电子束辐照HDPE/EVA基纳米复合材料结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐照加工有着不受环境温度限制、穿透能力强和易于控制等多方面优势而广泛应用于工业、农业及医疗卫生等各个方面,已在交联线缆、橡胶硫化、泡沫塑料、表面固化、医疗用品消毒和食品辐照保藏等领域形成产业规模,并取得显著成效。在高分子科学领域中,聚烯烃在高能射线的作用下易被电离激发,生成大分子自由基,大分子自由基通过相互碰撞而引发交联反应,形成网状结构,这种交联网状结构可以有效地提高基体的力学性能。
     本文的主要研究内容是采用零维的富勒烯(C60)和氢氧化镁(Mg(OH)2)、一维的多壁碳纳米管(MWCNTs)、二维的有机蒙脱土(Clay)等不同维度的纳米粒子添加到高密度聚乙烯/乙烯-乙酸乙烯酯共聚物(HDPE/EVA)基体中,通过熔融共混法制备纳米复合材料,利用电子束对纳米复合材料进行辐照加工,对比研究辐照前后纳米复合材料的热学性能、燃烧性能、流变行为以及力学性能的变化,通过相关测试和表征手段证实不同纳米粒子在辐照作用下发生了结构改变,进一步揭示电子束辐照HDPE/EVA基纳米复合材料的结构与性能之间的相互关系。
     首先,通过熔融共混法制备了HDPE/EVA/C60纳米复合材料,考察C60对体系性能的影响。发现C60在低添加量(≤2 wt%)时即可大幅度地提高基体的热稳定性,尤其在空气中极大地推迟了基体的热氧化降解温度;在阻燃性能方面,可有效延长基体的点燃时间,显著降低基体燃烧的峰值热释放速率(PHRR),表明C60在低添加量时即可提高基体的阻燃性能。当体系辐照后,证实C60会捕捉基体辐照后产生的大分子自由基而形成“桥”连接的网络结构,这种特殊的网络结构可以使体系的热氧化降解温度、动态模量、玻璃化转变温度以及力学性能都有所提高,但辐照作用却对体系的阻燃性能有不利的影响。
     其次,通过熔融共混法制备了HDPE/EVA/MWCNTs纳米复合材料,考察MWCNTs对体系性能的影响。发现MWCNTs在低添加量(≤2 wt%)时也可大幅度地提高基体的热稳定性,同样在空气中极大地推迟基体的热氧化降解温度;在阻燃性能方面,虽然点燃时间有所缩短,却可以有效降低基体燃烧的PHRR值。MWCNTs被电子束辐照后,规整结构受到了一定破坏,但整体结构没有改变。辐照对体系提高热氧化降解温度起到积极的作用,辐照后基体产生交联结构同样提高了体系的动态模量、玻璃化转变温度以及力学性能。与HDPE/EVA/C60体系相似,辐照作用对基体的阻燃性能也同样产生了不利的影响。
     第三,通过熔融共混法制备了HDPE/EVA/Clay纳米复合材料,考察Clay对体系性能的影响。发现Clay在基体中呈现插层结构,在添加量增加时可以提高基体的热稳定性,尤其是可以极大地推迟基体的最大失重速率温度;在阻燃性能方面,Clay在低添加量时(1wt%)可延长基体的点燃时间,同时显著降低基体燃烧的PHRR值;但当添加量大于3wt%以后,PHRR值却逐渐升高。体系辐照后,Clay插层结构的层间距进一步扩大,扩大了层间距的Clay对体系阻燃性能的提高明显优于C60和MWCNTs体系。基体产生交联结构导致了体系的动态模量、玻璃化转变温度以及力学性能的提高。
     最后,通过熔融共混法制备了HDPE/EVA/Mg(OH)2复合材料,考察辐照剂量的改变对体系性能的影响。发现随着辐照剂量的增加,体系的交联密度不断增加,交联网络不断增强;增强的交联网络提高了基体的热稳定性,尤其是可以极大地推迟基体的最大质量损失温度;辐照作用使体系的PHRR值逐渐升高,但却可以大幅度地降低烟密度;同时,辐照对提高体系的熔融温度和熔融焓同样起到了积极的作用。
Irradiation technology is widely applied to industrial, agricultural, biomedical sectors due to its overwhelming advantages such as no resistance to temperature, strong penetration power and easy control. Currently, irradiation tenchnology has become industrial development in electrical wire and cable, rubber vulcanization, foamed plastics, surface curing, medical sterilization and food irradiation. Ionized by high energy irradiation in polyolefins, macro-radiacals can combine with each other to form a crosslinking network structure which can increase the mechanical properties effectively.
     The present dissertation focuses on the structure and properies of HDPE/EVA nanocomposites irradiated by high energy electron beam. Effect of the irradiation on thermal and mechanical properties, combustion and rheological behaviours of irradiated HDPE/EVA nanocomposites are compared with un-irradiated ones. Four kinds of nano-fillers, C6o, MWCNTs, Clay and Mg(OH)2, are employed into the HDPE/EVA blend, and various measurements and characterization are used to confirm the structural change of the irradiated nanocomposites.
