基于分子动力学模拟的两种重要蛋白结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子动力学模拟是一种能够揭示生物大分子结构与功能物质基础的重要方法。运用分子动力学模拟的方法,我们可以提供以时间为顺序单个粒子运动的最终细节。因此,利用此种方法构建模型来研究某个体系的具体性能问题,往往比实际实验来的容易。
     本论文分别通过两个实例来展示分子动力学模拟应用于生物大分子研究中的直观优势。首先是对耐热脂肪酶T1在不同温度条件下的模拟。T1脂肪酶是来源于GeobacilluszalihaeT1菌株的恒温嗜碱酶,具有很好的稳定性,而稳定性是集约型可持续化工业运行的重要标准。因此我们通过分子动力学模拟揭示了为什么T1脂肪酶在高温条件下具有如此好的稳定性和活性,实验结果表明,T1脂肪酶在60℃和70℃下的蛋白结构相比30℃时更加稳定,尤其是构成活性口袋的两个α螺旋之间的距离可以稳定在一定的范围内,使水分子能够长时间停留在活性中心附近,为水解反应提供必须的水。通过分析我们还得到,疏水作用是导致T1脂肪酶在不同温度下有不同结构变化的主要作用力。最后,我们对另一种耐热脂肪酶L1进行了模拟,得到了与T1脂肪酶相似的结论,由此推测相同的催化机理可能存在于多种耐热脂肪酶中。
     另一则实例是关于成纤维细胞生长因子9的模拟。成纤维细胞生长因子9(fibroblastgrowth factor,FGF9)是成纤维细胞生长因子家族的成员之一。在骨骼发育早期,FGF9的作用是促进软骨细胞肥大;在骨骼发育后期,其主要作用是调节生长板的血管化和成骨过程。生化研究发现FGF9的99位的丝氨酸突变为天冬酰胺是多发性骨性连接综合征(Multiple synostoses syndrome,SYNS)的发病原因,因此我们利用分子模拟的方法分别研究FGF9的野生型与突变型的模拟结果,比对FGF9的野生型和突变型的3D结构,发现FGF9碳端具有一个秩序井然的结构,这个结构在成纤维细胞生长因子的信号传递过程中诱导其形成同源二聚体,从而打破单体与二聚体的动态平衡。这一平衡被认为是成纤维细胞生长因子信号传递过程中,调节胞外基质亲和与组织扩散的关键环节。由于野生型形成同源二聚体的自由能相对较低,因此它优先形成有生理活性的同源二聚体。而突变体S99N的单体更愿意与受体结合,形成没有活性的复合体,导致信号传导受阻。成纤维细胞生长因子信号的衰减是人类骨性连接综合症的潜在原因,因此模拟结果成功的揭示了成纤维细胞生长因子9的致病机理。本论文中的这两个实例充分的证明了在未来的研究中,分子动力学模拟技术在生物学领域将会有更广泛的应用。
Molecular dynamics simulations are important tools for understanding the physical basis of the structure and function of biological macromolecules. MD simulations can provide the ultimate detail concerning individual particle motions as a function of time. Thus, they can be used to address specific questions about the properties of a model system, often more easily than experiments on the actual system.
     In this thesis, we use two examples to show the applications of MD simulations on biology investigations. One is simulating the T1lipase at different temperatures. T1lipase is a thermoalkalophilic enzyme derived from Geobacillus zalihae strain T1and it was with a perfect stability that is an important criterion for a sustainable industrial operation economically. So we want to find out why the T1lipase is so stable and high active at high temperature. By analysis, the structure of T1lipase at60℃and70℃is more stable, especially the distance between the two a helixes making up the active pocket could maintain in a specific range. This could keep water for the hydrolysis reaction near the active site for a long time. We also found that the hydrophobic interaction is main force to cause the different structural changes of T1lipase at diferernt temperature. Finally, another thermostable enzyme named L1lipase was simulated, and yielded a similar Conclusion with T1lipase. It is presumed that the same catalytic mechanism may exist widely in various thermostable enzymes.
