盐度和低氧胁迫对卵形鲳鲹生理因子的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究了盐度对卵形鲳鲹幼鱼长期和短期渗透调节的影响,盐度对其消化酶活性的影响以及急性低氧胁迫对其血清生化离子的影响。旨在为不同养殖环境条件下卵形鲳鲹的人工养殖提供参考资料,丰富卵形鲳鲹渗透调节机制、消化生理以及血液方面的基础资料。
     1、盐度对卵形鲳鲹幼鱼渗透调节的影响
     研究了盐度对卵形鲳鲹幼鱼血浆、鰓、肾渗透压和鳃丝Na~+-K+-ATP(NKA)酶活性的影响。研究结果表明:试验结束时,盐度组5、25、35的存活率为分别为87.14%,95.71%,88.86%,其它盐度组无死亡;各盐度鳃丝NKA活性除盐度15外都呈先下降后升高随之回落并趋于稳定的趋势,在2 d后的各时间段随盐度变化呈“U”型分布;血浆渗透压在同一盐度下随时间增加呈先上升后下降在上升随后回落并趋于稳定,在2 d后血浆渗透压随盐度的增加而增大,盐度组35、30显著的高于其它盐度组(P< 0.05);卵形鲳鲹幼鱼在低盐度(5、15),渗透调节器官鰓和肾共同完成对其体渗透压的调节,在其它盐度组,肾对其体渗透压的调节起主导作用。
     2、急性盐度胁迫对卵形鲳鲹幼鱼渗透调节的影响
     研究了水环境急性盐度胁迫对卵形鲳鲹幼鱼鳃Na~+-K+-ATP(NKA)酶活力,血清、鳃丝、肾脏渗透压的影响。结果表明:将幼鱼从盐度30(对照)中直接转移至盐度5、10、15、20、25、35水体中,96 h后无死亡。各盐度处理鳃NKA酶活性和血清渗透压在最初72 h内出现一定波动,随后变化平稳。试验结束时(96 h) ,NKA活性随盐度梯度呈“U”型分布,盐度35处理酶活高于其它处理,盐度20处理活性最低。各处理的血清渗透压大小(222.5~311.5 mOsmol·kg-1)在96 h时,随着盐度地变化,以盐度15、20为中心,呈对称变化,在盐度20后随盐度上升呈先上升后下降的趋势。相同盐度的鰓渗透压随时间变化呈先上升后下降逐渐稳定的趋势。肾渗透压除盐度5、10处理外,其他盐度组随时间没有显著变化,维持一定的稳定性。说明卵形鲳鲹幼鱼在生理上具有广盐性鱼类的“高渗环境高NKA活性”特征,有较强的渗透压调节与平衡能力。
     3、盐度对卵形鲳鲹大规格幼鱼消化酶和饥饿失重的影响
     研究了5、15、25、30、35五种盐度对卵形鲳鲹幼鱼(全长8.232±1.414cm,体质量8.685±2.463g)肠、幽门盲囊、胃和肝脏中消化酶活力和饥饿体重减轻的影响。结果表明:在不同盐度下蛋白酶、淀粉酶、脂肪酶活性在消化道内的分布是相同的,由高到低依次为肠、幽门盲囊、胃、肝。在胃和肝中,蛋白酶活性随盐度增加先升高后降低,盐度25组显著的高于其它盐度组(P< 0.05)。在肠和幽门盲囊中,蛋白酶活性随着盐度的升高而降低,盐度组5、15、25显著的高于盐度组30、35(P< 0.05)。淀粉酶活力在胃和肝中随盐度变化呈现先升高后降低的趋势,在盐度25组到达最大值,显著的高于盐度组5、30、35(P< 0.05)。在肠和幽门盲囊中,淀粉酶活力随盐度的升高而降低,在盐度30后升高。在胃、肝、幽门盲囊中,脂肪酶活性随盐度的增加呈先上升后下降的趋势,在盐度30时达到最大值,盐度5时酶活力最低。肠脂肪酶活性随盐度的升高而升高,在盐度35时达到最大值(P< 0.05),盐度5时最低(P< 0.05)。盐度极显著地影响卵形鲳鲹饥饿失重率( F=6.52>5.99, df1 = 4, df2 = 10, P < 0. 01)。
     4、急性低氧胁迫对卵形鲳鲹血清指标的影响
     研究了水环境急性低氧胁迫对卵形鲳鲹(Trachinotus ovatus)血清指标的影响。结果表明:急性低氧胁迫后卵形鲳鲹血清离子含量与对照组相比都有不同程度的升高,其中钾、磷、尿素氮浓度上升趋势不明显(P> 0.05),钠、氯、钙浓度与对照组均有显著性差异(P< 0.05),铁极显著高于对照组(P< 0.01)。卵形鲳鲹血清蛋白、尿酸、肌酐、血脂血糖等有着不同的变化,其中肌酐、尿酸极显著高于对照组(P< 0.01),总蛋白、总胆固醇显著低于对照组(P< 0.05),葡糖糖、甘油三酯、白蛋白、球蛋白与对照组无显著性差异(P> 0.05)。血清中乳酸脱氢酶、乳酸脱氢酶同工酶、谷丙转氨酶、谷草转氨酶含量与对照组均无显著性差异(P> 0.05)。肌酸激酶含量呈明显高于对照组(P< 0.01),肌酸激酶同工酶显著高于对照组(P< 0.05),γ-谷氨酰转肽酶含量显著低于对照组(P< 0.05),碱性磷酸酶略低于对照组(P> 0.05)。
Studies of the effects of salinity on osmoregulation of juvenile T.ovates in short and long term and effects of salinity on digestive enzyme activities and weight loss for hunger , and acute hypoxic stress on serum biochemical ions. Designed for providing reference materials in breeding T.ovate in different environmental conditions breeding, riching the aspects of basic data of osmotic adjustment mechanism, digestive physiology, and blood of T.ovates.
     1、Effects of salinity stress on osmoregulation of juvenile Trachinotus ovatus