     Firstly, the structure and properies of irradiated HDPE/EVA/C60 nanocomposites are studied. The results show that at very low loading (≤2 wt%), C6o could remarkably improve the thermal stability, especially postpone the temperature of the maximum mass loss rate (Tmax) in air atmosphere. Meanwhile, C60 could prolong the time to ignition (tign) and dramatically reduce the peak heat release rate (PHRR), which implies that at very low loading, C60 could reduce the flammability greatly. After irradiation, it was proved that the "bridge" structure, between C60 and HDPE/EVA blend, increases the thermal oxidation degradation, storage modulus, glass transition temperature and mechanical properties. However, the flame retardancy of irradiated HDPE/EVA/C60 nanocomposites decreased.
     Secondly, the structure and properies of irradiated HDPE/EVA/MWCNTs nanocomposites are studied. The results show that at very low loading (≤2 wt%), MWCNTs could remarkably improve the thermal stability, especially postpone the Tmax in air atmosphere. Meanwhile, MWCNTs could dramatically reduce the values of PHRR but shorten the tign. After irradiation, the structure of MWCNTs was slightly destroyed but the contour structure kept intact. The network structure in the irradiated HDPE/EVA/MWCNTs nanocomposites increases the thermal oxidation degradation, storage modulus, glass transition temperature and mechanical properties. The flame retardancy decreased, which is similar to the results of the irradiated HDPE/EVA/C60 nanocomposites.
     Thirdly, the structure and properies of irradiated HDPE/EVA/Clay nanocomposites are studied. The intercalated structure was formed in HDPE/EVA/Clay nanocomposites, which could remarkably improve the thermal stability and postpone the Tmax. Meanwhile, at very low loading (1 wt%), clay could prolong the tign and dramatically reduce the values of PHRR, but when the content of clay is higher than 3 wt%, the values of PHRR increase. After irradiation, the flammability property of irradiated HDPE/EVA/Clay nanocomposites is reduced due to the increased layer space, which is different from the results of the irradiated HDPE/EVA/C60 nanocomposites and irradiated HDPE/EVA/MWCNTs nanocomposites.
     Finally, the properies of irradiated HDPE/EVA/Mg(OH)2 composites are studied. The degree of crosslinking network is enhanced with increasing the irradiation dose. The network structure improves the thermal stability, the temperature of melting, the heat of melting and the glass transition temperature of irradiated HDPE/EVA/Mg(OH)2 composites and does favor to the smoke suppression.
引文
[1]幕内惠三,徐俊,孟永红,聚合物辐射加工 科学出版社:北京2003 p234.
    [2]斯沃罗,A.J.,陈文琇,贾海顺,包华影译,辐射化学导论.原子能出版社北京,1985;p 299.
    [3]宋伟强,邓刚,高分子材料辐照加工.化学工业出版社:北京,2008;p 357.
    [4]Pionteck, J.; Hu, J.; Pompe, G.; Albrecht, V.; Schulze, U.; Borsig, E., Characterisation of radiation behaviour of polyethylene/polymethacrylates interpenetrating polymer networks. Polymer 2000,41, (22),7915-7923.
    [5]Tretinnikov, O. N.; Ogata, S.; Ikada, Y., Surface crosslinking of polyethylene by electron beam irradiation in air. Polymer 1998,39, (24),6115-6120.
    [6]朱光明.聚已内酯的辐射交联与形状记忆效应研究.西北工业大学,西安,2003.
    [7]Bhattacharya, A., Radiation and industrial polymers. Progress in Polymer Science 2000,25, (3),371-401.
    [8]Wang, Z. Z.; Hu, Y.; Gui, Z.; Zong, R. W., Halogen-free flame retardation and silane crosslinking of polyethylenes. Polymer Testing 2003,22, (5),533-538.
    [9]A. Charlesby, S. H. P., Analysis of the Solubility Behaviour of Irradiated Polyethylene and Other Polymers Proceedings of the Royal Society of London. Series A 1959,249,367-386.
    [10]吴自强,王纲,高分子辐照交联技术的进展.化学建材2002,4,10-13.
    [11]罗延龄,赵振兴,高分子辐照交联技术及研究进展.高分子通报1999,12,88-99.
    [12]陈欣方,刘克静,唐敖庆,吉林大学学按1977,4,39-42.
    [13]孙家珍,Charlesby和陈-刘-唐关系式的适用性.辐射研究与辐射工艺学报1983,8.
    [14]张万喜,何天白,孙家珍,钱保功,聚合物辐射交联中溶胶分数与剂量间的关系通式.科学通报1986,3.
    [15]刘长海,杨慧丽,徐俊,聚合物强化辐照交联研究进展.高分通报1996,9,129-135.
    [16]涂春潮,齐暑华,周文英,武鹏,张翔宇,辐照交联热收缩聚乙烯的研究进展.现代塑料加工应用2005,17,(5),58-61.
    [17]Ratnam, C. T.; Abdullah, Z.; Ismail, H., Electron beam irradiation of EVA/ENR blend. Polymer-Plastics Technology and Engineering 2006,45, (4),555-559.
    [18]Das, N. C.; Chaki, T. K.; Khastgir, D., Effect of filler treatment and crosslinking on mechanical and dynamic mechanical properties and electrical conductivity of carbon black-filled ethylene-vinyl acetate copolymer composites. Journal of Applied Polymer Science 2003,90, (8),2073-2082.