     The other instance is the simulation of the fibroblast growth factor9(FGF9). Fibroblast growth factor9(FGF9) is one of the members of fibroblast growth factors'family. In the early stages of skeletal growth, the function of FGF9is to enlarge the area of the cartilage; In the later stages of skeletal growth, the major function of FGF9is to adjust vascularization for growth plate and osteogenetic process. Biochemical analysis reveals that the identified FGF9mutation (Ser99Asn) as a potential cause of multiple synostoses syndrome (SYNS). So we performed computational studies on wild-type and mutant FGF9separately. From the correlation of the3D structure of the wild-type and mutant FGF9, We found that the FGF9has a well-ordered C-terminal structure, which can reduce its homodimerization ability so as to break the monomer-dimer equilibrium in the FGF signaling, which is considered as a key factor to regulate extracellular matrix affinity and tissue diffusion in the FGF signaling pathway. FGF9WT monomer can preferentially form a homodimer owe to its comparatively lower binding free energy. In contrast, FGF9S99N monomer is preferred to bind with FGFR3c receptor to form an inactive complex, leading to impair FGF signaling. The impaired FGF signaling is believed to be a potential cause of human synostoses syndrome. So the result from the simulation successfully revealed the pathogenic mechanism on FGF9. To sum up the above arguments, these results available from this thesis make clear that the applications of molecular dynamics will play an even more important role for our understanding of biology in the future.
引文
[1]Alder, B. J., T. E. W., Phase transition for a hard sphere system[J]. Journal of Chemical Physics.1957,27:1208-1209.
    [2]Rahman, A., Correlations in the motion of atoms in liquid argon[J]. Physical Review.1964,136(2A):405-411.
    [3]Rahman, A. S., Frank, H., Molecular dynamics study of liquid water[J]. Journal of Chemical Physics.1971,55:3336-3359.
    [4]McCammon, J. A., Gelin, B. R., Karplus, M., Dynamics of folded proteins[J]. Nature.1977,267(5612):585-590.
    [5]Hansson, T., Oostenbrink, C., van Gunsteren, W., Molecular dynamics simulations[J]. Curr Opin Struct Biol.2002,12(2):190-196.
    [6]Duan, Y., Kollman, P. A., Pathways to a protein folding intermediate observed in a1-microsecond simulation in aqueous solution[J]. Science.1998,282(5389):740-744.
    [7]莫莉,黄大毛,唐发清.分子动态模拟及其在生物大分子中的应用.生命的化学.2007,27(3):243-45.
    [8]Lindorff-Larsen, K., Best, R. B., Depristo, M. A., Dobson, C. M., Vendruscolo, M., Simultaneous determination of protein structure and dynamics[J]. Nature.2005,433(7022):128-132.
    [9]Kuwata, K., Matumoto, T., Cheng, H., Nagayama, K., James, T. L., Roder, H., NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment106-126[J]. Proc Natl Acad Sci U S A.2003,100(25):14790-14795.
    [10]Wen, Y., Li, J., Xiong, M., Peng, Y., Yao, W., Hong, J., Lin, D., Solution structure and dynamics of the I214V mutant of the rabbit prion protein[J]. PLoS One.2010,5(10): e13273.
    [11]Zhou, M., Dong, X., Shen, N., Zhong, C., Ding, J., Crystal structures of Saccharomyces cerevisiae tryptophanyl-tRNA synthetase:new insights into the mechanism of tryptophan activation and implications for anti-fungal drug design[J]. Nucleic Acids Res.2010,38(10):3399-3413.
    [12]Cheatham, T. E.,3rd, Simulation and modeling of nucleic acid structure, dynamics and interactions[J]. Curr Opin Struct Biol.2004,14(3):360-367.
    [13]Song, C., Xia, Y., Zhao, M., Liu, X., Li, F., Ji, Y., Huang, B., Yin, Y., The effect of salt concentration on DNA conformation transition:a molecular-dynamics study[J]. J Mol Model.2006,12(3):249-254.
    [14]Lian, P., Liu, L. A., Shi, Y., Bu, Y., Wei, D., Tethered-hopping model for protein-DNA binding and unbinding based on Sox2-Octl-Hoxb1ternary complex simulations[J]. Biophys J.2010,98(7):1285-1293.
    [15]Singh, A., Snyder, S., Lee, L., Johnston, A. P., Caruso, F., Yingling, Y. G., Effect of oligonucleotide length on the assembly of DNA materials:molecular dynamics simulations of layer-by-layer DNA films[J]. Langmuir.2010,26(22):17339-17347.
    [16]Xu, Y., Shen, J., Luo, X., Zhu, W., Chen, K., Ma, J., Jiang, H., Conformational transition of amyloid beta-peptide[J]. Proc Natl Acad Sci U S A.2005,102(15):5403-5407.
    [17]Tajkhorshid, E., Nollert, P., Jensen, M. O., Miercke, L. J., O'Connell, J., Stroud, R. M., Schulten, K., Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science.2002,296(5567):525-530.
    [18]Shimamura, T., Weyand, S., Beckstein, O., Rutherford, N. G., Hadden, J. M., Sharples, D., Sansom, M. S., Iwata, S., Henderson, P. J., Cameron, A. D., Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1[J]. Science.2010,328(5977):470-473.
