马生长激素(GH)基因序列、分子进化及其多态性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以不同品种马为研究对象,利用 PCR 技术,首次成功地克隆了 6 个品种马的生长激素基因 1923bp 的片段(GenBank 登录号:AY837571),包括全部外显子和内含子。测序后,对其序列结构、核苷酸组成及所编码的氨基酸进行了初步研究,并利用 DNAMAN、DNAStar、Mega2.1、PAUP4.0 等生物学软件,构建了马 GH 基因进化树,同时对各品种马 GH 基因序列进行了 PCR-SSCP 和 PCR-RFLP 分析。研究结果表明:
    1、马 GH 基因含有 5 个外显子和 4 个内含子,5 个外显子大小分别为:10 bp、161 bp、117 bp、162 bp 和 201 bp;4 个内含子大小分别为 253 bp、213 bp、199 bp 和 272 bp。外显子数目、大小、位置与哺乳类其他物种相比,表现出高度保守性。
    2、马 GH 基因序列核苷酸组成富含 GC(60%以上),且外显子 GC 含量(61%)明显高于 5'端和 3'端的非编码区。编码氨基酸的密码子不同位点 GC 含量也有显著差异,表现为第一、第三位碱基富含 GC,且第一位碱基的 GC 含量接近于全序列,第三位碱基 GC 含量远高于其它位点,达 84.1%,第二位碱基富含 AT。密码子碱基组成的差异因物种不同而异,具有种属特异性。
    3、马 GH 基因外显子在编码氨基酸时,对同义密码子的使用表现有强烈的偏好性。不同物种对同义密码子使用的偏倚程度与偏好类型各不相同,也具有种属特异性。
    4、马 GH 基因所编码的蛋白质中,20 种氨基酸的含量差异很大。亮氨酸(L)含量最高,达 14.28%;色氨酸(W)最低,为 0.93%。极性氨基酸酸含量(54.99%)高于非极性氨基酸(45.01%)。此外,半胱氨酸(C)的含量与其他哺乳类完全一样,均为 5 个,而且半胱氨酸的位置在不同物种中高度保守,说明半胱氨酸对维持 GH 的空间结构起到极其关键的作用。
    5、马 GH 氨基酸位点的进化演变表明,马各品种间氨基酸差异数很少,仅有 0~5个氨基酸不同,说明相互间的进化距离很小。马与人及其它动物相比较,进化距离由近至远依次为猪、狗、牛、羊和人。
    6、采用不同方法构建的马 GH 基因进化树表明,马 GH 基因不同区段进化速率不同,外显子区域进化速率最慢;内含子序列中碱基变异频繁,进化较快。进化树分枝显示,乌珠穆沁马、三河马、锡尼河马三个品种与其它品种间已形成明显的进化分歧。
    7、PCR-SSCP 分析结果表明,在所检测的 5'端侧翼区、第一内含子、第二外显子和第五外显子四个位点中,仅第五外显子检测到多态,该多态位点由 A 和 B 两种等位基因控制。GH 基因第 1719bp 处一个 T→C 的突变和 1743 处 G→A 的突
    变,导致等位基因 B 变为等位基因 A。除纯血马外,A 基因在各品种中均为优势等位基因,B 基因为纯血马的优势基因。在此多态位点,乌珠穆沁马、乌审马和巴尔虎马处于 Hardy-Weinberg 平衡状态,纯血马、三河马和锡尼河马则未达到 Hardy-Weinberg 平衡状态。
    8、对马 GH 基因全序列进行 PCR-RFLP 分析,采用四种限制性内切酶 BstⅪ、HindⅢ、SmaⅠ和 StuⅠ进行酶切,仅后两种酶检测到多态。SmaⅠ位点出现 A、B 两种等位基因,在 GH 基因序列的 1256bp 处发生 T→C 的转换,导致产生 1 个 SmaⅠ的酶切位点 CCC↓GGG,从而使基因型 AA 变为基因型 BB。在该位点乌审马 B 基因频率最高,为 0.667,纯血马 A 等位基因频率最高,达 0.643。乌审马、乌珠穆沁马和巴尔虎马处于 Hardy-Weinberg 平衡状态,锡尼河马、三河马和纯血马处于非平衡状态。 StuⅠ位点存在 C 和 D 两种等位基因,在 GH 序列的 1353bp 处发生了 C→T的变化,导致产生一个 StuⅠ的酶切位点 AGG↓CCT,使基因型 CC 变为基因型DD;C 基因为锡尼河马的优势等位基因,基因频率达 0.63,D 基因是纯血马的优势等位基因,基因频率为 0.74。该位点上,只有乌审马处于 Hardy-Weinberg平衡状态,其余品种均未达到 Hardy-Weinberg 平衡。
    9、本研究首次对几个品种马 GH 基因序列、分子进化及其多态性进行了初步研究,研究结果对今后合理利用、开发和保护我国马种的遗传资源具有一定的指导意义。
The different breeds of horses were studied. Using the PCR technique, the full sequences of horse growth hormone(hsGH) gene of six breeds were firstly cloned and sequenced. The length of this gene was 1923bp, including all the exons and all the introns (GenBankAccession:AY837571). And the composition of nucleotide and amino acid encoded by the gene were analyzed. The molecular evolution trees were established by DNAMAN, DNAstar, Mega2.1 and PAUP4.0. The PCR-SSCP and PCR-RFLP analysis of the full sequence of hsGH gene in different horse breeds were studied. The results were as follows:
    1、The sequence of amplified horse GH gene was 1923bp, including five exons and four introns. The length of five exons were 10bp, 161bp, 117bp, 162bp and 201bp. The length of introns were 253bp, 213bp, 199bp and 272bp long. The number, length and locus of exons showed high conservative compared with other mammals.
    2、The analysis of nucleotide composition showed that G/C content (over 60%) is abundant in horse GH gene, and the contents (61%) of exons were significant higher than those of noncoding regions in 5'and 3'ends. In encoding regions, the G/C contents were abundant at the first (60.3%) and third (84.1%) sites. A/T content was rich in the second site(58.7%). The codon composition were variable in different species, which were specific in each species.
    3、The analysis of codon usage indicated that the usage of synonymous codon was very biased, and the biased kinds were different among species.
    4、The composition analysis of amino acid showed that the contents of 20 kinds of amino acid were unbalanced. The most was leucine(L,14.28%) and the least was tryptophan(W,0.93%). The contents of polar amino acid(54.99%) were higher than those of nonpolar amino acid(45.01%) in growth hormone of all hores. The amounts of cysteine were five, same with other mammals. The location of cysteine was conservative in different species. This indicated that the cysteine was very important in supporting the structure of GH.
    5、Only 0-5 amino acids were different in 6 horse breeds GH. Compared to other mammals, the evolution distance from near to far was pig, dog, cow, sheep, and human.
    6、From the molecular evolution trees constructed by different tree-building methods, we got the conclusion that the evolution speed of horse GH gene was different in different regions. Exon regions were more conservative than intron regions. So, the evolution speed of intron regions was more quickly. Sanhe horse, Wuzhumuqin horse
    and Xinihe horse lay in a same evolution branch, it was different from other branches of horse.
    7、The polymorphisms of PCR-SSCP existed only in the fifth exon, but not in the 5'flanking region, first intron, and second exon. This polymorphism of the fifth exon was controlledd by two alleles: A and B.The mutation of T→C and G→A at 1719bp and 1743bp converted allele B into A. Allele B was dominant in Chunxue horse, while allele A was dominant in other horse breeds. The gene reached Hardy-Weinberg equilibrium in Wuzhumuqin horse, Wushen horse and Baerhu horse.