     Studies the effects of salinity changes on gill NKA activities,survival rates, and serum, gill, kideney osmolality of juvenile T. ovatus were measured at 1h,6 h ,12h, 1d, 2d, 4d, 6d, 9d and 12d after transfer to salinity level of 30(control) and salinity levels of 5,15,25,35. The results show that: the survival rate of salinity group 5,25,35 was 87.14%, 95.71%, 88.86%, no mortality occurred in the other salinity groups salinity at the end of experiment. Gill NKA activity salinity were tested the trend that is first decreased and then increased outside the salinity of 15 with salinity change, after the 2d the gill NKA was "U"-type distribution at other time. Plasma osmolality increased and then decreased and stabilized with the increase of time at the same salinity group,the plasma osmotic pressure in the 2d with the increase of salinity, salinity group 35,30 significantly higher than the other salinity groups (P <0.05) .The gills and kidney osmotic of T .ovatus larvae together complete the regulation of its osmotic pressure in low salinity (5,15), the kidney play a leading role in regulation of osmotic pressure of their body in the other salinity group.
     2、Effects of abrupt salinity stress on osmoregulation of juvenile Trachinotus ovatus
     Effects of abrupt salinity changes on gill Na~+-K+-ATPase(NKA) activities,survival rates, and serum, gill, kideney osmolality of juvenile Trachinotus ovatus were measured at 24 h, 48 h and 96 h after transfer to salinity level of 30(control) and salinity levels of 5,10,15,20,25,35. No mortality occurred in all the salinity groups and control group at the 96 h. In all treatments, the gill NKA activity and serum osmolality fluctuated in first 72 h, and then changed smoothly. The NKA activity varied with salinity changes grade in U shape, being higher in salinity 35 and the lowest in salinity 20 at 96h. With salinity changes, the serum osmolality ( ranged 222.5– 311.5 mOsmol·kg- 1 )to salinity of 15, 20 center showed symmetrical change, and it was the first post rise after a downward trend after salinity of 20.At the same salinity, the gills osmolality change showed the trend that was the first rise after a downward then gradually stabilized . Except the salinity of 5, 10, kideney osmolality had no significant change over time, maintain certain stability in other salinity group. It was concluded that Trachinotus ovatus could be characterized physiologically as a“higher NKA-in-hyperosmotic media”marine euryhaline teleost with the capability of rapid and effective balance and osmoregulation.