    [19]Yang, H., Yu, Y., Li, W. G., Yu, F., Cao, H., Xu, T. L., Jiang, H., Inherent dynamics of the acid-sensing ion channel1correlates with the gating mechanism[J]. PLoS Biol.2009,7(7):e1000151.
    [20]Liu, X., Xu, Y., Li, H., Wang, X., Jiang, H., Barrantes, F. J., Mechanics of channel gating of the nicotinic acetylcholine receptor[J]. PLoS Comput Biol.2008,4(1):e19.
    [21]Frembgen-Kesner, T., Elcock, A. H., Computational sampling of a cryptic drug binding site in a protein receptor:explicit solvent molecular dynamics and inhibitor docking to p38MAP kinase[J]. J Mol Biol.2006,359(1):202-214.
    [22]Gu, H., Chen, H. F., Wei, D. Q., Wang, J. F., Molecular dynamics simulations exploring drug resistance in HIV-1proteases[J]. Chinese Science Bulletin.2010,55(24):2677-2683.
    [23]Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., Skehel, J. J., The structure of H5N1avian influenza neuraminidase suggests new opportunities for drug design[J]. Nature.2006,443(7107):45-49.
    [24]Amaro, R. E., Minh, D. D., Cheng, L. S., Lindstrom, W. M., Jr., Olson, A. J., Lin, J. H., Li, W. W., McCammon, J. A., Remarkable loop flexibility in avian influenza N1and its implications for antiviral drug design[J]. J Am Chem Soc.2007,129(25):7764-7765.
    [25]Bower, M. J., Cohen, F. E., Dunbrack, R. L., Jr., Prediction of protein side-chain rotamers from a backbone-dependent rotamer library:a new homology modeling tool[J]. J Mol Biol.1997,267(5):1268-1282.
    [26]Jones, T. A., Thirup, S., Using known substructures in protein model building and crystallography[J]. Embo J.1986,5(4):819-822.
    [27]Altschul, S. F., Erickson, B. W., Optimal sequence alignment using affine gap costs[J]. Bull Math Biol.1986,48(5-6):603-616.
    [28]Smith, T. F., Waterman, M. S., Identification of common molecular subsequences[J]. J Mol Biol.1981,147(1):195-197.
    [29]Lipman, D. J., Pearson, W. R., Rapid and sensitive protein similarity searches[J]. Science. 1985,227(4693):1435-1441.
    [30]Pearson, W. R., Lipman, D. J., Improved tools for biological sequence comparison[J]. Proc Natl Acad Sci U S A.1988,85(8):2444-2448.
    [31]Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., Basic local alignment search tool [J]. J Mol Biol.1990,215(3):403-410.
    [32]克兰,雷默.生物信息学概论.北京:清华大学出版社.2004:42-43.
    [33]Fischer, D.,3D-SHOTGUN:a novel, cooperative, fold-recognition meta-predictor[J]. Proteins.2003,51(3):434-441.
    [34]Kim, D. E., Chivian, D., Baker, D., Protein structure prediction and analysis using the Robetta server[J]. Nucleic Acids Res.2004,32:W526-531.
    [35]Eisenberg, D., Luthy, R., Bowie, J. U., VERIFY3D:assessment of protein models with three-dimensional profiles[J]. Methods Enzymol.1997,277:396-404.
    [36]Schwede, T., Kopp, J., Guex, N., Peitsch, M. C., SWISS-MODEL:An automated protein homology-modeling server[J]. Nucleic Acids Res.2003,31(13):3381-3385.
    [37]Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling[J]. Bioinformatics.2006,22(2):195-201.
    [38]Kopp, J., Schwede, T., The SWISS-MODEL Repository:new features and functionalities[J]. Nucleic Acids Res.2006,34:D315-8.
    [39]Eswar, N., John, B., Mirkovic, N., Fiser, A., Ilyin, V. A., Pieper, U., Stuart, A. C., Marti-Renom, M. A., Madhusudhan, M. S., Yerkovich, B., Sali, A., Tools for comparative protein structure modeling and analysis[J]. Nucleic Acids Res.2003,31(13):3375-3380.
    [40]Uchoa, H. B., Jorge, G. E., Freitas Da Silveira, N. J., Camera, J. C., Jr., Canduri, F., De Azevedo, W. F., Jr., Parmodel:a web server for automated comparative modeling of proteins[J]. Biochem Biophys Res Commun.2004,325(4):1481-1486.
    [41]Dalton, J. A., Jackson, R. M., An evaluation of automated homology modelling methods at low target template sequence similarity[J]. Bioinformatics.2007,23(15):1901-1908.
    [42]Sanchez, R., Pieper, U., Mirkovic, N., de Bakker, P. I., Wittenstein, E., Sali, A., MODBASE, a database of annotated comparative protein structure models[J]. Nucleic Acids Res.2000,28(1):250-253.