    8、The analysis of PCR-RFLP showed that the polymorphism sites with SmaⅠand StuⅠwere inspected, but not with BstXⅠand HindⅢ. There were two alleles A and B at SmaⅠsite. The mutation of T→C at 1256bp provided a SmaⅠsite(CCC↓GGG), which lead to the change of genotype from AA to BB. The frequency of allele B of Wushen horse was the highest (0.667) and the frequency of allele A was the highest for Chunxue horse(0.643).The gene were in Hardy-Weinberg equilibrium in Wushen horse, Wuzhumuqin horse and Baerhu horse. There were two alleles C and D at StuⅠsite.The mutation of C→T provided a StuⅠsite(AGG↓CCT) and lead to the change of genotype from CC to DD. C and D were prevailing alleles for Xinihe horse and Chunxue horse .The gene frequencies were 0.63 and 0.74 respectively. The gene only in Wushen horse was in Hardy-Weinberg equilibrium .
    9、Our research based on horse'GH gene sequences will geatly benefit the utilization, development and protection of genetic resource
引文
1 《中国家畜家禽品种志》编委会.《中国马驴品种志》.上海科学技术出版社, 1986
    2 涂友仁 主编.《内蒙古自治区家畜家禽品种志》.内蒙古人民出社,1985
    3 《中国现代养马》编写组.《中国现代养马》.新疆人民出版社,1981
    4 刘祖洞 著.《遗传学》.高等教育出版社,第二版,1992
    5[美] 根井正利 著,王家玉 译.《分子群体遗传学与进化论》.农业出版社,1983
    6 陈灵芝,马克平 主编.《生物多样性科学:原理与实践》.上海科学技术出版社,2001
    7 Masatoshi Nei & Sudhir Kumar 著,吕宝忠,钟扬,高莉萍 等译.《分子进化与系统发育》.高等教育出版社,2002
    8 J. 萨姆布鲁克,E.F.费里奇,T.曼尼阿蒂斯著,黄培堂 等译.《分子克隆实验指南》.科学出版社,第三版, 1993
    9 芒来 著.《中国猪遗传资源保存的系统工程研究》.内蒙古人民出版社,1997
    10 芒来 著.《马业科学》.内蒙古农业大学印制中心,2003.4
    11 芒来 著.《动物数量遗传学》.内蒙古农业大学印制中心,2003.4
    12 张细权,李加琪,杨关福 编著.《动物遗传标记》.中国农业大学出版社,1997
    13 阎隆飞,张玉麟 编著.《分子生物学》[M]中国农业大学出版社,第 2 版,1997
    14 张成岗,贺福初 编著.《生物信息学 方法与实践》.科学技术出版社,2002
    15[巴西]J.塞图宝,J 梅丹尼斯 著,朱浩等译.《计算分子生物学导论》.科学技术出版社,2003
    16 常青,周开亚. 分子进化研究中系统发生树的重建.生物多样性,1998,6(1):55-62
    17 曹运长,李文笙等. 蓝太阳鱼生长激素全长 cDNA 的克隆与序列分析.水产学报,2004,28(5):589-593
    18 陈蓓,朱威. 人生长激素研究进展.生物学杂志,2004,21(1):9-11
    19 陈平杰等. 生长激素分泌规律的研究概况.国外畜牧科技,1998,25(2):32-34
    20 陈桂芳,谢庄. 西藏牦牛、菏斯坦牛三个功能基因部分序列多态性的比较研究.畜牧兽医学报,2003,34(2):128-131
    21 程泽信. 浅议利川马的开发利用价值与途径.中国草食动物,1999,1(3):29-31
    22 成嘉,冯浩等. 日本白鲫生长激素-Ⅱ基因编码区 cDNA 的克隆及序列分析.湖南师范大学自然科学学报,2004,3:93-97
    23 董君明. 马的演化.生物学教学,1998,12:33
    24 杜智恒,白秀娟. 梅花鹿生长激素基因的克隆及序列分析.经济动物学报,2004,8(3)131-134
    25 甘荫全,何兰花. 猪生长激素的研究进展.广东畜牧兽医科技,2003,28(6):11-13
    26 高雪. 中国矮马遗传资源的研究.草食家畜,2000,4:7-8
    27 高雪. 生长激素作用机理的研究进展.黄牛杂志,2003,29(1):50-53
    28 管刚 任广杰. 对马、牛野外采血的体会.南畜牧兽医,2001,3:38
    29 贺淹才. 生长激素和生长激素受体的分子生物学.生命的化学,2002,22(1):29-32