     3、Effects of salinity on digestive enzyme activities and weight loss for hunger of juvenile Trachinotus ovatus
     The effects of salinity on three digestive enzyme activities of large-sized juvenile Trachinotus ovatus were investigated at salinity of 5, 15, 25, 30, 35 groups, with total length10.53±1.41 cm and body weight (15.01±2.46) g. Protease, amylase and lipase activities were measured and compared in four digestive organs, including intestine, pyloric caeca, stomach and liver. The results showed that under different salinities, the same distribution was in different digestive organs of protease, amylase and lipase activities, and activities in order were intestine, pyloric caeca, stomach, liver. With increasing salinity, in the stomach and liver protease activity increased first and then decreased, which at salinity of 25 group was significantly higher than at the other salinity groups (P﹤0.05); in the intestine and pyloric caeca protease activity decreased, which at salinity of 5,15 and 25 groups were obviously higher than at the salinity of 30 and 35 groups (P﹥0.05). In the stomach and liver the same trend existed in the amylase and protease activity, salinity of 25 group having the maximum activity was significantly higher than salinity of 5,30 and 35 groups (P﹤0.05); in the intestine and pyloric caeca decreased first and then began to rise in the salinity of 30.In the stomach, liver, pyloric caeca lipase activity increased first and then decreased, furthermore, the maximum activity at salinity of 30 groups and the minimum activity at salinity of 5 groups; in the intestine the activity had been increasing, furthermore, the maximum activity at salinity of 35groups (P< 0.05) and the minimum activity at salinity of 5 groups(P﹤0.05). .Salinity affected the weight loss rate for hunger of T.ovatus significantly. (F = 6.52> 5.99, df1 = 4, df2 = 10, P <0. 01).
     4、Acute hypoxia stress on ovatus serum biochemical indexes
     The present study deal with the influence of acute hypoxia stress on serum biochemical indices of Trachinotus ovatus in the environment. The results showed: after acute hypoxia stress for T.ovatus, ions content in serum compared with the control group increased to varying degrees, including potassium, phosphorus, urea nitrogen concentration compared with the control group, no significant differences (P> 0.05), sodium and chloride , calcium concentration were significantly different (P < 0.05) from the control group, and iron was greatly higher than control group(P< 0.01). There was great significant differences on serum protein, uric acid, creatinine(P< 0.01), and significant differences on total protein and total cholesterol, and no significant differences on glucose, triglyceride, albumin, globulin (P> 0.05) between control group and test group. Serum creatine kinase, lactate dehydrogenase, isoenzyme, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase levels were not significantly different (P> 0.05) compared with the control group. Creatine kinase levels were greatly significantly higher (P< 0.01). Creatine kinase isoenzyme levels were significantly higher (P< 0.05). GGT was significantly lower than the control group (P< 0.05).
引文
[1]中国科学院动物研究所等主编.南海鱼类志.北京,科学出版社, 1962, 392-393.
    [2]区又君,罗奇,李加儿,等.卵形鲳鲹消化酶活性的研究Ⅰ成鱼和幼鱼消化酶活性在不同消化器官中的分布及其比较[J].南方水产科学, 2011, 7(1): 50-55.
    [3]张邦杰,梁仁杰,王晓斌,等.卵形鲳鲹Trachinotus ovatus的引进、咸海水池养与越冬.现代渔业信息, 2001, 16(3): 16-20.
    [4]黎祖福,陈刚,宋盛宪,等.南方海水鱼类繁殖与养殖技术Ⅶ.北京:海洋出版社, 2006, 106-114.
    [5]何永亮,区又君,李加儿.卵形鲳鲹早期发育的研究[J].上海海洋大学学报, 4(18): 428-434.
    [6]区又君,李加儿.卵形鲳鲹的早期胚胎发育[J].中国水产科学, 2005, 12(6): 786-789.
    [7]齐旭东,区又君.卵形鲳鲹不同组织同工酶表达的差异[J].南方水产, 2008, 4(3): 38-42.
    [8]李加儿,区又君,刘匆.红笛绸和卵形鳍鳝鳃的扫描电镜观察与功能探讨[J].海洋水产研究, 2007, 6(28): 45-50.
    [9]罗奇,区又君,李加儿,等.卵形鲳鲹消化酶活性的研究Ⅱ盐度和昼夜变化对幼鱼消化酶活性的影响[J].海洋渔业, 2010, 32(1): 54-58.
