Betteridge, M. P. Collins, T. Lilley, C. Z. Marczewski, A. P. Wade. Quantitative Study of Acoustic-Emission from a Model Chemical Process. Analytical Chemistry.1986,58, (8):1873-1877.
    [2]J. W. R. Boyd, J. Varley. The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science.2001,56, (5): 1749-1767.
    [3]G. D. Cody, R. J. Bellows, D. J. Goldfarb, H. A. Wolf, G. V. Storch. A novel non-intrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit. Powder Technology. 2000,110, (1-2):128-142.
    [4]G. D. Cody, D. J. Goldfarb, G. V. Storch, A. N. Norris. Particle granular temperature in gas fluidized beds. Powder Technology.1996,87:211-232.
    [5]G. D. Cody, J. Johri, D. Goldfarb. Dependence of particle fluctuation velocity on gas flow, and particle diameter in gas fluidized beds for monodispersed spheres in the Geldart B and A fluidization regimes. Powder Technology.2008,182, (2): 146-170.
    [6]K. H. Esbensen, M. Halstensen, T. T. Lied, A. Saudland, J. Svalestuen, S. de Silva, B. Hope. Acoustic chemometrics-from noise to information. Chemometrics and Intelligent Laboratory Systems.1998,44, (1-2):61-76.
    [7]M. Halstensen, P. de Bakker, K. H. Esbensen. Acoustic chemometric monitoring of an industrial granulation production process-a PAT feasibility study. Chemometrics and Intelligent Laboratory Systems.2006,84, (1-2):88-97.
    [8]R. Hou, A. Hunt, R. A. Williams. Acoustic monitoring of pipeline flows: particulate slurries. Powder Technology.1999,106, (1-2):30-36.
    [9]X. J. Jiang, J. D. Wang, B. B. Jiang, Y. R. Yang, L. X. Hou. Study of the power spectrum of acoustic emission (AE) by accelerometers in fluidized beds. Industrial & Engineering Chemistry Research.2007,46, (21):6904-6909.
    [10]S. Mylvaganam. Some applications of acoustic emission in particle science and technology. Particulate Science and Technology.2003,21, (3):293-301.
    [11]K. Naelapaa, P. Veski, J. G. Pedersen, D. Anov, P. Jorgensen, H. G. Kristensen, P. Bertelsen. Acoustic monitoring of a fluidized bed coating process. International Journal of Pharmaceutics.2007,332, (1-2):90-97.
    [12]C. J. Ren, X. J. Jiang, J. D. Wang, Y. R. Yang, X. H. Zhang. Determination of critical speed for complete solid suspension using acoustic emission method based onmultiscale analysis in stirred tank. Industrial & Engineering Chemistry Research. 2008,47, (15):5323-5327.
    [13]H. Tsujimoto, T. Yokoyama, C. C. Huang, I. Sekiguchi. Monitoring particle fluidization in a fluidized bed granulator with an acoustic emission sensor. Powder Technology.2000,113, (1-2):88-96.
    [14]M. Whitaker, G. R. Baker, J. Westrup, P. A. Goulding, D. R. Rudd, R. M. Belchamber, M. P. Collins. Application of acoustic emission to the monitoring and end point determination of a high shear granulation process. International Journal of Pharmaceutics.2000,205, (1-2):79-91.
    [15]E. P. Serrano, M. A. Fabio. Application of the wavelet transform to acoustic emission signals processing. Ieee Transactions on Signal Processing.1996,44, (5): 1270-1275.
    [16]J. van der Schaaf, J. R. van Ommen, F. Takens, J. C. Schouten, C. M. van den Bleek. Similarity between chaos analysis and frequency analysis of pressure fluctuations in fluidized beds. Chemical Engineering Science.2004,59, (8-9): 1829-1840.
    [17]C. A. van den Bleek, M.O. Coppens, J. C. Schouten. Application of chaos analysis to multiphase reactors. Chemical Engineering Science.2002,57, (22-23):4763-4778.
    [18]J. V. Briongos, J. M. Aragon, M. C. Palancar. Fluidised bed dynamics diagnosis from measurements of low-frequency out-bed passive acoustic emissions. Powder Technology.2006,162, (2):145-156.