    30 候文通等. 宁强矮马和中型马血液蛋白质多态位点的遗传检测〔J〕.养马杂志,1992,(2):2-6
    31 侯文通等.关中马两类型血液蛋白多态位点的遗传变异分析〔J〕.养马杂志,1994,(2):14-17
    32 侯文通. 利用血清酯酶对西南马类型间遗传关系的研究〔J〕.养马杂志,1993,(2):1-3
    33 侯文通. 陕西马种血液蛋白遗传标记特征及聚类分析.畜牧兽医杂志,1996,15(4):1-3
    34 侯文通. 东南亚小型马来源的遗传学和历史学研究.西北农业大学学报,1994,22(1):7-12
    35 侯文通,李湘运. 西南马的遗传分化及若干地方类型亲缘关系的研极.西北农业学报,1993,4:98-102
    36 侯文通,孙超. 南亚小型马近缘关系的研究.西北农业学报,1995,23(5): 23-28
    37 侯文通,孙超. 蒙古马东西两大类型群体遗传变异分析.畜牧兽医杂志,1995,2:5-7
    38 侯文通,历卫红. 我国马种遗传资源的管理.农牧产品开发,1999,5:32-33
    39 黄怀昭等. 安宁果下马(中国矮马)血液蛋白多态性及与其它马品种遗传距离的研究.中国畜牧杂志,1992,2:7-10
    40 黄勇富. 猪生长激素基因.四川农业大学学报,1995,13(3):346-352
    41黄勇富. 动物GH基因和前GH一级结构的比较研究. 四川农业大学学报,1996,14(2):267-272、258
    42 黄勇富,张亚平,曾凡同等. 四川省四大地方品种猪的随机扩增多态 DNA 分析.四川农业大学学报,1997,15(1):95-98
    43黄勇富,张亚平,曾凡同等. 猪mtDNA多态性与中国地方猪种起源分化的关系[J].遗传学报,1998,25(4):322-329
    44 江树勋,马鸿媚. 大黄鱼生长激素基因的分离及序列测定.生物工程进展,2002,22(2):88-90
    45 江世贵,张殿昌. 鲮生长激素基因 cDNA 的分子克隆和序列分析.中国水产科学,2003,10(2):97-101
    46 经荣斌,宋成义,陶勇等. 猪 GH 基因部分突变位点在不同品种中的分布.扬州大学学报,2003,1:30-33
    47 孔繁华,尤勇等. 马鹿生长激素基因的克隆与 5'侧翼区序列分析.曲阜师范大学学报,2002,28(1):75-78
    48劳海华,白俊杰等. 鲫两种不同生长激素cDNA的分子克隆和分析.水生生物学报,2004,1:75-80
    49 李虹. 生长激素和生长激素受体的多样性.生物学杂志,2002,19(4):10-11
    50 李美玉等. 山羊生长激素基因 5'调控区的多态性分析.遗传,2004,26(6):831-835
    51 李美玉,潘玉春等. 山羊 GH 基因 5'调控区的单核苷酸多态性研究.莱阳农学院学报,2004,21(3):193-195
    52 李美玉,潘庆杰等. 山羊生长激素基因 PCR-RFLP 多态性分析.莱阳农学院学报, 2004,1:9-12
    53 刘长国 罗军等. 波尔山羊生长激素(GH)基因克隆及序列分析西北农林科技大学学报,2004,6:16-20
    54 刘爱华 林世英. 云南南矮马和普通马的比较细胞遗传学观察.南畜牧兽医,1995(J):30-32
    55 刘守仁等. 绵羊生长激素(oGH)的分子克隆与序列测定.中国兽药杂志,2003,37(6):8-10
    56 刘守仁. 生长激素作用的分子机制.草食家禽,1998,3:3-6
    57 罗静,张亚平. 分子钟及其存在的问题.人类学学报,2000,19(2):151-158
    58 马文祥,刘国世. 猞猁 GH 基因部分序列及其 5'调控区的克隆与分析.东北林业大学学报,2001,29(5):103-106
    59 毛小玲,杨易. 牦牛垂体特异转录因子-1、生长激素和α-乳清蛋白基因多态性的分析.四川草原,2004,5:23-25
    60 芒来,李金莲. 中国蒙古马与国外纯血马 mtDNA D-Loop 高变区序列比较.遗传,2005,27(1):145-150
    61 芒来,张焱如等. 中国马遗传育种研究进展.畜牧与饲料科学,2004,3:32-35
    62 李金莲,芒来. 利用微卫星标记对蒙古马和纯血马遗传多样性的研究.畜牧兽医学报,2005,36:6-9
    63 莫赛军,宋平等. 鲫鱼生长激素Ⅰ基因内含子 2 的多态性分析.遗传学报,2004,6:45-53
    64 欧江涛,钟金城等. 牦牛生长激素释放激素基因的克隆与序列分析.四川畜牧兽医(J)2003,30(5):27-30
    65 欧江涛,钟金城等. 牦牛生长激素基因的测序和多态性研究.黄牛杂志,2003,29(2):12-15
    66 潘宝平. 生物进化理论的新进展.生物学通报,2002,37(2):8-10
    67 史宪伟等. 云南四个马品种的随机扩增多态 DNA(RAPD)分析.牧兽医学报,1998,29(3):193-203
    68 石长青等. 哺乳动物脑垂体研究进展.塔里木农垦大学报,2003,15(3)14-17
    69 宋成义,经荣斌. 畜禽 GH 基因多态性与生产性能相关研究进展.国外畜牧科技,2000,27(2):25-27
    70 宋成义,经荣斌,陶勇等. 猪 GH 基因部分突变位点对生产性能的影响[J].遗传,2001,23(5):427-430
    71 宋成义,经荣斌,张金存等. 5 个品种猪生长激素基因座位多样性比较.中国畜牧杂志,2002,38(1):22-23