    [43]Pieper, U., Eswar, N., Stuart, A. C., Ilyin, V. A., Sali, A., MODBASE, a database of annotated comparative protein structure models[J]. Nucleic Acids Res.2002,30(1):255-259.
    [44]Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M. S., Davis, F. P., Stuart, A. C., Mirkovic, N., Rossi, A., Marti-Renom, M. A., Fiser, A., Webb, B., Greenblatt, D., Huang, C. C., Ferrin, T. E., Sali, A., MODBASE, a database of annotated comparative protein structure models, and associated resources[J]. Nucleic Acids Res.2004,32:D217-222.
    [45]Pieper, U., Eswar, N., Davis, F. P., Braberg, H., Madhusudhan, M. S., Rossi, A., Marti-Renom, M., Karchin, R., Webb, B. M., Eramian, D., Shen, M. Y., Kelly, L., Melo, F., Sali, A., MODBASE:a database of annotated comparative protein structure models and associated resources[J]. Nucleic Acids Res.2006,34:D291-295.
    [46]Bates, P. A., Kelley, L. A., MacCallum, R. M., Sternberg, M. J., Enhancement of protein modeling by human intervention in applying the automatic programs3D-JIGSAW and3D-PSSM[J]. Proteins.2001, Suppl5:39-46.
    [47]Montgomerie, S., Cruz, J. A., Shrivastava, S., Arndt, D., Berjanskii, M., Wishart, D. S., PROTEUS2:a web server for comprehensive protein structure prediction and structure-based annotation[J]. Nucleic Acids Res.2008,36:W202-209.
    [48]Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., Thornton, J. M., AQUA and PROCHECK-NMR:programs for checking the quality of protein structures solved by NMR[J]. J Biomol NMR.1996,8(4):477-486.
    [49]Fischer, E., Einfluss der configuration auf die wirkung der enzyme[J]. Berichte der deutschen chemischen Gesellschaft.1894,27:2985-2993.
    [50]Koshland, D. E., Jr., Ray, W. J., Jr., Erwin, M. J., Protein structure and enzyme action[J]. Fed Proc.1958,17(4):1145-1150.
    [51]Ma, B., Kumar, S., Tsai, C. J., Nussinov, R., Folding funnels and binding mechanisms [J]. Protein Eng.1999,12(9):713-720.
    [52]Dror, O., Shulman-Peleg, A., Nussinov, R., Wolfson, H. J., Predictiong Molecular interactions in silico:I. A Guide to Pharmacophore Identification and its Applications to Drug Design[J]. Curr. Medicinal Chem.2004,11:71-90.
    [53]俞庆森,皱建卫,胡艾希.药物设计.北京:化学工业出版社.2005:164-166.
    [54]Brooijmans, N., Kuntz, I. D., Molecular recognition and docking algorithms[J]. Annu Rev Biophys Biomol Struct.2003,32:335-373.
    [55]刘燕茹.进化算法在分子对接中的研究与应用[硕士论文].天津:天津师范大学.2009.
    [56]Ewing, T. J., Makino, S., Skillman, A. G., Kuntz, I. D., DOCK4.0:search strategies for automated molecular docking of flexible molecule databases[J]. J Comput Aided Mol Des.2001,15(5):411-428.
    [57]Moustakas, D. T., Lang, P. T., Pegg, S., Pettersen, E., Kuntz, I. D., Brooijmans, N., Rizzo, R. C., Development and validation of a modular, extensible docking program:DOCK5[J].J Comput Aided Mol Des.2006,20(10-11):601-619.
    [58]Kramer, B., Rarey, M., Lengauer, T., Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking[J]. Proteins.1999,37(2):228-241.
    [59]Mizutani, M. Y., Takamatsu, Y., Ichinose, T., Nakamura, K., Itai, A., Effective handling of induced-fit motion in flexible docking[J]. Proteins.2006,63(4):878-891.
    [60]Welch, W., Ruppert, J., Jain, A. N., Hammerhead:fast, fully automated docking of flexible ligands to protein binding sites[J]. Chem Biol.1996,3(6):449-462.
    [61]Miller, M. D., Kearsley, S. K., Underwood, D. J., Sheridan, R. P., FLOG:a system to select'quasi-flexible' ligands complementary to a receptor of known three-dimensional structure[J]. J Comput Aided Mol Des.1994,8(2):153-174.
    [62]康玲.药物分子对接优化模型与算法研究[博士论文].大连:大连理工大学.2008.
    [63]Fraser, Alex, Computer Models in Genetics. McGraw-Hill:New York,1970.
    [64]Beveridge, D. L., DiCapua, F. M., Free energy via molecular simulation:applications to chemical and biomolecular systems[J]. Annu Rev Biophys Biophys Chem.1989,18:431-92.