    [10]区又君,罗奇,李加儿.卵形鲳鲹消化酶活性的研究III pH对幼鱼和成鱼消化酶活性的影响[J].海洋渔业, 2010, 32(4): 417-421.
    [11]区又君,罗奇,李加儿,等.卵形鲳鲹消化酶活性的研究Ⅳ养殖水温和酶反应温度对幼鱼酶活性的影响[J].海洋渔业, 2011, 33(1): 28-32.
    [12]TUTMAN P, GLAVI N, KOZUL V. et al. Preliminary information on feeding and growth of pompano, Trachinotus ovatus (Linnaeus 1758) (Pisces; Carangidae) in captivity[J]. Aquaculture International, 2004, (12): 387–393.
    [13]陶启友,郭根喜.卵形鲳鲹深水网箱养殖试验[J].海水养殖, 2006, 2: 39-40.
    [14]M.C.柯里默,张建,蓝祥宾.利用近海网箱和膨化饲料养殖卵形鲳鲹的生长表现.渔业现代化, 2002 , 6 : 15-16.
    [15]方卫东.鲜杂鱼与配合饲料饲喂卵形鳍够对比试验.福建农业学报, 2005, 20(3):25-26.
    [16]蓝祥宾,陈文,翁如柏,等.卵形绍缝近海网箱养殖试验.科学养鱼, 2005, 8: 37.
    [17]杨火盛.卵形绍鳍人工养殖试验.福建水产, 2006, 3(1): 39-40.
    [18]陶启友,郭根喜.深水网箱养殖卵形鲳鲹应注意的几个问题[J].齐鲁渔业, 2006, 23(9): 26-27.
    [19]GONG P, LI J L, YUE G H, et al. Twelve novel microsatellite loci from an endangered marine fish species golden pompano Trachinotus blochii[J]. TECHNICAL NOTE, 2008, 10(5): 1365-1367.
    [20]陈秀荔,肖群平,陈晓汉,等.卵形鲳鲹微卫星分子标记的筛选[J].武汉大学学报, 2010, 56(5): 564-569.
    [21]许晓娟,李加儿,区又君,等.深水网箱养殖卵形鲳鲹血液指标[J].动物学杂志, 2008, 43(6): 109-11.
    [22]杜涛,罗杰.卵形鲳鲹与布氏鲳鲹人工育苗的对比研究.海洋科学, 2004, 28(7): 76-78.
    [23]周永灿,朱传华,张本,等.卵形鲳鲹大规模死亡的病因及防治[J].海洋科学, 2001, 4(25), 40-43.
    [24]陈伟洲,许鼎盛,王德强,等.卵形鲳鲹人工繁殖及育苗技术研究[J].台湾海峡, 2007, 3(26): 435-442.
    [25]叶富良,张健东.鱼类生态学[M].广州:广东高等教育出版社, 2002: 22-23.
    [26]HWANG P P, LEE T H. New insights into fish ion regulation and mitochondrion-rich cells[J]. Compative Biochemistry and Physiology, 2007, 148: 479- 497.
    [27]HIROI J, STEPHEN D, CORMICK M, et al. Funcional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia embryos, by means of triple immune of luorescence staining for Na+/K+-ATPase, Na+/K+/Cl- cotransporter and CFTR anion channel[J]. Journal of Experimental Biology, 2005, 208: 2023-2036.
    [28]陈惠群,王国良.硬骨鱼类的渗透压调节[J].海洋科学, 2002, 26(1): 24-26.
    [29]李加儿,刘匆,段彪.提高鱼类渗透压调节能力研究进展[J].水产养殖, 2002(3): 30-32.
    [30]林浩然.鱼类生理学[M].广州:广东高等教育出版社, 2007, 3: 123, 135-136.
    [31]冯广朋,庄平,赵峰,等.不同盐度海水驯养中史氏鲟血清激素浓度的变化[J].上海水产大学学报, 2007, 16(4): 318-321.
    [32]黄建盛,陈刚,杨健,等.盐度对卵形鲳鲹幼鱼生长及能量收支的影响[J].广东海洋大学学报,2007,27(4):30-34.