    72 孙逊,朱尚权. 生长激素的结构与功能.国外医学,生理、病理科学与临床分册,1999,19(1):6-9
    73 孙毅,张伟. 分子生物学与进化的新理论.生物学杂志,2004,21(5):9-11
    74 谭建华,安铁洙等. 马脑垂体促生长激素细胞和血浆生长激素浓度的性别差异.中国试验动物学杂志,2002,12(4):195-198
    75 陶勇. RFLP 技术及其在猪育种中的应用.动物科学与动物医学,1999,16(2):194-97
    76 陶勇,经荣斌,宋成义等. 猪生长激素基因座位 BspⅠ、HhaⅠ酶切片段多态特征的研究.华中农业大学学报,2001,20(5):460-62
    77 陶勇,经荣斌,宋成义等. 猪生长激素基因座位 BspⅠ、HhaⅠ酶切片段多态特征的研究.华中农业大学学报,2001,20(5):460-62。
    78 王荣梅,杨关福,张细权. 猪生长激素基因启动子区的序列变异研究.韶关学院学报,2004,25(9):63-66
    79 王文君,陈克飞等. 中外不同猪品种生长激素基因遗传多态性检测.农业生物技术学报,2003,11(1):103-104
    80王文君,黄路生. 猪生长激素因子的研究进展.中国畜牧杂志, 2000, 36(2): 56-7
    81 王文君,陈克飞,任军等. 猪生长激素基因(GH2)多态性与猪部分生产性能的关系.遗传学报,2002,29(2):111-14
    82 王宁,陈润生. 基于内含子和外显子的系统发育分析的比较.科学通报,1999,44(19):2095-2101
    83 王铁权等. 云南(嵩明)矮马的体型及血型特征的研究初报.云南畜牧兽医,1995(J):45-48
    84 王铁权. 我国南北马种系列的生物学特征及其分类系统性研究.养马杂志,1990,2:8-10
    85 王春阳,王秋芳. 牛生长激素催乳作用研究进展.西北农业学报,1999,8(1):105-107
    86王振山. 三河马6-磷酸葡萄糖脱氢酶及葡萄糖磷酸异构酶的多态性.黑龙江畜牧兽医,2001,2:6-9
    87 王振山. 三河马蛋白酶抑制剂的遗传多态性.内蒙古畜牧科学,2001,22(3):1-3
    88 王振山,历卫宏,李建成. 中国纯血马血红蛋白多态性的遗传分析[J].黑龙江畜牧兽医,2000,7:3-4
    89 王振山,郭永新,李建成. 三河马运铁蛋白型的研究.畜牧与兽医,2002,34(1):10-22
    90 王振山,郭永新. 三河马血红蛋白的遗传多态性.黑龙江畜牧兽医,2001,5:5-6
    91 王振山,郭永新,李建成. 三河马血液遗传标记的研究.内蒙古畜牧科学 2001,22(3):1-3
    92王振山,德江等. 玉树藏马运铁蛋白的遗传多态性.内蒙古畜牧科学2000,21(3):5-7
    93 王振山,德江等. 玉树藏马血清白蛋白多态性的研究.辽宁畜牧兽医,1997,2: 4-5
    94 王振山,岳高峰. 中国矮马血液遗传标记的初步研究.黑龙江畜牧兽医杂志,2002,10:2-5
    95 王振山,张玉国. 微卫星 DNA 多态性及其在马匹品种登记中的应用.中国畜牧杂志,2001,37(4):43-44
    96 王振山,高仲元. 马匹亲子鉴定的研究进展.中国畜牧杂志,1998,34(5):48-49
    97 昔奋攻,余荭等. 牛生长激素 cDNA 的克隆与序列分析.新疆农业科学,1996,5:238-240
    98 肖敬平. 析遗传密码子多态性之谜.生命科学研究,2001,5(4):321-325
    99 肖敬平. 遗传密码子进化的阶段性.生命科学研究,2002,6(3):198-203
    100 邢晋 ,帅素容,李学伟 等. 猪生长激素基因 ApaⅠ酶切位点多态性分析.西北农林科技大学学报(自然科学版),2002,30(5):44~46
    101 宿兵,刘爱华,林世英等.云南普通马矮型马蛋白多态性及其品种的遗传分化关系.动物学研究,1995,16(2):126-131
    102 解德文,刘爱华,林世英.云南马关矮马和普通马血清蛋白多态性与类缘关系的研究(J)云南畜牧兽医,1995(J):43-44
    103 熊文中,楚胜捷. 生长激素对畜禽生产性能的调控.天津畜牧兽医,1997,14(2):22
    104 姚银花. 浅谈生长激素.黔东南民族师范高等专科学校学报.2003,21(3):36-37
    105 叶春,张亚平. 川金丝猴垂体生长激素基因的克隆与初步分析.遗传,2003,25(3):291-294
    106于洪川,张书起等. 滩羊体大品系生长激素基因的RFLPs的检测.甘肃畜牧兽医,2002,2:6-8
    107 于洪川,魏智清等. 滩羊生长激素基因 PCR-RFLPs 反应体系的优化.宁夏农学院学报,2003,24(1):30-31+34
    108 张才俊,王勇. 玉树藏马血清酯酶的多态性.青海畜牧兽医杂志,200131(1):1-2
    109 张才骏等.徨中马血清酯酶多态性的研究〔J〕.青海畜牧兽医杂志,1995,25(4):19-21
    110 张原,陈之瑞. 分子进化生物学中序列分析方法的新进展.植物学通报,2003,20(4):462-468
    111 章岩,李宁,张沅. 鸡生长激素基因 5 端部分调控区的克隆分析(J).遗传学报,1998,25(5):427-432
    112 赵书红. 猪垂体生长激素基因的克隆和部分序列分析.生物工程学报,1992,8(4):318-323
    113 赵小祥,李晶等. 鲤鱼生长激素基因的 PCR 扩增、克隆及其序列比较.生物工程学报,1996,12(3):284-288