    [65]Simonson, T., Archontis, G., Karplus, M., Free energy simulations come of age: protein-ligand recognition[J]. Acc Chem Res.2002,35(6):430-437.
    [66]Wang, R., Lai, L., Wang, S., Further development and validation of empirical scoring functions for structure-based binding affinity prediction[J]. J Comput Aided Mol Des.2002,16(1):11-26.
    [67]Zsoldos, Z., Reid, D., Simon, A., Sadjad, B. S., Johnson, A. P., eHiTS:an innovative approach to the docking and scoring function problems[J]. Curr Protein Pept Sci.2006,7(5):421-435.
    [68]Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function[J]. Journal of computational chemistry.1998,19(14):24.
    [69]Dixon, J. S., Evaluation of the CASP2docking section[J]. Proteins.1997, Suppl1:198-204.
    [70]杨坤.一类非平衡分子动力学模拟中优化方法的研究[博士论文].大连:大连理工大学.2009.
    [71]Cornell, W. D., Cieplak, P., Bayly, C. I, Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., Kollman, P. A., A scond generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. Journal of the American Chemical Society.1995,117(19):5179-5197.
    [72]Jorgensen, W. L., Maxwell, D. S., Tiradorives, J., Development and testing of the opls all-atom force-field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society.1996,118(45):11225-11236.
    [73]MacKerell, A. D., Jr., Banavali, N., Foloppe, N., Development and current status of the CHARMM force field for nucleic acids[J]. Biopolymers.2000,56(4):257-265.
    [74]Oostenbrink, C., Villa, A., Mark, A. E., Van Gunsteren, W. F., A biomolecular force field based on the free enthalpy of hydration and solvation:The GROMOS force-field parameter sets53A5and53A6[J]. Journal of Computational Chemistry.2004,25(13):1656-1676.
    [75]Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E., The protein data bank[J]. Nucleic Acids Res.2000,28(1):235-242.
    [76]曹赞霞.蛋白质模拟的分子力学力场优化[博士论文].合肥:中国科学技术大学.2008.
    [77]Wang, J., Cieplak, P., Kollman, P. A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules[J]. Computational Chemistry.2000,21(12):1049-1074.
    [78]Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters[J]. Proteins.2006,65(3):712-725.
    [79]Cieplak, P., Caldwell, J., Kollman, P., Molecular mechanical models for organic and biological systems going beyond the atom centered two body additive approximation: aqueous solution free energies of methanol and N-methyl acetamide, nucleic acid base, and amide hydrogen bonding and chloroform/water partition coefficients of the nucleic acid bases[J]. Computational Chemistry.2001,22(10):1048-1057.
    [80]Dixon, R. W., Kollman, P. A., Advancing beyond the atom-centered model in additive and nonadditive molecular mechanics[J]. Computational Chemistry.1997,18(13): 1632-1646.
    [81]Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., Kollman, P., A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations[J]. J Comput Chem.2003,24(16):1999-2012.
    [82]Lee, M. C., Duan, Y., Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model [J]. Proteins.2004,55(3):620-634.
    [83]MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins [J]. Journal of Physical Chemistry B.1998,102(18):3586-3616.
    [84]Neria, E., Fischer, S., Karplus, M., Simulation of activation free energies in molecular systems[J]. The Journal of chemical physics.1996,105(5):1902-1921
    [85]Foloppe, N., MacKerell, J. A. D., All-atom empirical force field for nucleic acids:I. Parameter optimization based on small molecule and condensed phase macromolecular target data[J]. Journal of Computational Chemistry.2000,21(2):86-104.
    [86]Daura, X., Mark, A. E., Van Gunsteren, W. F., Parametrization of aliphatic CHn united atoms of GROMOS96force field[J]. Computational Chemistry.1998,19(5):535-547.
    [87]Schuler, L. D., Daura, X., van Gunsteren, W. F., An improved GROMOS96force field for aliphatic hydrocarbons in the condensed phase[J]. Journal of Computational Chemistry.2001,22(11):1205-1218.
    [88]Verlet, L., Computer "experiments" on classical fluids. Ⅰ. thermodynamical properties of Lennard-Jones molecules[J]. Physical Review Online Archive (Prola).1967,159(1):98.
    [89]Hockney, R. W., Potential calculation and some applications[J]. Methods Comput. Phys.1970.
    [90]Swope, W., Andersen, H., Berens, P., Wilson, K., A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters[J]. The Journal of Chemical Physics.1982,76(1):637-649.
    [91]Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., Haak, J. R., Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics.1984,81(8):3684-3690.
    [92]Hoover, W. G., Canonical dynamics:Equilibrium phase-space distributions[J]. Phys Rev A.1985,31(3):1695-1697.