    [19]Y. J. Cao, J. D. Wang, Y. J. He, W. Liu, Y. R. Yang. Agglomeration Detection Based on Attractor Comparison in Horizontal Stirred Bed Reactors by Acoustic Emission Sensors. AIChE Journal.2009,55, (12):3099-3108.
    [20]曹翌佳,石志俭,杨宝柱,段纯刚,王靖岱,阳永荣.气相聚合流化床内聚合物结块的声波检测技术.石油化工.2006,(08):766-769.
    [21]王靖岱,蒋斌波,阳永荣,舒伟杰.声波的多尺度解析与气固流化床故障检测.化工学报.2006,(07):1560-1564.
    [22]虞贤波,任聪静,姜晓静,王靖岱,阳永荣.气固流化床中声发射和结块定位.浙江大学学报(工学版).2008,(10):1828-1832.
    [23]赵贵兵,阳永荣,侯琳熙.流化床声发射机理及其在故障诊断中的应用.化工学报.2001,(11):941-943.
    [24]曹翌佳,刘伟,姜晓静,王靖岱,阳永荣.从噪声到信息——声发射技术在流程工业中的应用.化工进展.2007,(12):1702-1707.
    [25]曹翌佳,刘伟,王靖岱,阳永荣.基于吸引子比较法的卧式搅拌床反应器声发射故障诊断.化工学报.2009,(03):585-592.
    [26]陈杰勋,曹翌佳,任聪静,王靖岱,阳永荣.气固流化床分布板死区的声发射检测.石油化工.2008,(09):910-914.
    [27]侯琳熙,舒伟杰,王靖岱,阳永荣.基于声波信号混沌分析的气固流化床故障诊断.浙江大学学报(工学版).2007,(05):827-830.
    [28]任聪静,吴雪妹,王靖岱,蒋斌波.气固流化床声发射信号的多尺度解析.浙江大学学报:工学版.2008,42,(7):1255-1261.
    [29]阳永荣,侯琳熙,王靖岱,胡晓萍.声波的多尺度分解与颗粒粒径分布的实验研究.自群科学进展.2005,(03):126-130.
    [30]D. Bai, H. T. Bi, J. R. Grace. Chaotic behavior of fluidized beds based on pressure and voidage fluctuations. AIChE Journal.1997,43, (5):1357-1361.
    [31]V. Venkatsubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri. A review of process fault detection and diagnosis Part I:Quantitative model-based methods. Computers & Chemical Engineering.2003,27, (3):293-311.
    [32]C. Diks, W. R. van Zwet, F. Takens, D. J. Detecting differences between delay vector distributions. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics.1996,53:2169-2176.
    [33]C. L. Briens, L. A. Briens, E. Barthel, J. M. Le Blevec, A. Tedoldi, A. Margaritis. Detection of local fluidization characteristics using the V statistic. Powder Technology.1999,102, (1):95-103.
    [34]J. Nijenhuis, R. Korbee, J. Lensselink, J. H. A. Kiel, J. R. van Ommen. A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineering Science.2007,62, (1-2):644-654.
    [35]王靖岱,曹翌佳,任聪静,阳永荣,侯琳熙.气固流化床中声发射和流动模式关系.化工学报.2007,(07):1713-1718.
    [36]王靖岱,阳永荣,葛鹏飞,舒伟杰,侯琳熙.声波的多尺度分解与气固流化床流化速度的实验研究.中国科学(B辑:化学).2007,(01):94-100.
    [37]N. Ellis, L. A. Briens, J. R. Grace, H. T. Bi, C. J. Lim. Characterization of dynamic behaviour in goas-solid turbulent fluidized bed using chaos and wavelet analyses. Chemical Engineering Journal.2003,96, (1-3):105-116.
    [38]A. Lempel, J. Ziv. Complexity of Finite Sequences. Ieee Transactions on Information Theory.1976,22, (1):75-81.
    [39]I. Dvorak, J. Klaschka. Modification of the Grassberger-Procaccia Algorithm for Estimating the Correlation Exponent of Chaotic Systems with High Embedding Dimension. Physics Letters A.1990,145, (5):225-231.