    [33]冯是良,罗国芝,谭洪新,等.不同盐度下宝石鲈生长性能研究[J].水利渔业, 2006, 26(5): 29-31.
    [34]王艳,胡先成,罗颖.盐度对鲈鱼稚鱼的生长及脂肪酸组成的影响[J].重庆师范大学学报(自然科学版), 2007, 24(2): 62-66.
    [35]施兆鸿,夏连军,王建钢,等.盐度对黄鲷胚胎发育及早期仔鱼生长的影响[J].水产学报, 2004, 28(5): 599-602.
    [36]姬广闻.盐度对香鱼仔鱼生长和成活率的影响[J].淡水渔业, 2003, 33(4): 3-5.
    [37]Brocksen R W, Cole R. E. Physiological responses of three species of fishes to various salinity[J]. Fish Res. Board Can. 1972, 29: 399-405.
    [38]马亚洲,张海发,黄泽强,等.盐度变化对黑鲷幼鱼生长与存活的影响[J].水产科技. 2008(2): 17-18.
    [39]李小勤,李星星,冷向军,等.盐度对草鱼生长和肌肉品质的影响[J].水产学报, 2007, 31(3): 343-348.
    [40]王武,甘炼,张东升,等.盐度对江黄颡鱼生存和生长的影响[J].水产科技情报, 2004, 31(3): l2l-124.
    [41]王吉桥,程骏驰,许重,等.盐度对鸭绿沙塘鳢幼鱼存活和生长的影响[J].水产学杂志, 2007, 20(1): 1-8.
    [42]林向阳,刘伟斌,叶金聪.盐度对双棘黄姑鱼仔鱼活力及仔稚鱼生长的影响[J].台湾海峡, 2005, 24(3): 351-355.
    [43]姜志强,刘钢,金柏.盐度对美国红鱼幼鱼生长和摄食的影响[J].大连水产学院学报, 2005, 20(2): 91-94.
    [44]王涵生.盐度对真鲷受精卵发育及仔稚鱼生长的影响[J].中国水产科学, 2002, 9(1): 33-37.
    [45]林建喜,袁重桂,阮成旭,等.不同盐度下奥尼罗非鱼幼鱼生长的研究[J].福州大学学报(自然科学版), 2006, 34(6): 925-928.
    [46]李希国,李加儿,区又君.盐度对黄鳍鲷幼鱼消化酶活性的影响及消化酶活性的昼夜变化[J].海洋水产研究, 2006, 27(1): 40-45.
    [47]陈品健,王重刚,郑森林.盐度影响真鲷幼鱼消化酶活力的研究[J].厦门大学学报(自然科学版), 1998, 37(5): 754-756.
    [48] CHEN M Y, ZHANG X M, GAO T X, et al. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthatmus maximus[J].
    Chinese Journal of Oceanology and Limnology, 2006, 24(3): 300-306.
    [49]庄平,章龙珍,田宏杰,等.盐度对施氏鲟幼鱼消化酶活力的影响[J].中国水产科学, 2008, 15(2): 198-203.
    [50]杨健,陈刚,黄建盛,等.温度和盐度对军曹鱼幼鱼生长与抗氧化酶活性的影响[J].广东海洋大学学报, 2007, 27(4): 25-29.
    [51]王晓杰,张秀梅,李文涛.盐度胁迫对许氏平鲉血液免疫酶活力的影响[J].海洋水产研究, 2005, 26(6): 17-21.
    [52]潘鲁青,唐贤明,刘泓宇,等.盐度对褐牙鲆(Paralichthys olivaceus)幼鱼血浆渗透压和鳃丝Na+-K+-ATPase活力的影响[J].海洋与湖沼, 2006, 37(1): 1-6.
    [53]柳敏海,罗海忠,陈波,等.盐度、pH对鮸鱼幼鱼鳃丝Na+/-K+-ATPase活力的影响[J].海洋湖沼通报, 2008, (1): 109-113.
    [54]ROMAO S, FREIRE C A, FANTA E. Ionic regulation and Na+/-K+-ATPase activity in gills and kidney of the Antarctic aglomerular cod icefish exposed to dilute sea water [J]. Fish Biol, 2001, 59(2): 463-468.
    [55]雷思佳,盐度与体重对台湾红罗非鱼耗氧率的影响[J].应用生态学报, 2002, 13(6): 739-742.