    114 Ascacio-Martinez,J A and Barrera-Saldana,H A, Sequence of a cDNA encoding horse growth hormone.Gene,1994,143(2)299-300
    115 Barsh CS. The human growth hormone gene family: structure and evolution of the chromosomal locus. Nucleic Acids Res. 1983, 11:3939-3958
    116 B K Lee, G F Lin, B A Crooker, et al. Association of somatotropin (BST) Gene polymorphism at the 5th exon with selection for milk yield in holstein cows. Domestic Animal Endocrinology, 1996, 13(4): 373-381
    117 Brandon RB,Giffard JM,Bell K.Single nucleotide polymorphisma in the equine transferring gene.Animal Genet,1999,30(6):439-443
    118 Caccone A, Powell J R. DNA divergence among hominoids. Evolution, 1989, 43: 925-942
    119Carpenter MA,Broad TE.Polymorphism in the coding sequence of the horse transferring gene.Genome,1994,37(1):157-165
    120 Chen,E.Y., Liao,Y.C., Smith,D.H., et al. The human growth hormone locus: nucleotide sequence, biology, and evolution. Genomics, 1989, 4(4):479-497
    121 Cheng W T K, Lee C H, Hung C M, et al. Growth hormone gene polymorphisms and growth performance traits in Duroc, Landrace and Tao-yuan pigs. Theriogenology, 2000,54;1225-1237
    122 Choi T, Huang M, Gorman C, et al. A genetic intron increase gene expression in the transgenic mice [J]. Mol Cell Biol, 1991, 11(6): 3070-3074
    123 Denoto F M. Human growthhormone DNA sequence and mRNA structure: possible alternative splicine. Nucleic Acids Res. 1981, 9: 3719-3730
    124Falaki M. Taq I growth hormone gene polymorphism and milk production traits in Holstein Friesian cattle. 1996, 63: 175-181
    125 Fiddes J. Structure of gene for human growth hormone and chorionic somatommotropin. Proc. Natl. Acad. Sci. USA, 1979, 76: 4294-4299
    126 Fotouhi N, Karatzas C N, Kuhnlein U, et al. Identification of growth hormone DNA polymorphisms which respond to divergent selection for abdominal fat content on chickens. Theor. Appl. Genet., 1993, 85:931-936
    127 Gooteine E. The duplicated gene copy of the ovine growth hormone gene contains a Pvu II polymorphism in the second intron. Animal Genetics. 1993, 24(4): 319-321
    128 Gordon, D. F., Quick, D. P., Erwin, C. R., et al. Nucleotide sequence of the bovine growth hormone chromosomal gene. Mol. Cell. Endocrinol. 1983, 33(1): 81-95
    129 Herbert G, Easteal S. Relative rates of nuclear DNA evolution in human and old world monkey lineages. Mol Biol Evol, 1996, 13(7): 1054-1057 130 Hill ew,Bradley DG.History and intedrity of thoroughbred dam lines revealed in equine mtDNA variation.Animal Genet,2002,33(4):287-294