    [93]Massova, I., Kollman, P. A., Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding[J]. Perspectives in Drug Discovery and Design.2000,18:113-135.
    [94]Xiong, Y., Li, Y. J., He, H. W., Zhan, C. G., Theoretical calculation of the binding free energies for pyruvate dehydrogenase E1binding with ligands[J]. Bioorganic&Medicinal Chemistry Letters.2007,17(18):5186-5190.
    [95]Tanida, Y., Ito, M. S., Fujitani, H., Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values[J]. Chemical Physics.2007,337(1-3):135-143.
    [96]Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., Case, D. A., Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices[J]. Journal of the American Chemical Society.1998,120(37):9401-9409.
    [97]Honig, B., Nicholls, A., Classical electrostatics in biology and chemistry[J]. Science.1995,268(5214):1144-1149.
    [98]Sanner, M. F., Olson, A. J., Spehner, J. C., Reduced surface:an efficient way to compute molecular surfaces[J]. Biopolymers.1996,38(3):305-320.
    [99]Bohm, H. J., Prediction of binding constants of protein ligands:A fast method for the prioritization of hits obtained from de novo design or3D database search programs[J]. Journal of Computer-Aided Molecular Design.1998,12(4):309-323.
    [100]Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V., Mee, R. P., Empirical scoring functions:I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes[J]. J Comput Aided Mol Des.1997,11(5):425-445.
    [101]Head, R. D., Smythe, M. L., Oprea, T. I., Waller, C. L., Green, S. M., Marshall, G. R., Validate-A New Method for the Receptor-Based Prediction of Binding Affinities of Novel Ligands[J]. Journal of the American Chemical Society.1996,118(16):3959-3969.
    [102]Kyani, A., Goliaei, B., Binding free energy calculation of peptides to carbon nanotubes using molecular dynamics with a linear interaction energy approach[J]. Journal of Molecular Structure-Theochem.2009,913(1-3):63-69.
    [103]Aqvist, J., Medina, C., Samuelsson, J. E., A new method for predicting binding affinity in computer-aided drug design[J]. Protein Eng.1994,7(3):385-391.
    [104]Todman, S. J., Halling-Brown, M. D., Davies, M. N., Flower, D. R., Kayikci, M., Moss, D. S., Toward the atomistic simulation of T cell epitopes automated construction of MHC:peptide structures for free energy calculations[J]. J Mol Graph Model.2008,26(6):957-961.
    [105]徐筱杰,侯廷军,乔学斌,章威.计算机辅助药物分子设计.北京:化学工业出版社.2004:165-195.
    [106]Levitt, M., Sander, C., Stern, P. S., Protein normal-mode dynamics:trypsin inhibitor, crambin, ribonuclease and lysozyme[J]. J Mol Biol.1985,181(3):423-447.
    [107]Go, N, Noguti, T., Nishikawa, T., Dynamics of a small globular protein in terms of low-frequency vibrational modes[J]. Proc Natl Acad Sci U S A.1983,80(12):3696-3700.
    [108]Bahar, I., Rader, A. J., Coarse-grained normal mode analysis in structural biology[J]. Curr Opin Struct Biol.2005,15(5):586-592.
    [109]Tirion, M. M., Large amplitude elastic motions in proteins from a single-parameter, atomic analysis[J]. Phys Rev Lett.1996,77(9):1905-1908.
    [110]Haliloglu, T., Bahar, I., Erman, B., Gaussian dynamics of folded proteins[J]. Physical Review Letters.1997,79(16):3090-3093.
    [111]孙庭广.用分子模拟方法研究周质转运体系组成蛋白的结构与功能关系[博士论文].北京:北京工业大学.2009.
    [112]柳志强.普鲁兰短梗霉HN2-3脂肪酶的生产、分离纯化、基因克隆和表达的研究[博士论文].青岛:中国海洋大学.2008.
    [113]Rogalska, E., Douchet, I., Verger, R., Microbial lipases:structures, function and industrial applications[J]. Biochem Soc Trans.1997,25(1):161-164.
    [114]Sharma, R., Chisti, Y., Banerjee, U. C., Production, purification, characterization, and applications of lipases[J]. Biotechnol Adv.2001,19(8):627-662.
    [115]Krishna, S. H., Karanth, N. G., Lipases and lipase-catalyzed esterification reactions in nonaqueous media[J]. Catalysis Reviews-Science and Engineering.2002,44(4):499-591.
    [116]Gupta, M. N., Roy, I., Enzymes in organic media-forms, functions and applications[J]. European Journal of Biochemistry.2004,271(13):2575-2583.