    [56]唐贤明,田景波,王国福,等.盐度对大菱鲆幼鱼耗氧率和排氨率的影响[J].南方水产, 2006, 2(4): 54-57.
    [57]MCCORMICK S D. Endocrine control of osmot regulation in teleost fish[J]. Amer Zool, 2001, 41: 781-794.
    [58]PISAM M, AUPERIN B, PRUNET P, et al. Effects of prolactin on alpha and beta chloride cells in the gill epithelium of the salt-water adapted tilapia“Oreochromis niloticus”[J]. Anat Rec, 1993, 235(2): 275-284.
    [59]Manzon LA. The role of prolactin in fish osmo regulation: areview[J]. Gen Comp Endocrinol, 2002, 125: 291-310.
    [60]McCormick S D. Effects of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+-K+-ATPase in Atlantic salmon (Salmo salar), Interaction with Cortisol[J]. Gen Comp Endocrinol, 1996, 101: 3-11.
    [61]王义强,黄世蕉,赵维信,等.鱼类生理学[M].上海:上海科学技术出版社, 1990, 188-191, 240
    [62]BOWDEN T J. Modulation of the immune system of fish by their environment [J]. Fish Shellfish Immunol, 2008, 25: 373-383.
    [63]WEI L Z, ZHANG X M, HUANG G Q. Effects of limited dissolved oxygen supplyon the growth and energy allocation of Juvenile Chinese Shrimp, Fenneropenaeus chinensis[ J]. World Aquacult Soc, 2009, 40(4): 483-492.
    [64]赵慧慧,吴垠,王炳刚,等.循环养殖系统中溶氧水平对虹鳟消化酶活性及消化吸收率的影响[J].大连水产学院学报, 2007, 22(3): 198-202.
    [65]王春琳,吴丹华,董天野,等.曼氏无针乌贼耗氧率及溶氧胁迫对其体内酶活力的影响[ J].应用生态学报, 2008, 19(11): 2420-2427.
    [66]胡国宏,孙广华,朱世成,等.低溶氧量对怀头鲇呼吸代谢耗氧率的影响[J].动物学杂志, 2002, 37(2): 46-48.
    [67]MIDDLETON R J, REEDER B C. Dissolved oxygen fluctuations in organically and Inorganically fertilized walleye (Stizostedion vitreum) hatehery Ponds[J]. Aquaculture, 2003, 219(1): 337-345.
    [68]CHABOT D, DUTIL D. Redueed growth of Atlantic cod in non-lethal hypoxia conditions[J]. Fish Biol, 1999, 55(3): 472-491.
    [69]KARIM M R, SEKINE M, UKITA M. Simulation of eutrophication and associated occurrence of hypoxic and anoxic condition in a coastal bay in Japan[J]. Mar Pollut Bull, 2002, 45(1-12): 280-285.
    [70]WIHELM F D, TORRES M A, ZANIBONI-FILHO E, et al. Effeets of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapara Leporinus elongates (Valeneiennes, 1847)[J]. Aquaculture, 2005, 244: 349-357.
    [71]SOFRONIOS E P, GAR T. Blue Tilapia (Oreochromis aureus) growth rate in relation to dissolved oxygen concentration under recirculated water conditions[J]. AquacultEng, 1996, 15: 181-192.
    [72]CHBOT D, DUTIL J D. Reduced growth of Atlantic cod in non-lethal hypoxia Conditions[J]. Fish Biol, 1999, 55: 472-491.
    [73]Buentello J A, GATIIN DM III, NEIL W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish(Ictalurus puntactus)[J]. Aquaeulture, 2000, 182: 339-352.
    [74]WIHELM F D, TORRES M A, ZANIBONI-FIHO E, et al. Effects of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapara Leporinus elongates(Valenciennes, 1847)[J]. Aquaculture, 2005, 244: 349-357.
    [75]NEIV B, RONALDO L L,BIBIANA M, VANIA L L, et al. Survival, growth and Biochemical parameters of silver catfish,Rhamdia quelen(Quoy and Gaimard, 1824), juveniles exposed to different dissolved oxygen levels[J]. Aquae Res, 2006, 37: 1524-1531.