    [19]Dadbin, S.; Frounchi, M.; Saeid, M. H.; Gangi, F., Molecular structure and physical properties of E-beam crosslinked low-density polyethylene for wire and cable insulation applications. Journal of Applied Polymer Science 2002,86, (8),1959-1969.
    [20]周积春,包文生,原子能科学技术1980,3,301-308.
    [21]孙家珍,朱相林,张月芳,含氟聚合物的辐射交联Ⅰ、氟塑料-46的辐射交联反应规律.辐射研究与辐射工艺学报1986,4,(3),30-34.
    [22]Shukushima, S.; Hayami, H.; Ito, T.; Nishimoto, S., Modification of radiation cross-linked polypropylene. Radiation Physics and Chemistry 2001,60, (4-5),489-493.
    [23]刘振波,凌维有,辐照交联聚乙烯热收缩材料的性能和应用.塑料科技1987,1,8-12.
    [24]朱光明,助剂对聚氯乙烯辐照改性的影响.中国塑料1992,16,(4),35-39.
    [25]Ratnam, C. T.; Nasir, M.; Baharin, A.; Zaman, K., The effect of electron beam irradiation on the tensile and dynamic mechanical properties of epoxidized natural rubber. European Polymer Journal 2001,37, (8),1667-1676.
    [26]Ratnam, C. T.; Nasir, M.; Baharin, A.; Zaman, K., Effect of electron-beam irradiation on poly(vinyl chloride)/epoxidized natural rubber blend:dynamic mechanical analysis. Polymer International 2001,50, (5),503-508.
    [27]K Sano, H. I., Radiation cross-linked polyolefin-insulated wire. Radiation Physics and Chemistry 1977,25, (4-6),849-854.
    [28]张志勇,辐照交联阻燃聚乙烯绝缘配方的研究.电线电缆1990,5,33-36.
    [29]严永昌,张贤灵,125℃辐照交联阻燃聚烯烃绝缘料及电线的研究.电线电缆1991,6,39-41.
    [30]Spenadel, L., Radiation Crosslinking of Polymer Blends of Elastomers and Its Industrial Applications. Industrial Irradiation Technology 1985,3, (1),7-10.
    [31]朱光明,施永勤,郭验收,柔软热收缩材料的研制.特种橡胶制品1995,15,(6),1-3.
    [32]Lian, T. J.; Xu, W.; Liu, P. B.; Ren, H. S., Effect of electron beam irradiation on compatibility of HDPE/PA6 blend. Polymer-Plastics Technology and Engineering 2004, 43,(1),31-40.
    [33]Ali, Z. I., Effect of electron beam irradiation and vinyl acetate content on the physicochemical properties of LDPE/EVA blends. Journal of Applied Polymer Science 2007,104, (5),2886-2895.
    [34]Gilman, J. W.; Kashiwagi, T.; Lichtenhan, J. D., Nanocomposites:A revolutionary new flame retardant approach. Sampe Journal 1997,33, (4),40-46.
    [35]Kumar, A. P.; Depan, D.; Tomer, N. S.; Singh, R. P., Nanoscale particles for polymer degradation and stabilization-Trends and future perspectives. Progress in Polymer Science 2009,34, (6),479-515.
    [36]黄锐,王瑞,李忠明,纳米塑料-聚合物/纳米无机物复合材料研制,应用与进展.中国轻工业出版社:北京,2002;p 339.
    [37]Costache, M. C.; Heidecker, M. J.; Manias, E.; Camino, G.; Frache, A.; Beyer, G.; Gupta, R. K.; Wilkie, C. A., The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer 2007,48, (22),6532-6545.
    [38]任杰,刘艳,唐小真,聚合物基有机无机纳米复合材料的制备和性能.建筑材料学报2004,7,(1),58-65.
    [39]朱光明,王汝敏,钱德丰,无机纳米粒子/聚合物复合材料研究进展.材料导按2003,17,(2).
    [40]Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E., C-60 Buckminsterfullerene. Nature 1985,318, (6042),162-163.
    [41]Curl, R. F.; Smalley, R. E., Fullerenes. Scientific American 1991,265, (4),54-&.
    [42]Kratschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R., Solid C-60 - a New Form of Carbon. Nature 1990,347, (6291),354-358.
    [43]朱宏伟,吴德海,徐才录,碳纳术管.机械出版社:北京,2003;p 359.
    [44]Krusic, P. J.; Wasserman, E.; Keizer, P. N.; Morton, J. R.; Preston, K. F., Radical Reactions of C60. Science 1991,254, (5035),1183-1185.
    [45]Boris Tumanskil, O. K., Radical reactions of fullerenes and their derivatives. Kluwer-Springer:Dordrecht,2001; p 192
    [46]Troitskii, B. B.; Troitskaya, L. S.; Dmitriev, A. A.; Yakhnov, A. S., Inhibition of thermo-oxidative degradation of poly(methyl methacrylate) and polystyrene by C-60. European Polymer Journal 2000,36, (5),1073-1084.
    [47]Zeinalov, E. B.; Kossmehl, G., Fullerene C-60 as an antioxidant for polymers. Polymer Degradation and Stability 2001,71, (2),197-202.