    [117]Ghanem, A., Aboul-Enein, H. Y., Lipase-mediated chiral resolution of racemates in organic solvents[J]. Tetrahedron-Asymmetry.2004,15(21):3331-3351.
    [118]Jaeger, K. E., Eggert, T., Lipases for biotechnology[J]. Curr Opin Biotechnol.2002,13(4):390-397.
    [119]Hult, K., Berglund, P., Engineered enzymes for improved organic synthesis[J]. Curr Opin Biotechnol.2003,14(4):395-400.
    [120]王栋.华根霉(Rhizopus chinensis)非水相合成活性脂肪酶及其酶学特性的研究[博士论文].无锡:江南大学.2008.
    [121]Gupta, R., Gupta, N., Rathi, P., Bacterial lipases:an overview of production, purification and biochemical properties[J]. Appl Microbiol Biotechnol.2004,64(6):763-781.
    [122]Peters, G. H., van Aalten, D. M., Edholm, O., Toxvaerd, S., Bywater, R., Dynamics of proteins in different solvent systems:analysis of essential motion in lipases[J]. Biophys J.1996,71(5):2245-2255.
    [123]Brady, L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., Tolley, S., Turkenburg, J. P., Christiansen, L., Huge-Jensen, B., Norskov, L., et al., A serine protease triad forms the catalytic centre of a triacylglycerol lipase[J]. Nature.1990,343(6260):767-770.
    [124]Peters, G. H., Bywater, R. P., Influence of a lipid interface on protein dynamics in a fungal lipase[J]. Biophys J.2001,81(6):3052-3065.
    [125]Tejo, B. A., Salleh, A. B., Pleiss, J., Structure and dynamics of Candida rugosa lipase: the role of organic solvent[J]. J Mol Model.2004,10(5-6):358-366.
    [126]Uppenberg, J., Hansen, M. T., Patkar, S., Jones, T. A., The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica[J]. Structure.1994,2(4):293-308.
    [127]李聪.分子动力学模拟研究脂肪酶的催化机理[硕士论文].北京:北京化工大学.2010.
    [128]Rahman, R. N. Z. R. A., Leow, T. C., Salleh, A. B., Basri, M., Geobacillus zalihae sp nov., A thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia[J]. Bmc Microbiology.2007,7(77):1471-2180.
    [129]Matsumura, H., Yamamoto, T., Leow, T. C., Mori, T., Salleh, A. B., Basri, M., Inoue, T., Kai, Y., Rahman, R. N. Z. R. A., Novel cation-pi interaction revealed by crystal structure of thermoalkalophilic lipase[J]. Proteins-Structure Function and Bioinformatics.2008,70(2):592-598.
    [130]Hermoso, J. A., Carrasco-Lopez, C., Godoy, C., de las Rivas, B., Fernandez-Lorente, G., Palomo, J. M., Guisan, J. M., Fernandez-Lafuente, R., Martinez-Ripoll, M., Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements [J]. Journal of Biological Chemistry.2009,284(7):4365-4372.
    [131]Cherukuvada, S. L., Seshasayee, A. S., Raghunathan, K., Anishetty, S., Pennathur, G., Evidence of a double-lid movement in pseudomonas aeruginosa lipase:insights from molecular dynamics simulations[J]. PLoS Comput Biol.2005,1(3):e28.
    [132]Olsen, S. K., Garbi, M., Zampieri, N., Eliseenkova, A. V., Ornitz, D. M., Goldfarb, M., Mohammadi, M., Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs[J]. J Biol Chem.2003,278(36):34226-34236.
    [133]陈晓怡.FGF9突变转基因及基因敲入小鼠模型的建立与分析[硕士论文].上海:上海交通大学.2009.
    [134]Plotnikov, A. N., Eliseenkova, A. V., Ibrahimi, O. A., Shriver, Z., Sasisekharan, R., Lemmon, M. A., Mohammadi, M., Crystal structure of fibroblast growth factor9reveals regions implicated in dimerization and autoinhibition[J]. J Biol Chem.2001,276(6):4322-4329.
    [135]Revest, J. M., DeMoerlooze, L., Dickson, C., Fibroblast growth factor9secretion is mediated by a non-cleaved amino-terminal signal sequence[J]. Journal of Biological Chemistry.2000,275(11):8083-8090.
    [136]Eswarakumar, V. P., Lax, I., Schlessinger, J., Cellular signaling by fibroblast growth factor receptors[J]. Cytokine Growth Factor Rev.2005,16(2):139-149.
    [137]Garofalo, S., Kliger-Spatz, M., Cooke, J. L., Wolstin, O., Lunstrum, G. P., Moshkovitz, S. M., Horton, W. A., Yayon, A., Skeletal dysplasia and defective chondrocyte differentiation by targeted overexpression of fibroblast growth factor9in transgenic mice[J]. J Bone Miner Res.1999,14(11):1909-1915.