    [76]FOSS A, EVENSEN T H, IMSLAND A K, et al. Effect of reduced salinities on growth, food conversation effieiency and osmoregulatory status in the spotted wolfish [J]. Fish Biol, 2001, 59: 416-426.
    [77]FOSS A, EVENSEN T H, QIESTAD V. Effect of hypoxia and hyperoxia on growth and food conversion effieiency in the spotted wolfish Anarhichas minor(Olafsen)[J]. Aquac Res, 2002, 28: 1257-1263.
    [78]TRAN-DUY A, SCHRAMA J W, VAN D A A , VERREETH A T. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus[J]. Aquaculture, 2008, 275: 152-162.
    [79]DAVIS S L. Environmental modulation of the immune system via endoerine system[J]. Domest Anim Endocrin, 1998, 15(5): 253-289.
    [80]WEI L, ZHANG X, LI J, et al. Compensatory growth of Chinese shrimp, Fenneropenaeus chinensis following hypoxie exposure[J]. Aquac Int, 2008, 16(5): 455- 470.
    [81]VOUTSINOS G A. Influence of feeding level on growth rate of Tilapia aureus (Steindaehner) reared in a closed circulated system[J]. Aquac Fish Manage, 1988, 19: 291-298
    [82]PAPOUTSOGLOU S, PETROPOULOS G, BARBIERU R, et al. Polyculture rearing of Cyprinus carpio(L) and Oreochromis aureus(St) using aclosed circulated system[J]. Aquaculture, 1992, 103: 311-320.
    [83]GLASS M L, ANDERSEN N A, KRUHOFFER M, et al. Combined effects of environmental PO2 and temperature on ventilation and blood gases in the carp Cyprinus carpio[J]. Exp Biol, 1990, 148: 1-17.
    [84]SOIVI A, NIKINMAN M, WESTMAN K.The blood oxygen binding properties of hypoxic Salmo gairdneri[J]. Comp Phy, 1980, 136B: 83-87.
    [85]WOOD C M. Branehial ion and acid-base transfer in freslhwater teleost fish: environmental hyperoxia as aprobe[J]. Physiol Zool, 2001, 1991, 64:68-102.
    [86]TRUCHOT J P. Acid- base homeostasis in aquatic animals exposed to natural and perturbed environments[J]. Belg Zool, 1994, 124: 61-71.
    [87]房文红,王慧,来琦芳,等.斑节对虾鳃Na+-K+ATPase的活性.上海水产大学学报, 2001, 10(2): 140-144.
    [88]胡贤德,林北堏.水体溶氧量对对虾消化道蛋白酶活力的影晌[J].沈阳大学学报, 1999, 30(4): 457-459.
    [89]徐勇,曲克明,马绍赛.过饱和溶氧对大菱鲆生长及消化酶的影响[J].渔业现代化, 2008, 35(4): 24-27.
    [90]BICKLER P E, BUCK L T. Hypoxia tolerance in reptiles, amphibians, and fishes: Life with variable oxygen availability[J]. Annu Rev Physiol, 2007, 69: 145-170.
    [91]LUSHCHAK V I,BAGNYUKOV T V,LUSHCHAK O V, et al. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues[J]. Int Bioehem Cell Biol, 2005a, 37: 1319-1330.
    [92]LUSHCHAK V I, BAGNYUKOV T V, HUSAK V V, et al.Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues[J]. Int Biochem Cell Biol, 2005b, 37: 1670-1680.
    [93]LUSHCHAK V I, BAGNYUKOV T V. Effects of different environmental oxygen levels on free radical processes in fish[J]. Comp Biochem Physiol PartB, 2006c, 144: 283-289.
    [94]LUSHCHAK V I, BAGNYUKOV T V. Hypoxia induces oxidativve stress in tissues of a goby, the rotan Perccottus glenii[J]. Comp Biochem Physiol, 2007, 148: 390-397.
    [95]WU R S.Hypoxia: from molecular responses to ecosystem responses[J].Mar Pollut Bull, 2002, 45(1-12): 35-45.
    [96]NEIVA B, RONALBO L L, BIBIANA M,et al. Survival, growth and bioehemical parameters of silver catfish, Rhamdia quelen(Quoy and Gaimard,1824), juveniles exposed to different dissolved oxygen levels[J]. Aquae Res, 2006, 37: 1524-1531.