    [48]Zuev, V. V.; Bertini, F.; Audisio, G., Fullerene C-60 as stabiliser for acrylic polymers. Polymer Degradation and Stability 2005,90, (1),28-33.
    [49]Zaitseva, I.; Yevlampieva, N.; Melenevskaja, E.; Chubarova, E.; Rjumtsev, E., C-60 degradation effect on polystyrene under the fullerene-polymer interaction. Fullerenes Nanotubes and Carbon Nanostructures 2006,14, (2-3),457-462.
    [50]Wang, L. Y.; Anantharaj, V.; Chu, C. C.; Chiang, L. Y., Thermal stability of fullerene-linked oligoaniline star macromolecules. Synthetic Metals 1999,101, (1-3), 850-851.
    [51]Ferraris, J. P.; Yassar, A.; Loveday, D. C.; Hmyene, M., Grafting of buckminsterfullerene onto polythiophene:novel intramolecular donor-acceptor polymers. Optical Materials 1998,9, (1-4),34-42.
    [52]Tajima, Y.; Tezuka, Y.; Yajima, H.; Ishii, T.; Takeuchi, K., Photo-crosslinking polymers by fullerene. Polymer 1997,38, (20),5255-5257.
    [53]Zhogova, K. B.; Davydov, I. A.; Punin, V. T.; Troitskii, B. B.; Domvachiev, G. A., Investigation of fullerene C-60 effect on properties of polymethylmethacrylate exposed to ionizing radiation. European Polymer Journal 2005,41, (6),1260-1264.
    [54]Wang, C. C.; Guo, Z. X.; Fu, S. K.; Wu, W.; Zhu, D. B., Polymers containing fullerene or carbon nanotube structures. Progress in Polymer Science 2004,29, (11),1079-1141.
    [55]Nierengarten, J. F.; Guttierez-Nava, M.; Zhang, S.; Masson, P.; Oswald, L.; Bourgogne, C.; Rio, Y.; Accorsi, G.; Armaroli, N.; Setayesh, S., Fullerene-containing macromolecules for materials science applications. Carbon 2004,42, (5-6),1077-1083.
    [56]Spanggaard, H.; Krebs, F. C., A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells 2004,83, (2-3),125-146.
    [57]Umeda, T.; Shirakawa, T.; Fujii, A.; Yoshino, K., Improvement of characteristics of organic photovoltaic devices composed of conducting polymer-fullerene systems by introduction of ZnO layer. Japanese Journal of Applied Physics Part 2-Letters 2003,42, (12A), L1475-L1477.
    [58]Loutfy, R. O.; Wexler, E. M., Novel applications of fullerenes in thermal management systems. Fullerenes Nanotubes and Carbon Nanostructures 2004,12, (1-2),471-476.
    [59]Fang, Z. P.; Song, P. A.; Tong, L. F.; Guo, Z. H., Thermal degradation and flame retardancy of polypropylene/C-60 nanocomposites. Thermochimica Acta 2008,473, (1-2),106-108.
    [60]Song, P.; Zhu, Y.; Tong, L. F.; Fang, Z. P., C-60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology 2008,19, (22),
    [61]Pabin-Szafko, B.; Wisniewska, E.; Szafko, J., Carbon nanotubes and fullerene in the solution polymerisation of acrylonitrile. European Polymer Journal 2006,42, (7), 1516-1520.
    [62]Cataldo, F.; Ursini, O.; Angelini, G., Radiation-cured polyisoprene/C-60 fullerene nanocomposite. Part 1:Synthesis in hexane and in toluene. Radiation Physics and Chemistry 2008,77, (6),734-741.
    [63]Cataldo, F.; Ursini, O.; Angelini, G., Radiation-cured polyisoprene/C-60 fullerene nanocomposite Part 2:Synthesis in decalin. Radiation Physics and Chemistry 2008,77, (6), 742-750.
    [64]Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991,354, (6348),56-58.
    [65]Du, F. M.; Scogna, R. C.; Zhou, W.; Brand, S.; Fischer, J. E.; Winey, K.1., Nanotube networks in polymer nanocomposites:Rheology and electrical conductivity. Macromolecules 2004,37, (24),9048-9055.
    [66]McNally, T.; Potschke, P.; Halley, P.; Murphy, M.; Martin, D.; Bell, S. E. J.; Brennan, G. P.; Bein, D.; Lemoine, P.; Quinn, J. P., Polyethylene multiwalled carbon nanotube composites. Polymer 2005,46, (19),8222-8232.
    [67]Bredeau, S.; Peeterbroeck, S.; Bonduel, D.; Alexandre, M.; Dubois, P., From carbon nanotube coatings to high-performance polymer nanocomposites. Polymer International 2008,57, (4),547-553.
    [68]Breuer, O.; Sundararaj, U., Big returns from small fibers:A review of polymer/carbon nanotube composites. Polymer Composites 2004,25, (6),630-645.
    [69]Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M., Chemistry of carbon nanotubes. Chemical Reviews 2006,106, (3),1105-1136.
    [70]Wang, B.; Sun, G. P.; He, X. F.; Liu, J. J., The effect of multiwall carbon nanotube on the crystallization, morphology, and rheological properties of nylon 1010 nanocomposites. Polymer Engineering and Science 2007,47, (10),1610-1620.