    [40]G. B. Zhao, J. Z. Chen, Y. R. Yang. Predictive model and deterministic mechanism in a bubbling fluidized bed. AIChE Journal.2001,47, (7):1524-1532.
    [41]G. B. Zhao, Y. R. Yang. Multiscale resolution of fluidized-bed pressure fluctuations. AIChE Journal.2003,49, (4):869-882.
    [42]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,[博士学位论文],浙江大学,2005:63-75.
    [43]M. Halstensen, K. Esbensen. New developments in acoustic chemometric prediction of particle size distribution- 'the problem is the solution'. Journal of Chemometrics.2000,14, (5-6):463-481.
    [44]M. Roy, V. R. Kumar, B. D. Kulkarni, J. Sanderson, M. Rhodes, M. vander Stappen. Denoising algorithm using wavelet transform. AIChE Journal.1999,45, (11): 2461-2466.
    [45]曹翌佳,王靖岱,阳永荣.声波信号多尺度分解与固体颗粒质量流率的测定.化工学报.2007,(06):1404-1410.
    [46]徐涛,王祈.基于mspca的传感器故障诊断与数据重构.计算机工程与应用.2008,44,(11):168-169.
    [47]M. L. Forman. Fast Fourier-Transform Technique and Its Application to Fourier Spectroscopy. Journal of the Optical Society of America.1966,56, (7):978-986.
    [48]倪永年.化学计量学在分析化学中的作用.北京:科学出版社,2004:86-133.
    [49]J. Gertler, J. Cao. PCA-based fault diagnosis in the presence of control and dynamics. AIChE Journal.2004,50, (2):388-402.
    [50]陈德钊.多元数据处理.北京:化学工业出版社,1998:124-142.
    [1]M. Caracotsios. Theoretical modeling of Amoco's gas phase horizontal stirred bed reactor for the manufacturing of polypropylene resins. Chemical Engineering Science.1992,47:2591-2596.
    [2]Y. J. Cao, J. D. Wang, Y. J. He, W. Liu, Y. R. Yang. Agglomeration Detection Based on Attractor Comparison in Horizontal Stirred Bed Reactors by Acoustic Emission Sensors. AIChE Journal.2009,55, (12):3099-3108.
    [3]C. J. Dittrich, S. M. P. Mutsers. On the residence time distribution in reactors with non-uniform velocity profiles:The horizontal stirred bed reactor for polypropylene product ion. Chemical Engineering Science.2007,62, (21):5777-5793.
    [4]J. L. Jezl, E. F. Peters, Winfield in Horizontal reactor for the vapor phase polymerization of monomers, Vol. U.S. Patent 4101289, Standard Oil Company a corporation of Indiana, Chicago, City,1978.
    [5]彭琳,杨维红.聚丙烯催化剂新进展.国内外石油化工快报.2005,35,(6):6-11.
    [6]孙可华.我国聚丙烯市场概况.国内外石油化工快报.2007,37,(11):27-28.
    [7]吴铭.世界丙烯市场供求趋紧.中国石油和化工.2008,4:27-28.
    [8]杨维红.聚丙烯发展近况(续一).国内外石油化工快报.2007,37,(1):1-6.
    [9]Y. J. Cao, J. D. Wang, W. Liu, Y. R. Yang. Wall sheeting diagnosis in f luidized beds based on chaos analysis of acoustic emission signals. Journal of Zhejiang University-Science A.2009,10, (9):1341-1349.
    [10]J. Nijenhuis, R. Korbee, J. Lensselink, J. H. A. Kiel, J. R. van Ommen. A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineering Science.2007,62, (1-2):644-654.
    [11]J. R. van Ommen, M.0. Coppens, C. M. van den Bleek, J. C. Schouten. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal.2000, 46, (11):2183-2197.
    [12]V. Venkatsubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri. A review of process fault detection and diagnosis Part Ⅰ:Quantitative model-based methods. Computers & Chemical Engineering.2003,27, (3):293-311.
    [13]F. Scala, R. Chirone. Characterization and early detection of bed agglomeration during the fluidized bed combustion of olive husk. Energy & Fuels.2006,20, (1): 120-132.
