利用ASE光源实现的光学双稳性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光学双稳态(Optical Bistability,简称为OB)是研究具有反馈的非线性光学系统的稳态和动态行为的光学前沿课题。由于光学双稳器件能直接处理光信号,并具有开关时间短、并行处理信号等优点,所以在高速光纤通信、光存储、高速光开关、光信息处理、激光强度稳定和光学双稳传感中具有潜在的应用前景,因此深入开展光学双稳态效应的研究具有十分重要的意义。
     随着可调谐光源的深入研究,频域光学双稳性较之强度型光学双稳性具有更广阔的应用领域,受到更多的关注。本课题利用非相干的ASE(Amplified Spontaneous Emission)宽带光源作为双稳器件的光源,结合扫描光纤法布里-珀罗(Fiber Fabry-Perot,简称FFP)滤波器进行波长选择,成功的实现了光电混合型频域光学双稳运转。要实现双稳态运转,需要满足两个条件,一个是非线性光调制,本实验用光纤布喇格光栅(Fiber Bragg Grating,简称FBG)作为非线性调制器;另一个是反馈,则由光电转换后的电压信号加在可调谐的光纤FFP滤波器来获得。作者在理论上,对双稳态实现的基本原理进行了详细的叙述,并利用调制曲线和反馈曲线的方程对不同参数下的双稳器件的输出进行了数值计算,模拟分析了双稳器件的输出变化趋势,便于选取双稳器件的工作参数。在实验上,通过调节入射光强、放大器增益、偏置电压等方式实现了光学双稳运转。此外,作者还实现了两个光栅串联的双稳态输出,为今后分布式光纤光栅频域光学双稳态的研究提供了实验基础。
Optical Bistability(OB) is latest optical topic about studying steady state anddynamic state actions of nonlinear optics system which have feedback property. OpticalBistability Device (OBD) has excellence characteristics such as processing light signaldirectly, short time of on-off, parallel disposing signals. It has a potential application forhigh-speed fiber communication, light storage, high-speed optical switch, processing ofoptical information and stabilization of laser power and sensor of OB. So, in-depthresearching of optical bistability effects has very important significance.
     Intensity optical bistability in the domain of frequency have widest applicationfield and be attention in the deeply studying of can-tune optical source. In this paper,non-coherent Amplified Spontaneous Emission (ASE) broad band light source wereapplied as the source of OBD, tunable Fiber Fabry-Perot (FFP) filter was used aswavelength choose device. Photoelectron Hybrid OB in Frequency domain has been finishedsuccessfully .If forming optical bistability, there are two conditions must satisfied. Theone is nonlinear modulating finished by using Fiber Bragg Grating (FBG) modulateddevice. The other one is feedback provided by voltage signal after photoelectronexchange which added tunable fiber F-P filter.
     The basic theory of OB was analyzed in detail. The outputs of different coefficientOBD were numerical calculated using equation of modulating curve and feedback curve.It is easily to choose the working parameter by simulative analyzing the variationaltrend of output of OBD. During experiment process, optical bistability were achievedby altering incidence light intensity, amplifier multiple, put voltage. And the variationalprinciple of bistability can be observed easily. Moreover, optical bistability output oftwo grating cascade connection were made. This can provided an experiment referencefor the bistability researching of distributed grating.
引文
[1] 王雨三,张中华.激光物理基础[M].哈尔滨:哈尔滨工业大学出版社,2004:221~235.
    [2] 吕国辉,叶红安,姜旭,孙秀冬.基于光纤Fabry Perot滤波器的电光混合光学双稳态[J].光学技术,2006,1(32):8~10.
    [3] 李淳飞.光学双稳态研究20年[J].物理,1996,25(5):267~272.
    [4] 吕国辉,叶红安,李俊庆,孙秀冬.基于可调谐光纤激光器的频域光纤光学双稳态及其应用[J].激光与光电子学进展,2005,42(5):37~42.
    [5] 李淳飞,吴杰等.应用光学双稳原理的高精度光纤传感器[J].光学学报,1992,12(5):422~425.
    [6] 郑宇进,允自强,高新,刘秀美.光学双稳态激光光强稳定器的实验研究[J].重庆大学学报,1992,15(5):107~110.
    [7] 潘炜.光学双稳态[J].青海师专学报,1996,(4):89~91.
    [8] 吕厚钧,叶红安,闫江,张伟平,楚雪梅.提高光学双稳态器件静态稳定度的新途径[J].黑龙江大学自然科学学报,1996,13(2):84~87.
    [9] 常存,常青,柳春郁,邱安平,叶红安.全光纤光学双稳态实验[J].哈尔滨商业大学学报,2001,17(1):24~26.