    [71]Cipiriano, B. H.; Kashiwagi, T.; Raghavan, S. R.; Yang, Y.; Grulke, E. A.; Yamamoto, K.; Shields, J. R.; Douglas, J. F., Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 2007,48, (20),6086-6096.
    [72]Moniruzzaman, M.; Winey, K. I., Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006,39, (16),5194-5205.
    [73]Beyer, G., Short communication:Carbon nanotubes as flame retardants for polymers. Fire and Materials 2002,26, (6),291-293.
    [74]Beyer, G., Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate. Polymers for Advanced Technologies 2006,17, (4), 218-225.
    [75]Schartel, B.; Potschke, P.; Knoll, U.; Abdel-Goad, M., Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. European Polymer Journal 2005,41, (5), 1061-1070.
    [76]Guo, J. X.; Li, Y. G.; Wu, S. W.; Li, W. X., The effects of gamma-irradiation dose on chemical modification of multi-walled carbon nanotubes. Nanotechnology 2005,16, (10), 2385-2388.
    [77]Chen, S. M.; Wu, G. Z.; Liu, Y. D.; Long, D. W., Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. Macromolecules 2006, 39,(1),330-334.
    [78]Xu, H. X.; Wang, X. B.; Zhang, Y. F.; Liu, S. Y, Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under Co-60 gamma-ray irradiation. Chemistry of Materials 2006,18, (13),2929-2934.
    [79]Rodriguez-Manzo, J. A.; Banhart, F., Creation of Individual Vacancies in Carbon Nanotubes by Using an Electron Beam of 1 angstrom Diameter. Nano Letters 2009,9, (6), 2285-2289.
    [80]Li, J. X.; Banhart, F., The engineering of hot carbon nanotubes with a focused electron beam. Nano Letters 2004,4, (6),1143-1146.
    [81]Krasheninnikov, A. V.; Banhart, F., Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials 2007,6, (10),723-733.
    [82]Banhart, F., The formation of a connection between carbon nanotubes in an electron beam. Nano Letters 2001,1, (6),329-332.
    [83]Lee, K. Y.; Kim, K. Y., Co-60 gamma-ray irradiation effect and degradation behaviors of a carbon nanotube and poly(ethylene-co-vinyl acetate) nanocomposites. Polymer Degradation and Stability 2008,93, (7),1290-1299.
    [84]Peeterbroeck, S.; Alexandre, M.; Nagy, J. B.; Pirlot, C.; Fonseca, A.; Moreau, N.; Philippin, G.; Delhalle, J.; Mekhalif, Z.; Sporken, R.; Beyer, G.; Dubois, P., Polymer-layered silicate-carbon nanotube nanocomposites:unique nanofiller synergistic effect. Composites Science and Technology 2004,64, (15),2317-2323.
    [85]Alexandre, M.; Dubois, P., Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials. Materials Science & Engineering R-Reports 2000,28, (1-2),1-63.
    [86]Ray, S. S.; Okamoto, M., Polymer/layered silicate nanocomposites:a review from preparation to processing. Progress in Polymer Science 2003,28, (11),1539-1641.
    [87]Morgan, A. B., Flame retarded polymer layered silicate nanocomposites:a review of commercial and open literature systems. Polymers for Advanced Technologies 2006,17, (4),206-217.
    [88]Okada, A.; Usuki, A., Twenty years of polymer-clay nanocomposites. Macromolecular Materials and Engineering 2006,291, (12),1449-1476.
    [89]Gilman, J. W., Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science 1999,15, (1-2),31-49.
    [90]Beyer, G., Filler blend of carbon nanotubes and organoclays with improved char as a new flame retardant system for polymers and cable applications. Fire and Materials 2005,29, (2),61-69.
    [91]Zhang, J. G.; Wilkie, C. A., Fire retardancy of polyethylene-alumina trihydrate containing clay as a synergist. Polymers for Advanced Technologies 2005,16, (7),549-553.
    [92]Zanetti, M.; Camino, G.; Canavese, D.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A., Fire retardant halogen-antimony-clay synergism in polypropylene layered silicate nanocomposites. Chemistry of Materials 2002,14, (1),189-193.
    [93]Marosfoi, B. B.; Marosi, G. J.; Szep, A.; Anna, P.; Keszei, S.; Nagy, B. J.; Martvona, H.; Sajo, I. E., Complex activity of clay and CNT particles in flame retarded EVA copolymer. Polymers for Advanced Technologies 2006,17, (4),255-262.
    [94]Pavlidou, S., Papaspyridesb,C.D., A review on polymer-layered silicate nanocomposites. Progress in Polymer Science 2008,33 1119-1198.
    [95]Zhang, W.; Zeng, J.; Liu, L.; Fang, Y, A novel property of styrene-butadiene-styrene/clay nanocomposites:radiation resistance. Journal of Materials Chemistry 2004,14, (2), 209-213.
    [96]Lu, H. D.; Hu, Y.; Kong, Q. H.; Chen, Z. Y.; Fan, W. C., Gamma irradiation of high density poly(ethylene)/ethylene-vinyl acetate/clay nanocomposites:possible mechanism of the influence of clay on irradiated nanocomposites. Polymers for Advanced Technologies 2005, 16, (9),688-692.