    [14]J. C. Schouten, C. M. van den Bleek. Monitoring the quality of fluidization using the short-term predictability of pressure fluctuations. AIChE Journal.1998, 44, (1):48-60.
    [15]J. R. van Ommen, J. C. Schouten, M.O. Coppens, C. M. van den Bleek. Monitoring fluidization by dynamic pressure analysis. Chemical Engineering & Technology.1999, 22, (9):773-775.
    [16]J. R. van Ommen, J. C. Schouten, C. M. van den Bleek. Monitoring fluidization dynamics for detection of changes in fluidized bed composition and operating conditions. Journal of Fluids Engineering-Transactions of the Asme.1999,121, (4): 887-894.
    [17]J. R. van Ommen, J. C. Schouten, M. L. M. vander Stappen, C. M. van den Bleek. Response characteristics of probe-transducer systems for pressure measurements in gas-solid fluidized beds:how to prevent pitfalls in dynamic pressure measurements. Powder Technology.1999,106, (3):199-218.
    [18]C. Hulet, J. R. Llinas, J. L. Selo, C. Briens, S. Thomas, A. Mouillet. Multivariate analysis of process signals for early detection of agglomeration in a gas phase fluidized bed for polyethylene. Chemical Engineering and Processing. 2008,47, (8):1224-1233.
    [19]C. L. Briens, L. A. Briens, E. Barthel, J. M. Le Blevec, A. Tedoldi, A. Margaritis. Detection of local fluidization characteristics using the V statistic. Powder Technology.1999,102, (1):95-103.
    [20]A. Gajewski. Investigation of the electrification of polypropylene particles during the fluidization process. Journal of Electrostatics.1985,17:289-298.
    [21]F. Wang, J. D. Wang, Y. R. Yang. Distribution of Electrostatic Potential in a Gas-Solid Fluidized Bed and Measurement of Bed Level. Industrial & Engineering Chemistry Research.2008,47, (23):9517-9526.
    [22]陈元迪,温龙.采用光纤一激光技术对循环流化床内气一固两相流的颗粒浓度和速度分布的…动工程1993,13,(5):55-58.
    [23]周游,郭奋.用光纤探头测定流化床中气泡的特性.北京化工学院学报.1990,17,(3):1-8.
    [24]周晨.放射线仪表在聚乙烯气相流化床反应器结块检测中的应用.石油化工自动化.2009,45,(2):61-64.
    [25]J. J. Zacca, J. A. Debling. Part icle population overheat ing phenomena in olef in polymerization reactors. Chemical Engineering Science.2001,56, (13):4029-4042.
    [26]J. J. Zacca, J. A. Debling, W. H. Ray. Reactor residence-time distribution effects on the multistage polymerization of olef ins.2. Polymer properties:Bimodal polypropylene and linear low-density polyethylene. Chemical Engineering Science. 1997,52, (12):1941-1967.
    [27]A. B. Gorbach, S. D. Naik, W. H. Ray. Dynamics and stability analysis of solid catalyzed gas-phase polymerization of olefins in continuous stirred bed reactors. Chemical Engineering Science.2000,55, (20):4461-4479.
    [28]N. P. Khare, B. Lucas, K. C. Seavey, Y. A. Liu, A. Sirohi, S. Ramanathan, S. Lingard, Y. H. Song, C. C. Chen. Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors. Industrial & Engineering Chemistry Research.2004,43, (4):884-900.
    [29]B. F. C. Laurent, J. Bridgewater, D. J. Parker. Mot ion in a particle bed agitated by a single blade. AIChE Journal.2000,46, (9):1723-1734.
    [30]B. F. C. Laurent, J. Bridgwater. Performance of single and six-bladed powder mixers. Chemical Engineering Science.2002,57, (10):1695-1709.
    [31]C. H. Lin, J. F. Stevens, B. S. Tovrog, P. M. Rose in Method and apparatus for minimizing polymer agglomerate or lump formation in a gas-phase polypropylene polymerization reactor, Vol. U. S. Patent 4921919, Amoco Corporation, City,1990.
