基于分子动力学方法研究残基突变对P53构象变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P53作为肿瘤抑制因子,在肿瘤发生、发展及治疗等方面发挥着重要作用。正常P53蛋白具有“基因卫士”的功能,能参与细胞周期阻滞、DNA修复、细胞凋亡等重要的生物学过程。P53蛋白与其它蛋白结合或者发生基因突变,则会导致生物功能的丧失。在所发生的恶性肿瘤中,50%以上存在P53残基突变,而突变主要发生在P53-DNA结合域。人类肿瘤中P53突变主要在高度保守区内,以175、245,248、249、273、282位点突变最高,其中有4个突变热点残基位于高度保守区域IV(残基234-255)。研究残基突变对P53结构的影响,对预防和治疗由残基突变引起的肿瘤疾病具有重要意义。
     作为实验研究的有效补充手段,分子动力学模拟在研究生物大分子结构与功能方面具有重要作用。本文利用分子动力学模拟方法,研究P53的R249S、R248W和G245S不同突变对P53肽段构象的影响。选取P53-DNA结合域残基230-258肽段为研究对象,利用GROMACS模拟软件,对野生型肽段wtP53、单点突变型肽段P53-R249S、两点突变型肽段P53-R249S/R248W和三点突变型肽段P53-R249S/R248W/G245S进行分子动力学模拟,每组体系模拟时间为500ns。通过对二级结构、三级结构形成情况,以及构象异质性、结构稳定分析,研究不同残基突变对结构的影响,结果发现:
     (1)与wtP53肽段相比,单残基R249S发生突变时,构象虽然仍主要分布在β折叠区,但是其几率减小,同时产生α螺旋构象的倾向增加;肽段两端点残基形成strand几率减小,在突变点附近残基形成strand几率增大;构象自由能较低,结构稳定性较强。单残基R249S突变时,突变点附近结构展开程度及异质性并没有发生较大变化,同时,245和248位点附近结构也没有发生较大变化;单残基R249S突变会使二级结构发生变化,但三级结构近似不变。
     (2)R249S和R248W两点同时突变时,将使R249S突变造成的结构变化进一步加剧,其构象虽然仍旧主要分布在β折叠区,但出现α螺旋构象的几率增加;二级结构形成情况变化较大,形成2个turn和3个strand模式,同时三级结构也会发生较大变化。在R249S突变基础上,R248W突变使得突变位点附近结构变得紧凑,肽段结构变得比较稳定,残基涨落较小,结构异质性较低。
     (3)在两个残基R249S、R248W突变的基础上,增加第三个残基G245S突变后,R249S和R248W突变对肽段影响减弱,残基主链二面角平均力势分布趋于wtP53的分布;三级结构的形成情况趋于wtP53体系,表明R249S、R248W两突变与G245S突变对肽段结构的影响相反。三残基同时突变导致肽段的结构异质性增大,特别是突变位点245附近残基涨落较大,结构相对松散。
     本论文共分五章。第一章为综述,简单介绍了P53蛋白、该蛋白结构、功能以及P53-DNA结合域残基突变。第二章对分子动力学模拟进行了介绍,包括分子动力学模拟原理、分子动力学模拟的应用及发展、常用的GROMACS模拟软件。第三章介绍了本工作的研究对象及方法,包括体系选取、模拟方案以及模拟轨迹分析的几种方法。第四章从不同角度对模拟体系进行了分析研究,在确保模拟收敛的前提下,分析了残基突变对肽段二级结构、三级结构、构象异质性以及结构稳定性的影响。第五章进行了总结和展望。
P53, known as a cancer inhabited factor, plays a key role in tumor occurrence,development and treatment. P53 has“gene guard”function, participating in many biologicalprocesses, such as cell cycle arrest and/or apoptosis and DNA repair. P53 may lose itsfunction when binding with other proteins or appearing gene mutation. In malignant tumor,mutations in P53 are associated with over 50% of human mutations found in tumors,furthermore mainly located in P53-DNA binding domain. In human tumor, P53 mutations arelocated in highly conserved regions, especially 175, 245, 248, 249, 273 and 282 residues aremutated frequently. There are 3“host spots”in region IV (residue 234 -255). The study oneffect of residue mutations on P53 structure was important for the prevention and treatmentthe diseases caused by tumor.