    [97]Lu, H. D.; Hu, Y.; Kong, Q. H.; Cai, Y. B.; Chen, Z. Y.; Fan, W. C., Influence of gamma irradiation on high density polyethylene/ethylene-vinyl acetate/clay nanocomposites. Polymers for Advanced Technologies 2004,15, (10),601-605.
    [98]Lu, H. D.; Hu, Y.; Xiao, J. F.; Kong, Q. H.; Chen, Z. Y; Fan, W. C., The influence of irradiation on morphology evolution and flammability properties of maleated polyethylene/clay nanocomposite. Materials Letters 2005,59, (6),648-651.
    [99]Wang, T.; Wang, M. Z.; Zhang, Z. C.; Ge, X. W.; Fang, Y, Grafting of polymers from clay nanoparticles via high-dose gamma-ray irradiation. Materials Letters 2007,61, (17), 3723-3727.
    [100]Gheysari, D.; Behjat, A., The effect of high-energy electron beam irradiation and content of ATH upon mechanical and thermal properties of EVA copolymer. European Polymer Journal 2002,38, (6),1087-1093.
    [101]Li, Z. Z.; Qu, B. J., Effects of gamma irradiation on the properties of flame-retardant EVM/magnesium hydroxide blends. Radiation Physics and Chemistry 2004,69, (2), 137-141.
    [102]Jiao, C. M.; Wang, Z. Z.; Chen, X. L.; Yu, B. Y.; Hu, Y., Irradiation crosslinking and halogen-free flame retardation of EVA using hydrotalcite and red phosphorus. Radiation Physics and Chemistry 2006,75, (5),557-563.
    [103]Liu H.; Tong L. F.; Fang Z. P.; Wang Y C.; Alkadasi. N. A. N., Effects of high-energy electron beam irradiation on the properties of flame-retardant HDPE/EVA/Mg(OH)2 composites. Polymer-Plastics Technology and Engineering 2008.
    [104]Zhu Airong, C. X., The Electron-beam irradiation Cross-linking and Modifying of High Density Polyethylene Insulation. In The 6th Intemational Conference on Properties and Applications of Dielectric Materials, Xi'an, China,2000.
    [105]Liu H.; Alkadasi. N. A. N.; Zhu Y; Tong L. F.; Fang Z. P.; Wang Y C., Electron beam irradiated HDPE/EVA/Mg(OH)2 composites for flame-retardant electric cables. Frontiers of Materials Science in China 2008.
    [106]Michael A. Barnes, P. J. B., Marcelo M. Hirschler, Alister F. Matheson, Thomas J. O'Neill, A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part I Tests on Materials and Insulated Wires. Fire and Materials 1996,20, (1),1-16.
    [107]Michael A. Barnes, P. J. B., Marcelo M. Hirschler, Alister F. Matheson, Thomas J. O'Neill, A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part II Tests on Cable. Fire and Materials 1996,20, (1), 17-37.
    [108]Basfar, A. A., Flammability of radiation cross-linked low density polyethylene as an insulating material for wire and cable. Radiation Physics and Chemistry 2002,63, (3-6), 505-508.
    [109]Karaivanona, M. S.; Gjurova, K. M., Non-halogen-containing flame-retardant ethylene-propylene copolymer compositions for cable insulation with nitrogen- and sulfur-containing fire retardants. Journal of Applied Polymer Science 1997,63, (5), 581-588.
    [110]Carpentier, F.; Bourbigot, S.; Le Bras, M.; Delobel, R.; Foulon, M., Charring of fire retarded ethylene vinyl acetate copolymer - magnesium hydroxide/zinc borate formulations. Polymer Degradation and Stability 2000,69, (1),83-92.
    [111]Wang, Z. Z.; Qu, B. J.; Fan, W. C.; Huang, P., Combustion characteristics of halogen-free flame-retarded polyethylene containing magnesium hydroxide and some synergists. Journal of Applied Polymer Science 2001,81,(1),206-214.
    [112]Lv, J.; Qiu, L. Z.; Qu, B. J., Controlled synthesis of magnesium hydroxide nanoparticles with different morphological structures and related properties in flame retardant ethylene-vinyl acetate blends. Nanotechnology 2004,15, (11),1576-1581.
    [113]Huang, H. H.; Tian, M.; Liu, L.; He, Z. H.; Chen, Z. Q.; Zhang, L. Q., Effects of silicon additive as synergists of Mg(OH)2 on the flammability of ethylene vinyl acetate copolymer. Journal of Applied Polymer Science 2006,99, (6),3203-3209.
    [114]Lv, J. P.; Liu, W. H., Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus. Journal of Applied Polymer Science 2007,105, (2),333-340.
    [115]Tange, L.; Drohmann, D., Environmental issues related to end-of-life options of plastics containing brominated flame retardants. Fire and Materials 2004,28, (5),403-410.
    [116]Basfar, A. A., Flame retardancy of radiation cross-linked poly(vinyl chloride) (PVC) used as an insulating material for wire and cable. Polymer Degradation and Stability 2002,77, (2),221-226.
    [117]Levchik, S. V.; Weil, E. D., Overview of the recent literature on flame retardancy and smoke suppression in PVC. Polymers for Advanced Technologies 2005,16, (10),707-716.