    [32]J. Werther. Measurement techniques in fluidized beds. Powder Technology.1999, 102, (1):15-36.
    [33]J. R. van Ommen, R. F. Mudde. Measuring the Gas-Solids Distribution in Fluidized Beds-A Review. International Journal of Chemical Reactor Engineering.2008,6:
    [34]J. R. van Ommen, J. Nijenhuis, C. M. van den Bleek, M.0. Coppens. Four ways to introduce structure in fluidized bed reactors. Industrial & Engineering Chemistry Research.2007,46, (12):4236-4244.
    [35]M. Baerns. Effect of Interparticle Adhesive Forces on Fluidization of Fine Particles. Industrial & Engineering Chemistry Fundamentals.1966,5, (4):508-516.
    [36]G. Hendrickson. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chemical Engineering Science.2006,61, (4):1041-1064.
    [37]K. Albion, L. Briens, C. Briens, F. Berruti. Flow regime determination in horizontal pneumatic transport of fine powders using non-intrusive acoustic probes. Powder Technology.2007,172, (3):157-166.
    [38]K. Albion, L. Briens, C. Briens, F. Berruti, G. Book. Flow regime determination in upward inclined pneumatic transport of particulates using non-intrusive acoustic probes. Chemical Engineering and Processing.2007,46, (6):520-531.
    [39]M. Halstensen, P. de Bakker, K. H. Esbensen. Acoustic chemometric monitoring of an industrial granulation production process-a PAT feasibility study. Chemometrics and Intelligent Laboratory Systems.2006,84, (1-2):88-97.
    [40]S. Mylvaganam. Some applications of acoustic emission in particle science and technology. Particulate Science and Technology.2003,21, (3):293-301.
    [41]K. Naelapaa, P. Veski, J. G. Pedersen, D. Anov, P. Jorgensen, H. G. Kristensen, P. Bertelsen. Acoustic monitoring of a fluidized bed coating process. International Journal of Pharmaceutics.2007,332, (1-2):90-97.
    [42]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,[博士学位论文],浙江大学,2005:63-76.
    [43]X. J. Jiang, J. D. Wang, B. B. Jiang, Y. R. Yang, L. X. Hou. Study of the power spectrum of acoustic emission (AE) by accelerometers in fluidized beds. Industrial & Engineering Chemistry Research.2007,46, (21):6904-6909.
    [44]C. Diks, W. R. van Zwet, F. Takens, D. J. Detecting differences between delay vector distributions. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics.1996,53:2169-2176.
    [45]M. Roy, V. R. Kumar, B. D. Kulkarni, J. Sanderson, M. Rhodes, M. vander Stappen. Denoising algorithm using wavelet transform. AIChE Journal.1999,45, (11): 2461-2466.
    [46]H. Kumamoto, K. Ikenchi, K. Inoue, E. J. Henley. Application of Expert System Techniques to Fault-Diagnosis. Chemical Engineering Journal and the Biochemical Engineering Journal.1984,29, (1):1-9.
    [47]J. V. Kadam, W. Marquardt, B. Srinivasan, D. Bonvin. Optimal grade transition in industrial polymerization processes via NCO tracking. AIChE Journal.2007,53, (3):627-639.
    [48]N. Padhiyar, S. Bhartiya, R. D. Gudi. Optimal grade transition in polymerization reactors:A comparative case study. Industrial & Engineering Chemistry Research. 2006,45, (10):3583-3592.
    [49]蒋馥华,张萍.锌镀层稀土钝化处理及其在氯化钠溶液中的溶解.电镀与涂饰1999,18,(4):1-5.
    [50]许继辉,王昕.铝稀土钝化技术研究进展.材料开发与应用2008,23,(5):77-80.
    [51]颜莎,满瑞林,肖围,彭天兰.金属表面稀土钝化工艺的研究进展.河南化工.2009,2:4-7.
    [52]陈松,阳永荣,刘方,王靖岱.催化剂气相硫化研究及其化工工程问题讨论.石油化工.2005:824-826.
    [53]余存烨.环氧乙烷氧化反应器化学钝化处理.清洗世界2009,25,(5):14-18.