    131 Hoj S. Growth hormone gene polymorphism associated with selection for milk fat production in lines of cattle. Anim. Genet. 1993, 24(2): 91-96
    132Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 1985, 2: 13-34
    133Ishida N,Hasegawa T, et al.Polymorphic sequence in the D-loop region of equine mitochondrial DNA.Animal Genet,1994,25(4):215-221
    134 Ishida N,Hasegawa T,Oyunsuren T,,Mukoyama H.PCR-RFLP analysis of the cytochrome b gene in horse mitochondrial DNA.Animal Genet.1996,27(5):359-363
    135 Kirkpatrick B.W, Huff B. M. Detection of insention polymorphisms in 5' flank and second intron of the porcine growth hormone gene. Animal Genetics, 1991, 22(2) : 192-193
    136 Kirkpatrick B.W. Hae II and Msp I polymorphisms are detected in the second intron of the porcine growth hormone gene, Animal Genetics, 1992, 23(2): 180-181
    137 K.S.Aberle,H.Hamann,C.Drogemuller and O.Distl.Genetic diversity in German draught horse breeds compared with a group of primitive,riding and wild horses by means of microsatellite DNA markers.Animal Genetics,2004,35(4)270-273
    138 Larsen N. J., Apa I and Cfo I polymorphisms in the porcine growth hormone gene. Anim. Genet., 1993, 2( 1): 71-79
    139 Lee B.K. Association of somatotropin(BST) gene polymorphism at the 5th exon with selection for milk yield in Holstein cows. Domestic animal endocrinology, 1996, 13(4): 378-381
    140 Li W H, Tanimura M., Sharp P M. An evolution of the molecular clock hypothesis using mammalian DNA sequence. J Mol Evol, 1987, 25: 330-342
    141 Lucy M.C. Variants of somatotropin in cattle: gene frequencies in major dairy breeds and associated milk production. Domestic Animal Endocrinology, 1993, 10(4): 325-333
    142 Marklund S,Chaudhary R,Marklund L, et al. Extensive mtDNA diversity in horses revealed by PCR-RFLP analysis.Animal Genet,1995,26(3):193-196
    143 Manious Z,Wallis OC,Wallis M.Episodic molecular evolution of pituitary growth hormone in Cetartiodactyla.J Mol Evol,2004,58(6):743-53
    144 MeEwen D G, Ornitz D M. Regulation of the fibroblast growth factor receptor 3 promoter and intronⅠenhancer by Sp1 family transcription factors. J. Biol. chem., 1998, 273(9): 5349-5357
    145 Mou L. Presence of an additional PstI fragment in intron of the chicken growth hormone-edcoding gene. Gene, 1995, 160(2): 313-314