     Molecular dynamics simulation, as an effective supplement method to experiment, hasimportant effects on studying structure and function about biological molecules. In this study,the structural characters of the P53 segment were studied by molecular dynamics simulationswith different mutations R249S, R248W and G245S. Four independent simulations forwild-type segment wtP53, one-point mutation segment P53-R249S, two-point mutationsegment R249S/R248W and three-point mutation segment R249S/R248W/G245S whichwere located in the P53-DNA binding domain (from residue 230 to 258) were performed withGROMACS soft package and GROMOS 43A1 force field. Each simulation was lasted for500 ns. The effects of different residue mutations on structure were studied by analyzing theseparameters such as the secondary structure, the tertiary structure, the structure heterogeneityand the structural stability. The results were as follow.
     (1) Compared with wtP53 segment, when R249S was mutated, the conformations werestill mainlyβstructures, but the probability decreased and the tendency to produce theα-helix conformation increased. The formation of the strand structures reduced at both ends of thesegment, but near the mutant the probability of forming the strand structures increased. Thefreedom energy of the conformation was lower to cause the structure stably. The structure andthe heterogeneity near the mutation R249S had no changes; meanwhile the structures near theresidues 245 and 248 had no changes. The mutation R249S had effect on the formation ofsecondary structure for some residues, but had little effect on the mode of the ternarystructure.
     (2) On the other hand, the R249S/R248W mutation strengthened the effect of R249S onthe segment. The conformation could still mainly keepβstructures, but the probability of theα-helix conformation increased. The formation of the secondary structures which showed 2turns and 3 strands motif, varied considerably; simultaneously a great change of ternarystructure was induced. Based on the mutation R249S, the structure near the mutation becamevery compact and more stable because of R248W. The structure heterogeneity of P53 segmentwhich had the small fluctuation became very low.
     (3) The changes of the peptide segment caused by R249S/R248W could decrease withthe mutation G245S. The distribution of potentially mean forces obtained from ramachandranwas similar to wtP53 segment. The formation of secondary structures was similar toP53-R249S segment, but the ternary structure formation was similar to wtP53 segment. Itrevealed that the mutation G245S had an opposite effect on the peptide segmentcorresponding to the mutation R249S/R248W. The structure heterogeneity of P53 segmentchanged very much, especially near the mutation G245S the residues had large fluctuationand the structure was relatively loose.
     This paper was divided into 5 chapters. The first chapter was an introduction in which weintroduced P53 protein, the structure and function of calcium protein and the mutation locatedin P53-DNA binding domain. In the second part, molecular dynamics simulation wasintroduced including molecular dynamics simulation principles, the application anddevelopment of molecular dynamics simulation and the GROMACS simulation softwarefrequently used. In the third part, we introduced the research system and methods containingthe system selection, the simulation scheme and several analysis methods of the simulation trajectory. We analyzed the simulation systems in various degrees in the fourth part. At first ,we proved the simulation was ensured convergence. We calculated the secondary structure,the ternary structure, the structure heterogeneity and the structural stability for the differentmutation systems. The summary and prospect were presented in the last chapter.
引文
[1] DeLeo, A. B.; Jay, G.; Appella, E.; et al., Detection of a transformation-related antigen inchemically induced sarcomas and other transformed cells of the mouse [J]. Proc Natl Acad Sci U SA, 1979, 76(5): 2420-2424.
    [2] Cho, Y.; Gorina, S.; Jeffrey, P. D.; et al., Crystal structure of a P53 tumor suppressor-DNAcomplex: understanding tumorigenic mutations [J]. Science, 1994, 265(5170): 346-355.
    [3] Dawson, R.; Muller, L.; Dehner, A.; et al., The N-terminal domain of P53 is natively unfolded [J].J Mol Biol, 2003, 332(5): 1131-1141.
    [4] Wells, M.; Tidow, H.; Rutherford, T. J.; et al., Structure of tumor suppressor P53 and itsintrinsically disordered N-terminal transactivation domain [J]. Proc Natl Acad Sci U S A, 2008,105(15): 5762-5767.
    [5] Chang, J.; Kim, D. H.; Lee, S. W., et al., Transactivation ability of P53 transcriptional activationdomain is directly related to the binding affinity to TATA-binding protein [J]. J Biol Chem, 1995,270(42): 25014-25019.
    [6] Lin, J.; Chen, J.; Elenbaas, B.; et al., Several hydrophobic amino acids in the P53 amino-terminaldomain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B55-kD protein [J]. Genes Dev, 1994, 8(10): 1235-1246.
    [7] Walker, K. K.; Levine, A. J., Identification of a novel P53 functional domain that is necessary forefficient growth suppression [J]. Proc Natl Acad Sci U S A, 1996, 93(26): 15335-15340.