    [118]Bao, Y. Z.; Huang, Z. M.; Li, S. X.; Weng, Z. X., Thermal stability, smoke emission and mechanical properties of poly(vinyl chloride)/hydrotalcite nanocomposites. Polymer Degradation and Stability 2008,93, (2),448-455.
    [119]Rothon, R. N.; Hornsby, P. R., Flame retardant effects of magnesium hydroxide. Polymer Degradation and Stability 1996,54, (2-3),383-385.
    [120]Sain, M.; Park, S. H.; Suhara, F.; Law, S., Flame retardant and mechanical properties of natural fibre-PP composites containing magnesium hydroxide. Polymer Degradation and Stability 2004,83, (2),363-367.
    [121]Hippi, U.; Mattila, J.; Korhonen, M.; Seppala, J., Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes. Polymer 2003,44, (4), 1193-1201.
    [122]Ulutan, S.; Gilbert, M., Mechanical properties of HDPE/magnesium hydroxide composites. Journal of Materials Science 2000,35, (9),2115-2120.
    [123]Gallina, G.; Bravin, E.; Badalucco, C.; Audisio, G.; Armanini, M.; De Chirico, A.; Provasoli, F., Application of cone calorimeter for the assessment of class of flame retardants for polypropylene. Fire and Materials 1998,22, (1),15-18.
    [124]Morgan, A. B.; Bundy, M., Cone calorimeter analysis of UL-94 V-rated plastics. Fire and Materials 2007,31, (4),257-283.
    [125]Zanetti, M.; Camino, G.; Reichert, P.; Mulhaupt, R., Thermal behaviour of poly(propylene) layered silicate nanocomposites. Macromolecular Rapid Communications 2001,22, (3), 176-180.
    [126]Kashiwagi, T.; Grulke, E.; Hilding, J.; Harris, R.; Awad, W.; Douglas, J., Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications 2002,23, (13),761-765.
    [127]Jia, S. J.; Zhang, Z. C.; Wang, Z. Z.; Zhang, X. F.; Du, Z. W., A study of gamma-radiation-crosslinked HDPE/EPDM composites as flame retardants. Polymer International 2005,54, (2),320-326.
    [128]Kashiwagi, T.; Du, F. M.; Douglas, J. F.; Winey, K. I.; Harris, R. H.; Shields, J. R., Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 2005,4, (12),928-933.
    [129]Kashiwagi, T.; Harris, R. H.; Zhang, X.; Briber, R. M.; Cipriano, B. H.; Raghavan, S. R.; Awad, W. H.; Shields, J. R., Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 2004,45, (3),881-891.
    [130]Wu, Z. C.; Jelski, D. A.; George, T. F., Vibrational Motions of Buckminsterfullerene. Chemical Physics Letters 1987,137, (3),291-294.
    [131]Kratschmer, W.; Fostiropoulos, K.; Huffman, D. R., The Infrared and Ultraviolet-Absorption Spectra of Laboratory-Produced Carbon Dust-Evidence for the Presence of the C-60 Molecule. Chemical Physics Letters 1990,170, (2-3),167-170.
    [132]Weeks, D. E.; Harter, W. G., Rotation Vibration-Spectra of Icosahedral Molecules.2. Icosahedral Symmetry, Vibrational Eigenfrequencies, and Normal-Modes of Buckminsterfullerene. Journal of Chemical Physics 1989,90, (9),4744-4771.
    [133]曹艳霞,杜淼,郑强,粒子填充聚合物的特征粘弹行为.高分子材料科学与工程2003,19.17-20.
    [134]卢红斌,杨玉良,填充聚合物熔体的流变学.高分子通按2001,6,18-26.
    [135]郑强,杨碧波,吴刚,聚甲基丙烯酸甲酯/聚(苯乙烯-马来酸酐)共混体系相分离的流变学行为.高等学校化学学报1999,20,1483-1490.
    [136]郑强,赵铁军,粒子填充HDPE复合体系动态流变行为研究.材料研究学按1998,12,225-231.
    [137]Liu H.; Fang. Z. P.; Peng M.; Shen L.; Wang Y. C., The effects of irradiation crosslinking on the rheological and thermal properties of the HDPE/EVA/magnesium hydroxide composites. Radiation Physics and Chemistry 2009,78, (11),922-926.
    [138]Peeterbroeck, S.; Laoutid, F.; Taulemesse, J. M.; Monteverde, T.; Lopez-Cuesta, J. M.; Nagy, J. B.; Alexandre, M.; Dubois, P., Mechanical properties and flame-retardant behavior of ethylene vinyl acetate/high-density polyethylene coated carbon nanotube nanocomposites. Advanced Functional Materials 2007,17, (15),2787-2791.
    [139]Kashiwagi, T.; Grulke, E.; Hilding, J.; Groth, K.; Harris, R.; Butler, K.; Shields, J.; Kharchenko, S.; Douglas, J., Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 2004,45, (12),4227-4239.
    [140]Haggenmueller, R.; Guthy, C.; Lukes, J. R.; Fischer, J. E.; Winey, K. I., Single wall carbon nanotube/polyethylene nanocomposites:Thermal and electrical conductivity. Macromolecules 2007,40, (7),2417-2421.