    [10] J Q Li, etal. Any brid optical bistable device based on a fiber Bragg grating[J]. Chin. Phys. Lett., 2002, 19(12):1815~1818.
    [11] H A Ye, etal. Photo electricity brid optical bistable device using fiber Bragg gratings with two feed signals[J]. Chin. Phys. Lett., 2004, 21(5):860~862.
    [12] G H Lv, H A Ye, etal. Optical bistability by using a tunable fiber laser with fiber Fabry-Perot[J]. Chin. Phys. Lett., 2004, 21(11):2201~2204.
    [13] 李福利.高等激光物理学[M].合肥:中国科学技术大学出版社,1992:208~231.
    [14] Norbert Furstenau. Bistable fiber-optic Michelson interferometer that uses wavelength control[J]. Opt. Lett., 1991, 16(23):1896~1898.
    [15] C F Li, F Zhou, K Yang. High accuracy optical bistable interferometric fiber sensors[J]. J of Nonlinear Optical Physics & Materials, 2002, 11(2):125~130.
    [16] H A Ye, G H Lv, X D Sun. Hybrid optoelectronic bistability in a fiber Bragg grating by use of a tunable fiber laser. Opt. Lett., 2005, 30(4):1~4.
    [17] L Xu, C Wang, B Varghese, etal. Optical spectral bistability in a semiconductor fiber ring laser through gain saturation in an SOA[J]. IEEE Photon Tech. Lett., 2002, 14(2):149~151.
    [18] O H Mao. J W Y Lit. Optical bistability in an L-Brand dual-wavelength erbium-doped fiber laser with overlapping cavities[J]. IEEE Photon Tech. Lett., 2002, 14(9): 1252~1254.
    [19] Q H Mao. J W Y Lit. Switchable multi-wavelength erbium-doped fiber lasers with active overlapping linear crvities[J]. IEEE Photon Tech. Lett., 2002, 14(5):612~614.
    [20] Q H Mao. J W Y Lit. Multi-wavelength erbium-doped fiber lasers with active overlapping linear crvities[J]. J of Light Tech., 2003, 21(1):160~169.
    [21] Q H Mao. J W Y Lit. L-Brand fiber laser with wide tuning range based on dual-wavelength optical bistability in linear overlapping grating cavities[J]. IEEE J of Quant. Electron, 2003, 39(10): 1252~1259.
    [22] J M Oh, D H Lee. Strong optical bistability in a simple L-Brand tunable erbium-doped fiber ring laser[J]. IEEE J of Quant. Electron, 2004, 40(4):374~377.
    [23] P W Smith, etal. Electro-optic nonlinear Fabry-Perot devices[J]. IEEE J of Quantum Electron, 1978, 14(3):207~209.
    [24] K H Lcvin, C L Tang. Optical switching and bistability in tunable lasers[J]. Appl. Phys. Lett., 1979, 34:376~378.
    [25] 李淳飞,许景春.扫描法布里-珀罗光学双稳态装置[J].光学学报,1981,1(2):167~173.
    [26] Grohs, M. Miiller, A. Schmidt, A. Uhrig, C. Klingshirn. On the Possible Use of Photo Thermal Optical Bistability as a Temperature Sensor[J]. Optics Communications. 1990, (78):77~80.
    [27] C F Li, J Wu, L,, L J Liu, B Li. High Accurate Fiber Sensor Using Optical Bistability[J]. ACTA OPTICA SINICA. 1992, 12(5):422~425.
    [28] C F Li, F Zhou, K Yang. High Accuracy Optical Bistable Interferometric Fiber Sensors[J]. Journal of Nonlinear Optical Physics & Materials. 2002, 11(2):125~130.
    [29] 廖延彪.光纤光学[M].北京:清华大学出版社,2004:131~166.
    [30] 徐达.电光调制器[J].应用光学,1995(2):16.
    [31] 李淳飞,邹立勋.电光混合型光学双稳装置研究[J].哈尔滨工业大学学报,1982,1:1~11.
    [32] 李淳飞,季家镕.电光非线性F-P光学双稳态研究[J].哈尔滨工业大学学报,1981,1:57~67.
    [33] 李淳飞,季家镕.电光非线性Michelson光学双稳态装置[J].光学学报,1981,1(4):335~339.
    [34] Shinsuke, Umegaki, Hiroaki Inoue. Optical bistability using a magneto-optic modulator[J]. Appl. Phys. Lett., 1981, 38(10):752~754.
    [35] 董孝义,宋文涛,盛秋琴.磁光光学双稳态[J].光学学报,1987,7(12):1076~1081.