    146 Myka JL,Lear TL,Houck ML,Ryder OA,Bailey E.FISH analysis comparing genome organization in the domestic horse (Equus caballus) to that of the Mongolian wild horse (E.przewalskii).Cytogenet Genome Res,2003;102(1-4): 222-225
    147 Myka JL,Lear TL,Houck ML,Ryder OA,Bailey E.Homologous fission event(s) implicated for chromosomal polymorphisms among five species in the genus Equus. Animal Genat,2003,95(3):215-218
    148 Nielson, V. H. Restriction fragments length polymorphisms at the growth hormone gene in pigs. Anim. Genet. 1991, 22(3): 291-294
    149 Ofir, R., Gootwine, E. Ovine growth hormone gene duplication structural and evolutionary implications. Mamm. Genome, 1997, 8(10): 770-772
    150 Orian, J. M., O'Mahoney, J.V., Brandon, M.R. Cloning and sequencing of the ovine growth hormone gene. Nucleic Acids Res. 1988, 16(18): 9046
    151 Rocha J.L. Statistical associations between restriction fragment length polymorphisms and quantitative traits in beef cattle. J. Anim. Sci. 1992, 70: 3360-3370
    152 Sotiropoulos A, Perrot-Applanat M, Dinerstein H, et al. Distinct cytoplasmic regions of the growth hormone receptor are required for activation of JAK2, Mitogon-activated protein kinase, and transcription. Endocrinology, 1994, 153:1292-1298
    153 Tanaka, M., Hosokawa,Y., Watahiki,M., et al. Structure of the chicken growth hormone encoding gene and its promoter region. Gene, 1992, 112(2): 235-239
    154 Thomas Jansen,Peter Forster. Mitochodrial DNA and the origions of the domestic horse. Population Biology,2002;99 :10905-10910
    155 Unanian M.M. Rapid communication: polymerase chain reaction restriction fragment length polymorphism in the bovine growth hormone gene. J. Anim. Sci., 1994, 72: 220
    156 Vize P D, Wells R E. Isolation and characterization of the porcine hormone gene. Gene,1987, 55(2-3): 339-344
    157 Xu X,Gullberg A,Arnason U.The complete mitochondrial DNA (mtDNA) of donkey and mtDNA comparisons among four closely related mammalian species-pairs.J Mol Evol.1996 Nov;43(5):438-446
    158 Yerle M, Lahbib-Mansais Y, Thomsen P D, et al. Location of the porcine growth hormone gene to chromosome 12p1.2-p1.5. Animal Genetics, 1993, 24(2): 129-131
    159 Zhang Y-P, Ryder OA. Mitochondrial cytochrome b gene sequences of old world monkeys: with special reference on evolution of Asion colobines. Primates, 1998, 39(1): 39-49

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700