    [141]Peeterbroeck, S.; Laoutid, F.; Swoboda, B.; Lopez-Cuesta, J. M.; Moreau, N.; Nagy, J. B.; Alexandre, M.; Dubois, P., How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites? Macromolecular Rapid Communications 2007,28, (3),260-264.
    [142]Maria R. Nobile, G. P. S., Olga Valentino, Melanie Morcom, Rheological and Structure Investigation of Melt Mixed Multi-Walled Carbon Nanotube/PE Composites. Macromolecular Symposia 2007,247, (1),78-87.
    [143]Kashiwagi, T.; Du, F. M.; Winey, K. I.; Groth, K. A.; Shields, J. R.; Bellayer, S. P.; Kim, H.; Douglas, J. F., Flammability properties of polymer nanocomposites with single-walled carbon nanotubes:effects of nanotube dispersion and concentration. Polymer 2005,46, (2), 471-481.
    [144]Bartholmai, M.; Schartel, B., Layered silicate polymer nanocomposites:new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polymers for Advanced Technologies 2004,15, (7),355-364.
    [145]Zanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G., Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chemistry of Materials 2002,14,(2),881-887.
    [146]Chuang, T. H.; Guo, W. J.; Cheng, K. C.; Chen, S. W.; Wang, H. T.; Yen, Y. Y., Thermal properties and flammability of ethylene-vinyl acetate copolymer/montmorillonite/polyethylene nanocomposites with flame retardants. Journal of Polymer Research-Taiwan 2004,11, (3),169-174.
    [147]Qin, H. L.; Zhang, S. M.; Zhao, C. G.; Hu, G. J.; Yang, M. S., Flame retardant mechanism of polymer/clay nanocomposites based on polypropylene. Polymer 2005,46, (19), 8386-8395.
    [148]Nowicki, A.; Przybytniak, G.; Kornacka, E.; Mirkowski, K.; Zimek, Z., Radiation-induced modification of montmorillonite used as a filler in PP composite. Radiation Physics and Chemistry 2007,76, (5),893-900.
    [149]Solomon, M. J.; Almusallam, A. S.; Seefeldt, K. F.; Somwangthanaroj, A.; Varadan, P., Rheology of polypropylene/clay hybrid materials. Macromolecules 2001,34, (6), 1864-1872.
    [150]Weil, E. A.; Levchik, S. V., Flame retardants in commercial use or development for polyolefins. Journal of Fire Sciences 2008,26, (1),5-43.
    [151]Z.Fang, C. X., X.Bai, Crosslinking modification of highly filled polyethylene/Al(OH)3 composites. China Plastics 1998,2,49-51.
    [152]Zhengping Fang, Q. H., Influence of interfacial adhesion on stress-strain properties of highly filled polyethylene. Die Angewandte Makromolekulare Chemie 1999,265,1-4.
    [153]Mateev, M.; Karageorgiev, S., The effect of electron beam irradiation and content of EVA upon the gel-forming processes in LDPE-EVA films. Radiation Physics and Chemistry 1998,51, (2),205-206.
    [154]Camino, G.; Sgobbi, R.; Zaopo, A.; Colombier, S.; Scelza, C., Investigation of flame retardancy in EVA. Fire and Materials 2000,24, (2),85-90.
    [155]Allen, N. S.; Edge, M.; Rodriguez, M.; Liauw, C. M.; Fontan, E., Aspects of the thermal oxidation of ethylene vinyl acetate copolymer. Polymer Degradation and Stability 2000, 68, (3),363-371.
    [156]朱爱荣,曹晓珑,柳俊岭,辐照交联聚乙烯结晶形态的研究.绝缘材料 2005,4,27-31.
    [157]Starnes, W. H.; Pike, R. D.; Cole, J. R.; Doyal, A. S.; Kimlin, E. J.; Lee, J. T.; Murray, P. J.; Quinlan, R. A.; Zhang, J., Cone calorimetric study of copper-promoted smoke suppression and fire retardance of poly(vinyl chloride). Polymer Degradation and Stability 2003,82, (1),15-24.
    [158]Li, B., A study of the thermal decomposition and smoke suppression of poly(vinyl chloride) treated with metal oxides using a cone calorimeter at a high incident heat flux. Polymer Degradation and Stability 2002,78, (2),349-356.
    [159]Kim, S., Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene. Journal of Polymer Science Part B-Polymer Physics 2003,41, (9),936-944.
    [160]Nazare, S.; Kandola, B. K.; Horrocks, A. R., Smoke, CO, and CO2 measurements and evaluation using different fire testing techniques for flame retardant unsaturated polyester resin formulations. Journal of Fire Sciences 2008,26, (3),215-242.
    [161]张军,纪奎江,夏延致,聚合物燃烧与阻燃技术.化学工业出版社:北京,2005;p 491.
    [162]Bryant, R. A.; Mulholland, G. W., A guide to characterizing heat release rate measurement uncertainty for full-scale fire tests. Fire and Materials 2008,32, (3),121-139.
    [163]Krause, B.; Voigt, D.; Haussler, L.; Auhl, D.; Munstedt, H., Characterization of electron beam irradiated polypropylene:Influence of irradiation temperature on molecular and rheological properties. Journal of Applied Polymer Science 2006,100, (4),2770-2780.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700