    [36] 郑植仁,高锦岳,李继存.磁光双稳系统的非稳特性[J].光学学报,1992,12(11):1004~1008.
    [37] 叶红安,刘德功,楚雪梅,吕厚均,姜作宏.磁致伸缩光纤磁光光学双稳态[J].光学学报,1996,16(4):480~482.
    [38] J Z Liu, X Z Wang, C J Chen, K J Ma. Magneto-Optical Bistability in Diluted Magnetic Semiconductor Cd_(1-x)Mn_xTe[J]. Chinese Phys. Lett., 1993, 10(9): 562~565.
    [39] 郑植仁,高锦岳.Bragg型声光双稳系统的调制效应[J].光学学报,1990,10(1):320~322.
    [40] J. P. Goedegebuer, A. Fischer, H. Porte. Controlled Wavelength Bistability and Multistability of Tunable Semiconductor Lasers[J]. Quantum Electronics, 1996, 26(3):242~244.
    [41] 纳新,孙德贵,翁兆恒.非线性干涉滤光片N形反射光双稳器件的研究[J].光学学报,1996,16(3):308~310.
    [42] 何士雅.声光器件的频率反馈双稳态[J].光学学报,1996,16(8):1073~1077.
    [43] 李永贵,张洪均.混合型光学双稳特性分析[J].物理学报,1983,32(3):301~308.
    [44] 叶红安,吕厚均,姜宗胜,李慧奇,姜作宏.双反馈光学双稳态[J].光学学报,1995,15(6):665~667.
    [45] 叶红安.双馈激光强度稳定器的理论和实验研究[D].博士论文,哈尔滨工业大学,1997.
    [46] 曹贵华,徐至展.光学双稳态的输出特性研究[J].光学学报,1995,15(11):1511~1514.
    [47] 吕国辉.电光混合型光纤光学双稳态的研究[D].博士论文.哈尔滨工业大学,2005.
    [48] 陈建明,鲁改凤.光纤传感器与分布式测量[J].华北水利水电学院学报,2005,26(3):30~31.
    [49] 戎小戈.光纤光栅的发展现状[J].广西物理,2001,4:10~13.
    [50] 尚丽平,张淑清,史锦姗.光纤光栅传感器的现状与发展[J].燕山大学学报,2001,25(2).139~143.
    [51] 鲍吉龙,章献民,陈抗生,周文.光纤光栅传感器及其应用[J].激光技术,2000,24(3):174~179.
    [52] 方强,梁猛.发展中的光纤光栅技术[J].西安邮电学院学报,1999,4(1):13~17.
    [53] 安勇龙,叶敦范.光纤光栅传感器的工作原理及应用实例[J].仪器仪表与分析监测,2005,1:5~8.
    [54] 范立波.光纤光栅原理与应用(一)—光纤光栅原理[J].光通信技术,1998,22(1):70~78.
    [55] 张颖.光纤光栅双稳态光开关和数字光信号放大[J].中国激光,1998,25(10):887~890.
    [56] 贾东方,余震虹(译).非线性光纤光学原理及应用[M].北京:电子工业出版社, 2002:295~296.
    [57] C X Shi. Optical Bistability in Reflective Fiber Gratings[J]. IEEE Journal of Quantum Electronics, 1995, 31(11):2037~2043.
    [58] 龚湘红,程红霞,卢文全.EDFA-ASE光源在测试技术中的应用.光通信技术,1999,23(4):294~296.
    [59] 丁炜.各种商用光放大器的比较[J].中国有线电视,2005,(9/10):969~975.
    [60] 王秀琳,黄文才,明海.宽带、高稳定掺铒光纤超荧光光源[J].激光与光电子学进展,2005,42(5):32~37.
    [61] 郭小东,乔学光,贾振安,王小凤.高功率宽带掺铒超荧光光源[J].光电工程,2004,31(9):18~21.
    [62] 高伟清.掺铒光纤超荧光光源[J].光子技术,2004,4:188~192.
    [63] 许培英,王玉堂.光纤光隔离器研制的进展[J].光电子·激光,1997,8(3):161~165.
    [64] 艾延宝,金永君.法拉第磁致旋光效应及应用[J].物理与工程,2002,12(5):50~52.
    [65] 向清,聂刚,黄德修.高隔离度光学环形器偏振灵敏度分析[J].仪器仪表学报,1999,1.
    [66] 付建伟,肖立志,张元中等.分布式光纤Bragg光栅波长校准方法[J].光学技术,2006,32(6):903~905.
    [67] 曹晔,刘波,开桂云,董孝义.光纤光栅传感技术研究现状及发展前景[J].传感器技术,2005,24(12):1~4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700