    [8] Zhao, K.; Chai, X.; Johnston, K., et al., Crystal structure of the mouse P53 core DNA-bindingdomain at 2.7 resolution [J]. J Biol Chem, 2001, 276(15): 12120-12127.
    [9] Fields, S.; Jang, S. K., Presence of a potent transcription activating sequence in the P53 protein [J].Science, 1990, 249(4972): 1046-1049.
    [10] Pan, Y.; Nussinov, R., P53-Induced DNA bending: the interplay between P53-DNA and P53-P53interactions [J]. J Phys Chem B, 2008, 112(21): 6716-6724.
    [11] Rainwater, R.; Parks, D.; Anderson, M. E.; et al., Role of cysteine residues in regulation of P53function [J]. Mol Cell Biol, 1995, 15(7): 3892-3903.
    [12] Ruaro, E. M.; Collavin, L.; Del Sal, G.; et al., A proline-rich motif in P53 is required fortransactivation-independent growth arrest as induced by Gas1 [J]. Proc Natl Acad Sci U S A, 1997,94(9): 4675-4680.
    [13] Pietenpol, J. A.; Tokino, T.; Thiagalingam, S.; et al., Sequence-specific transcriptional activationis essential for growth suppression by P53 [J]. Proc Natl Acad Sci U S A, 1994, 91(6): 1998-2002.
    [14] Kuszewski, J.; Gronenborn, A. M.; Clore, G. M., High resolution solution NMR structure ofthe oligomerization domain of P53 by multi-dimensional NMR (sac structures) [J]. J AmChem Soc, 1999, 121: 2337-2338.
    [15] Vogelstein, B.; Lane, D.; Levine, A. J., Surfing the P53 network [J]. Nature, 2000, 408(6810):307-310.
    [16] Lane, D. P., Cancer. P53, guardian of the genome [J]. Nature, 1992, 358(6381): 15-16.
    [17] Hecker, D.; Page, G.; Lohrum, M.; et al., Complex regulation of the DNA-binding activity of P53by phosphorylation: differential effects of individual phosphorylation sites on the interaction withdifferent binding motifs [J]. Oncogene, 1996, 12(5): 953-961.
    [18] Horikoshi, N.; Usheva, A.; Chen, J.; et al., Two domains of P53 interact with the TATA-bindingprotein, and the adenovirus 13S E1A protein disrupts the association, relieving P53-mediatedtranscriptional repression [J]. Mol Cell Biol, 1995, 15(1): 227-234.
    [19] Soussi, T.; Wiman, K. G., Shaping genetic alterations in human cancer: the P53 mutationparadigm [J]. Cancer Cell, 2007, 12(4): 303-312.
    [20] Riley, T.; Sontag, E.; Chen, P.; et al., Transcriptional control of human P53-regulated genes [J].Nat Rev Mol Cell Biol, 2008, 9(5): 402-412.
    [21]李大虎;张令强;贺福初,突变体P53研究进展[J].遗传, 2008, 30(6): 697-703.
    [22] Chen, J. M.; Rosal, R.; Smith, S., et al., Common conformational effects of P53 mutations [J]. JProtein Chem, 2005, 20(2): 101-105.
    [23] Bode, A. M.; Dong, Z., Post-translational modification of P53 in tumorigenesis [J]. Nat RevCancer, 2004, 4(10): 793-805.
    [24] Joerger, A. C.; Fersht, A. R., Structural biology of the tumor suppressor P53 [J]. Annu RevBiochem, 2008, 77: 557-582.
    [25] Hainaut, P.; Soussi, T.; Shomer, B.; et al., Database of P53 gene somatic mutations in humantumors and cell lines: updated compilation and future prospects [J]. Nucleic Acids Res, 1997,25(1): 151-157.
    [26] Wright, J. D.; Noskov, S. Y.; Lim, C., Factors governing loss and rescue of DNA binding uponsingle and double mutations in the P53 core domain [J]. Nucleic Acids Res, 2002, 30(7):1563-1574.
    [27]张彦;石秀凡;刘次全, P53蛋白质R175残基替换的分子动力学研究[J].生物物理学报,2000, 16(2): 303-309.
    [28] Szymanska, K.; Chen, J. G.; Cui, Y.; et al., TP53 R249S mutations, exposure to aflatoxin, andoccurrence of hepatocellular carcinoma in a cohort of chronic hepatitis B virus carriers fromQidong, China [J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(5): 1638-1643.