    [1]W. Zhang. A Review of Techniques for the Process Intensification of Fluidized Bed Reactors. Chinese Journal of Chemical Engineering.2009,17, (4):688-702.
    [2]R. J. Braham, A. T. Harris. Review of Major Design and Scale-up Considerations for Solar Photocatalytic Reactors. Industrial & Engineering Chemistry Research. 2009,48, (19):8890-8905.
    [3]J. R. van Ommen, R. F. Mudde. Measuring the Gas-Solids Distribution in Fluidized Beds-A Review. International Journal of Chemical Reactor Engineering.2008,6:R3.
    [4]M. Wormsbecker, T. Pugs ley, J. R. van Ommen, J. Nijenhuis, R. Mudde. Effect of Distributor Design on the Bottom Zone Hydrodynamics in a Fluidized Bed Dryer Using 1-D X-ray Densitometry Imaging. Industrial & Engineering Chemistry Research.2009, 48, (15):7004-7015.
    [5]K. Naelapaa, P. Veski, J. G. Pedersen, D. Anov, P. Jorgensen, H. G. Kristensen, P. Bertelsen. Acoustic monitoring of a fluidized bed coating process. International Journal of Pharmaceutics.2007,332, (1-2):90-97.
    [6]M. Bartels, W. G. Lin, J. Nijenhuis, F. Kapteijn, J. R. van Ommen. Agglomeration in fluidized beds at high temperatures:Mechanisms, detection and prevention. Progress in Energy and Combustion Science.2008,34, (5):633-666.
    [7]Y. J. Cao, J. D. Wang, W. Liu, Y. R. Yang. Wall sheeting diagnosis in fluidized beds based on chaos analysis of acoustic emission signals. Journal of Zhejiang University-Science A.2009,10, (9):1341-1349.
    [8]J. Nijenhuis, R. Korbee, J. Lensselink, J. H. A. Kiel, J. R. van Ommen. A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineering Science.2007,62, (1-2):644-654.
    [9]J. R. van Ommen, M.O. Coppens, C. M. van den Bleek, J. C. Schouten. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal.2000, 46, (11):2183-2197.
    [10]J. D. Wang, Y. J. Cao, X. J. Jiang, Y. R. Yang. Agglomeration Detection by Acoustic Emission (AE) Sensors in Fluidized Beds. Industrial & Engineering Chemistry Research.2009,48, (7):3466-3473.
    [11]Y. J. Cao, J. D. Wang, Y. J. He, W. Liu, Y. R. Yang. Agglomeration Detection Based on Attractor Comparison in Horizontal Stirred Bed Reactors by Acoustic Emission Sensors. AIChE Journal.2009,55, (12):3099-3108.
    [12]赵贵兵,陈纪忠,阳永荣.流化床压力波动混沌性质探讨.化工学报.2002,(06):655-659.
    [13]赵贵兵,顾丽莉,石炎福,余华瑞.散式流态化到聚式流态化的混沌识别.化工学报.2000,(04):468-474.
    [14]赵贵兵,石炎福,段文锋,余华瑞.从混沌时间序列同时计算关联维和Kolmogorov熵.计算物理.1999,(03):88-94.
    [15]宫小文,苗春兰,杨宝柱,宁凡河.UNIPOL气相法流化床聚乙烯工艺冷凝态技术最新进展.齐鲁石油化工.2002,(02):146-149.
    [16]侯琳熙,舒伟杰,王靖岱,阳永荣.基于声波信号混沌分析的气固流化床故障诊断.浙江大学学报(工学版).2007,(05):827-830.
    [17]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,[博士学位论文],浙江大学,2005:89-110.
    [18]曹翌佳,刘伟,王靖岱,阳永荣.基于吸引子比较法的卧式搅拌床反应器声发射故障诊断.化工学报.2009,(03):585-592.
    [19]E. P. Serrano, M. A. Fabio. Application of the wavelet transform to acoustic emission signals processing. Ieee Transactions on Signal Processing.1996,44, (5): 1270-1275.
    [20]任聪静,舒伟杰,郑卫华,侯琳熙,王靖岱,阳永荣.气固流化床反应器的多尺度分析方法研究.石油化工.2005:792-793.