    [138]Ornitz, D. M., Marie, P. J., FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease[J]. Genes&Development.2002,16(12):1446-1465.
    [139]Colvin, J. S., White, A. C., Pratt, S. J., Ornitz, D. M., Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme[J]. Development.2001,128(11):2095-2106.
    [140]Colvin, J. S., Green, R. P., Schmahl, J., Capel, B., Ornitz, D. M., Male-to-female sex reversal in mice lacking fibroblast growth factor9[J]. Cell.2001,104(6):875-889.
    [141]Abdel-Rahman, W. M., Kalinina, J., Shoman, S., Eissa, S., Ollikainen, M., Elomaa, O., Eliseenkova, A. V., Butzow, R., Mohammadi, M., Peltomaki, P., Somatic FGF9mutations in colorectal and endometrial carcinomas associated with membranous beta-catenin[J]. Human Mutation.2008,29(3):390-397.
    [142]Ornitz, D. M., FGFs, heparan sulfate and FGFRs:complex interactions essential for development[J]. Bioessays.2000,22(2):108-112.
    [143]Santos-Ocampo, S., Colvin, J. S., Chellaiah, A., Ornitz, D. M., Expression and biological activity of mouse fibroblast growth factor-9[J]. J Biol Chem.1996,271(3):1726-1731.
    [144]Logie, A., Dunois-Larde, C., Rosty, C., Levrel, O., Blanche, M., Ribeiro, A., Gasc, J. M., Jorcano, J., Werner, S., Sastre-Garau, X., Thiery, J. P., Radvanyi, F., Activating mutations of the tyrosine kinase receptor FGFR3are associated with benign skin tumors in mice and humans[J]. Hum Mol Genet.2005,14(9):1153-1160.
    [145]Colvin, J. S., Bohne, B. A., Harding, G. W., McEwen, D. G., Ornitz, D. M., Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor3[J]. Nat Genet.1996,12(4):390-397.
    [146]Hung, I. H., Yu, K., Lavine, K. J., Ornitz, D. M., FGF9regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod[J]. Dev Biol.2007,307(2):300-313.
    [147]Ornitz, D. M., FGF signaling in the developing endochondral skeleton[J]. Cytokine Growth Factor Rev.2005,16(2):205-313.
    [148]Iwata, T., Chen, L., Li, C., Ovchinnikov, D. A., Behringer, R. R., Francomano, C. A., Deng, C. X., A neonatal lethal mutation in FGFR3uncouples proliferation and differentiation of growth plate chondrocytes in embryos[J]. Hum Mol Genet.2000,9(11):1603-1613.
    [149]Choi, D. Y., Toledo-Aral, J.J., Lin, H. Y., Ischenko, I., Medina, L., Safo, P., Mandel, G., Levinson, S. R., Halegoua, S., Hayman, M. J., Fibroblast growth factor receptor3induces gene expression primarily through Ras-independent signal transduction pathways[J]. J Biol Chem.2001,276(7):5116-5122.
    [150]Weksler, N. B., Lunstrum, G. P., Reid, E. S., Horton, W. A., Differential effects of fibroblast growth factor (FGF)9and FGF2on proliferation, differentiation and terminal differentiation of chondrocytic cells in vitro[J]. Biochem J.1999,342(3):677-682.
    [151]Aikawa, T., Segre, G. V., Lee, K., Fibroblast growth factor inhibits chondrocytic growth through induction of p21and subsequent inactivation of cyclin E-Cdk2[J]. J Biol Chem.2001,276(31):29347-29352.
    [152]Xiao, L., Naganawa, T., Obugunde, E., Gronowicz, G., Ornitz, D. M., Coffin, J. D., Hurley, M. M., Statl controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts[J]. J Biol Chem.2004,279(26):27743-27752.
    [153]Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M., Vortkamp, A., Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation[J]. Dev Cell.2002,3(3):439-449.
    [154]Wu, X L., Gu, M. M., Huang, L., Liu, X S., Zhang, H. X., Ding, X. Y., Xu, J. Q., Cui, B., Wang, L., Lu, S. Y., Chen, X. Y., Zhang, H. G., Huang, W., Yuan, W. T., Yang, J. M., Gu, Q., Fei, J., Chen, Z., Yuan, Z. M., Wang, Z. G., Multiple synostoses syndrome is due to a missense mutation in exon2of FGF9gene[J]. American Journal of Human Genetics.2009,85(1):53-63.
    [155]Brewerton, S.C., The use of protein-ligand interaction fingerprints in docking[J]. Curr. Opin. Drug Discov. Devel.2008,11:356-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700