    [29] Gouas, D.; Shi, H.; Hainaut, P., The aflatoxin-induced TP53 mutation at codon 249 (R249S):biomarker of exposure, early detection and target for therapy [J]. Cancer Lett, 2009, 286(1):29-37.
    [30] Friedler, A.; DeDecker, B. S.; Freund, S. M.; et al., Structural distortion of P53 by the mutationR249S and its rescue by a designed peptide: implications for "mutant conformation" [J]. J MolBiol, 2004, 336(1): 187-196.
    [31]张彦;石秀凡;刘次全, P53蛋白质Gly249和Ser249替换型三维结构的分子动力学研[J].生物化学与生物物理进展, 2000, 27(4): 382-386.
    [32] Rauf, S. M.; Ismael, M.; Sahu, K. K.; et al., The effect of R249S carcinogenic and H168R-R249Ssuppressor mutations on P53-DNA interaction, a multi scale computational study [J]. Comput BiolMed, 2010, 40(5): 498-508.
    [33]赵晶;郭泽坤,中国肝细胞癌P53基因热点突变R249S的载体构建及其在细胞中的表达[J].西北农业学报, 2007, 16(5): 131-134.
    [34]赵晶;郭泽坤,中国肝癌病人P53突变体R248W的细胞功能研究[J].西北农林科技大学学报, 2008, 36(10): 184-192.
    [35] Barakat, K.; Issack, B. B.; Stepanova, M.; et al., Effects of temperature on the P53-DNA bindinginteractions and their dynamical behavior: comparing the wild type to the R248Q mutant [J].PLoS One, 2011, 6(11): e27651.
    [36]王蕊;宫兆华;姜立新; et al., P53基因245位点突变对非小细胞肺癌细胞H1299的影响[J].China Oncology, 2011, 21(3): 177-181.
    [37] McCammon, J. A.; Gelin, B. R.; Karplus, M., Dynamics of folded proteins [J]. Nature, 1977,267(5612): 585-590.
    [38] Venken, T.; Daelemans, D.; De Maeyer, M., et al., Computational investigation of the HIV-1 Revmultimerization using molecular dynamics simulations and binding free energy calculations [J].Proteins, 2012.
    [39]曹剑;曹赞霞;赵立岭; et al.,分子动力学模拟Cu2+对α-突触核蛋白(1-17)肽段构象变化的影响[J].物理化学学报, 2012, 28(2): 479-488.
    [40] Diaz, N.; Suarez, D., Alternative Interdomain Configurations of the Full-Length MMP-2 EnzymeExplored by Molecular Dynamics Simulations [J]. J Phys Chem B, 2012, 116(9): 2677-2686.
    [41] Braun, A. R.; Sevcsik, E.; Chin, P., et al., alpha-Synuclein induces both positive mean curvatureand negative Gaussian curvature in membranes [J]. J Am Chem Soc, 2012, 134(5): 2613-2620.
    [42] Cao, Z.; Liu, L.; Wu, P.; et al., Structural and thermodynamics characters of isolatedα-syn12 peptide: long-time temperature replica-exchange molecular dynamics in aqueoussolution [J]. Acta Biochim Biophys Sin (Shanghai), 2011, 43(3): 172-180.
    [43] Kutzner, C.; Czub, J.; Grubmuller, H., Keep It Flexible: Driving Macromolecular Rotary Motionsin Atomistic Simulations with GROMACS [J]. J Chem Theory Comput, 2011, 7(5): 1381-1393.
    [44] Paul, K. M.; Peter, A. K., AMBER: Assisted model building with energy refinement. A generalprogram for modeling molecules and their interactions [J]. J Comput Chem, 1981, 2(3): 287-303.
    [45] Phillips, J. C.; Braun, R.; Wang, W.; et al.; Scalable molecular dynamics with NAMD [J]. JComput Chem, 2005, 26: 1781-1802.
    [46] Materials studio 4.0 online help [EB]. Accelry, 2006.
    [47] Ponder, J. W.; Case, D. A., Force fields for protein simulations. Adv Protein Chem, 2003, 66:27-85.
    [48] Van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A.; et al., Biomolecular Simulation: TheGROMOS96 Manual and User Guide [M]. Vdf Hochschulverlag AG an der ETH Zurich,Groningen, 1996, ISBN3 7281 2422 2.
    [49] Verlet, L., Computer‘experiments’on classical fluids I: thermodynamical properties ofLennard-Jones molecules [J]. Phys Rev, 1967, 159: 98-103.
    [50] Honeycutt, R. W., The potential calculation and some application [J]. Methods in Comput Phys,1970, 9: 136-211.