    [21]任聪静,吴雪妹,王靖岱,蒋斌波.气固流化床声发射信号的多尺度解析.浙江大学学报:工学版.2008,42,(7):1255-1261.
    [22]C. A. van den Bleek, M.0. Coppens, J. C. Schouten. Application of chaos analysis to multiphase reactors. Chemical Engineering Science.2002,57, (22-23):4763-4778.
    [1]刘中民,陈国权.分子筛催化剂的失活与积炭.催化学报.1994,15,(4):301-303.
    [21宋健斐,魏耀东,时铭显.催化裂化装置沉降器内结焦物的基本特性分析及其形成过程的探讨.石油学报(石油加工).2006,(02):39-44.
    [3]P. Dejaifve, A. Auroux, P. C. Gravelle, J. C. Vedrine, Z. Gabelica, E. G. Derouane. Methanol Conversion on Acidic Zsm-5, Offretite, and Mordenite Zeolites-a Comparative-Study of the Formation and Stability of Coke Deposits. Journal of Catalysis.1981,70, (1):123-136.
    [4]闫平祥,刘植昌,高金森,徐春明,于春光,王殿芬.重油催化裂化工艺的新进展.当代化工.2004,(03):136-140.
    [5]魏耀东,宋健斐,张锴,孙国刚,时铭显.催化裂化装置沉降器内顶旋升气管外壁结焦的特性分析.石油化工设备技术.2005,(06):11-14.
    [6]K. Rajagopalan, A. W. Peters, G. C. Edwards. Influence of Zeol ite Particle-Size on Selectivity during Fluid Catalytic Cracking. Applied Catalysis.1986,23, (1): 69-99.
    [7]A. deLucas, P. Canizares, A. Duran, A. Carrero. Coke formation, location, nature and regeneration on dealuminated HZSM-5 type zeolites. Applied Catalysis a-General. 1997,156, (2):299-317.
    [8]X. H. Ren, M. Bertmer, S. Stapf, D. E. Demco, B. Blumich, C. Kern, A. Jess. Deactivation and regeneration of a naphtha reforming catalyst. Applied Catalysis a-General.2002,228, (1-2):39-52.
    [9]A. T. Aguayo, A. E. S. del Campo, A. G. Gayubo, A. Tarrio, J. Bilbao. Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology.1999,74, (4):315-321.
    [10]D. Chen, H. P. Rebo, K. Moljord, A. Holmen. The role of coke deposition in the conversion of methanol to olefins over SAPO-34. Catalyst Deactivation 1997.1997, 111:159-166.
    [11]Y. J. Jiang, J. Huang, V. R. R. Marthala, Y. S. Ooi, J. Weitkamp, M. Hunger. In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration. Microporous and Mesoporous Materials.2007,105, (1-2):132-139.
    [12]陈俊武.催化裂化工程与工艺.北京:中国石化出版社,2005:76-103.
    [13]白正伟.测定混合物组成及组分含量的热重分析法.分析测试学报.2000,(04):83-85.
    [14]H. K. Tonshoff, M. Jung, S. Mannel, W. Rietz. Using acoustic emission signals for monitoring of production processes. Ultrasonics.2000,37, (10):681-686.
    [15]S. Mylvaganam. Some applications of acoustic emission in particle science and technology. Particulate Science and Technology.2003,21, (3):293-301.
    [16]R. M. Belchamber, D. Betteridge, M. P. Collins, T. Lilley, C. Z. Marczewski, A. P. Wade. Quantitative Study of Acoustic-Emission from a Model Chemical Process. Analytical Chemistry.1986,58, (8):1873-1877.
    [17]D. Betteridge, M. T. Joslin, T. Lilley. Acoustic Emissions from Chemical-Reactions. Analytical Chemistry.1981,53, (7):1064-1073.
    [18]P. D. Wentzell, A. P. Wade. Chemical Acoustic-Emission Analysis in the Frequency-Domain. Analytical Chemistry.1989,61, (23):2638-2642.
    [19]K. Albion, L. Briens, C. Briens, F. Berruti, G. Book. Flow regime determinat ion in upward inclined pneumatic transport of particulates using non-intrusive acoustic probes. Chemical Engineering and Processing.2007,46, (6):520-531.
    [20]X. J. Jiang, J. D. Wang, B. B. Jiang, Y. R. Yang, L. X. Hou. Study of the power spectrum of acoustic emission (AE) by accelerometers in fluidized beds. Industrial & Engineering Chemistry Research.2007,46, (21):6904-6909.
    [21]C. J. Ren, X. J. Jiang, J. D. Wang, Y. R. Yang, X. H. Zhang. Determination of critical speed for complete solid suspension using acoustic emission method based on multiscale analysis in stirred tank. Industrial & Engineering Chemistry Research. 2008,47, (15):5323-5327.
    [22]A. Hakanen, E. Laine, H. Jalonen, K. Linsaari, J. Jokinen. Acoustic-Emission during Powder Compaction and Its Frequency Spectral-Analysis. Drug Development and Industrial Pharmacy.1993,19, (19):2539-2560.
    [23]J. Salonen, K. Salmi, A. Hakanen, E. Laine, K. Linsaari. Monitoring the acoustic activity of a pharmaceutical powder during rol ler compaction. International Journal of Pharmaceutics.1997,153, (2):257-261.
    [24]M. Whitaker, G. R. Baker, J. Westrup, P. A. Goulding, D. R. Rudd, R. M. Belchamber, M. P. Collins. Application of acoustic emission to the monitoring and end point determination of a high shear granulation process. International Journal of Pharmaceutics.2000,205, (1-2):79-91.
    [25]孙自强,顾幸生,俞金寿,党晓恒.连续催化重整反应器结焦含量软测量.华东理工大学学报.2001,(05):568-571.
    [26]P. B. Weisz, R. B. Goodwin. Combustion of Carbonaceous Deposits within Porous Catalyst Particles.2. Intrinsic Burning Rate. Journal of Catalysis.1966,6, (2): 227-235.
    [27]J. W. Hall, H. F. Rase. Carbonaceous Deposits on Silica-Alumina Catalyst. Industrial & Engineering Chemistry Process Design and Development.1963,2, (1): 25-32.
    [28]杨光华,莫伟坚.渣油催化裂化的物理化学模型.化学反应工程与工艺1991,7,(1):1-9.
    [29]J. R. van Ommen, M.O. Coppens, C. M. van den Bleek, J. C. Schouten. Early warning of agglomeration in fluidized beds by attractor comparison. AIChE Journal.2000, 46, (11):2183-2197.
    [30]侯琳熙,声波测量和流化床聚合反应器多尺度结构的研究,[博士学位论文],浙江大学,2005:63-89.
    [31]A. Savitzky, M. J. E. Golay. Smoothing+Differentiation of Data by Simpl if ied Least Squares Procedures. Analytical Chemistry.1964,36, (8):1627-1633.
    [32]K. H. Esbensen, M. Halstensen, T. T. Lied, A. Saudland, J. Svalestuen, S. de Silva, B. Hope. Acoustic chemometrics-from noise to information. Chemometries and Intelligent Laboratory Systems.1998,44, (1-2):61-76.
    [33]K. H. Esbensen, B. Hope, T. T. Lied, M. Halstensen, T. Cravermoen, K. Sundberg. Acoustic chemometrics for fluid flow quantifications-II:A small constriction will go a long way. Journal of Chemometrics.1999,13, (3-4):209-236.
    [34]X. M. Chen, D. Z. Chen. Measuring average particle size for fluidized bed reactors by employing acoustic emission signals and neural networks. Chemical Engineering & Technology.2008,31, (1):95-102.
    [35]R. Hou, A. Hunt, R. A. Williams. Acoustic monitoring of pipeline flows: particulate slurries. Powder Technology.1999,106, (1-2):30-36.
    [36]陈德钊.多元数据处理.北京:化学工业出版社,1998:124-142.
    [37]高炳军,董俊华,孙艳,张婷婷.带翅片焊接超声波导波杆在高温管道壁厚在线检测中的应用.压力容器2009,(11):54-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700