    [51]申海兰;赵靖松,分子动力学模拟方法概述[J].装备制造技术2007, 10, 1672- 545X.
    [52] Wang, J.; Zhang, Z.; Liu, H., et al., Quasiequilibrium unfolding thermodynamics of a smallprotein studied by molecular dynamics simulation with an explicit water model [J]. Phys Rev EStat Nonlin Soft Matter Phys, 2003, 67(6 Pt 1): 061903.
    [53] Korzhnev, D. M.; Religa, T. L.; Banachewicz, W., et al., A transient and low-populatedprotein-folding intermediate at atomic resolution [J]. Science, 2010, 329 (5997): 1312-1316.
    [54] Cao, Z.; Wang, J., A comparative study of two different force fields on structural andthermodynamics character of H1 peptide via molecular dynamics simulations [J]. J Biomol StructDyn, 2010, 27(15): 651-661.
    [55] Cao, Z..; Liu, L.; Wang, J., Effects of pH and temperature on the structural and thermodynamiccharacter of a-syn12 peptide in aqueous solution [J]. J Biomol Struct Dyn, 2010, 28(3): 343-353.
    [56] Szymanska, K.; Chen, J. G.; Cui, Y., et al., TP53 R249S mutations, exposure to aflatoxin, andoccurrence of hepatocellular carcinoma in a cohort of chronic hepatitis B virus carriers fromQidong, China [J]. Cancer Epidemiol Biomarkers Prev, 2009, 18(5): 1638-1643.
    [57] Guex, N.; Peitsch, M. C., SWISS-MODEL and the Swiss-PdbViewer: an environment forcomparative protein modeling [J]. Electrophoresis, 1997, 18(15): 2714-2723.
    [58] Guex, N.; Peitsch, M. C.; Schwede, T., Automated comparative protein structure modeling withSWISS-MODEL and Swiss-PdbViewer: a historical perspective [J]. Electrophoresis, 2009, 30Suppl 1: S162-S173.
    [59]白红军;来鲁华,蛋白质相互作用:界面分析,结合自由能计算与相互作用设计[J].物理化学学报, 2010, 26(7): 1988-1997.
    [60] Noskov, S. Y.; Lim, C., Free energy decomposition of protein-protein interaction [J]. Biophys J,2001, 81(2): 737-750.
    [61] Guerois, R.; Nielsen, J. E.; Serrano, L., Predicting changes in the stability of proteins and proteincomplexes: a study of more than 1000 mutations [J]. J Mol Biol, 2002, 320(2): 369-387.
    [62] Krissinel, E.; Henrick, K., Inference of macromolecular assemblies from crystalline state [J]. JMol Biol, 2007, 372(3): 774-797.
    [63] Sippl, M. J., Calculation of conformational ensembles from potentials of mean force. An approachto the knowledge-based prediction of local structures in globular proteins [J]. J Mol Biol, 1990,213(4): 859-883.
    [64] Qiao, X.; Chen, Y. W., A Statistical Texture Model of the Liver Based on GeneralizedN-Dimensional Principal Component Analysis (GND-PCA) and 3D Shape Normalization [J]. IntJ Biomed Imaging, 2011, 2011: 601672.
    [65] Chandrasekaran, R.; Ramachandran, G. N., Studies on the conformation of amino acids. XI.Analysis of the observed side group conformation in proteins [J]. Int J Protein Res, 1970, 2(4):223-233.
    [66] Hu, H.; Elstner, M.; Hermans, J., Comparison of a QM/MM force field and molecular mechanicsforce fields in simulations of alanine and glycine "dipeptides" (Ace-Ala-Nme and Ace-Gly-Nme)in water in relation to the problem of modeling the unfolded peptide backbone in solution [J].Proteins, 2003, 50(3): 451-463.
    [67] Nikolova, P. V.; Wong, K. B.; DeDecker, B.; et al., Mechanism of rescue of common P53 cancermutations by second-site suppressor mutations [J]. EMBO J, 2000, 19(3): 370-8.
    [68] Wong, K. B.; DeDecker, B. S.; Freund, S. M.; et al., Hot-spot mutants of P53 core domain evincecharacteristic local structural changes [J]. Proc Natl Acad Sci U S A, 1999, 96(15): 8438-8442.
    [69] Joerger, A. C.; Ang, H. C.; Veprintsev, D. B.; et al., Structures of P53 cancer mutants andmechanism of rescue by second-site suppressor mutations [J]. J Biol Chem, 2005, 280(16):16030-16037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700