    [97]COOPER R U, CLOUGH L M, FARWELL M A,et al. Hypoxic-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus[J]. Exp Mar Biol Ecol, 2002, 279: 1-20.
    [98]李小勤,刘贤敏,冷向军,等.盐度对乌鳢(Channa argus)生长和肌肉品质的影响[J].海洋与湖沼, 2008, 39(5): 505-510.
    [99]王根林,石文雷,黄凤钦,等.盐度对青鱼、团头鲂鱼种生存、生长的影响[J].淡水渔业, 1993, 23(6):8-11.
    [100]EVANS D H, PIERMARINI P M, CHOE K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiological Reviews, 2005, 85(1): 97-177.
    [101]VANDER L A, VANAUDENHOVE M, VERHOYE M, et al. Osmoregulation ofthe common carp (Cyprinus carpio) when exposed to an osmotic challenge assessed invivo and noninvasively by diffusion-and T2-weighted magnetic resonance imaging[J]. Comparative Biochemistry and Physiology, PartA, 1999, 124(3): 343-352.
    [102]林浩然.鱼类生理学[M].广东:广东高等教育出版社, 1999, 109-133.
    [103]屈亮,庄平,章龙珍,等.盐度对俄罗斯鲟幼鱼血清渗透压、离子含量及鳃丝Na+/-K+-ATP酶活力的影响[J].中国水产科学, 2010, 17(2): 243-251.
    [104]徐力文,刘广锋,王瑞旋,等.急性盐度胁迫对军曹鱼稚鱼渗透压调节的影响应[J].应用生态学报, 2007, 18(7): 1596- 1600.
    [105]谢志浩.鱼类的渗透压调节[J].生物学通报, 2002, 37(5): 22-23.
    [106]翟中和,王喜中,丁明孝,等.细胞生物学[M].北京:高等教育出版社, 2000, 78.
    [107]SINGER T D, FINSTAD B, MCORMICK S D, et al. Interactive effects of cortisol treatment and ambient seawater challenge on gill Na+, K+-ATPase and CFTR expression in two strains of Atlantic salmon smolts[J]. Aquaculture, 2003, 222(1-4):15-28.
    [108]PARTRIDGE G J, JENKINS G I. The effect of salinity on growth and survival of juvenile black bream(Acanthopagrus butcheri)[J]. Aquaculture. 2002, 210(1-4): 219- 230.
    [109]SAMPAIO L A, BIANCHINI A. Salinity effects on osmoregulation and growth of the euryhaline flounder Paralichthys orbignyanus[J]. Exp Mar Biol Ecol, 2002, 269(2): 187-196.
    [110]ALTINOK I, GALLI S M, CHAPMAN F A. Ionic and osmotic regulation capabilities of juvenile Gulf of Mexico sturgeon, Acipenser oxyrinchus de sotoi[J]. Comparative Biochemistry and Physiology Part A, 1998, 120(4): 609-616.
    [111]HANDELAND S O, BJORNSSON, ARNESEN A M, et al. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains[J]. Aquaculture, 2003, 220(1-4): 367-384.
    [112]王福荣.生物工程分析与检测[M].北京:中国轻工业出版社. 2005, 204-207.
    [113]KAWAI S, IKEDA S. Studies on digestive enzymes of fish II.Effects of dietary change on the activity of digestive enzymes in carp[J]. Bull Jap Soc Sci Fish, 1972, 38 (3): 265-270.
    [114]吴勇,区又君,李希国.消化酶活力在千年笛鲷幼鱼不同消化器官中的比较研究[J].南方水产, 2006, 4(2): 61-63.
    [115]朱爱意,褚学林.大黄鱼消化道不同部位两种消化酶的活力分布及其受温度、pH的影响[J].海洋与湖沼, 2006, 37(6): 561-567.
    [116]区又君,罗奇,艾丽,等.消化酶在条石鲷成鱼体内的分布及pH对消化酶活力的影响[J].氨基酸和生物资源, 2010, 34(3): 1-4.
    [117]倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、鳙和尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨[J].动物学报, 1993, 39(2): 160-168.
    [118]于娜,李加儿,区又君,等.野生和养殖鲻鱼消化酶活性的比较研究[J].中国水产科学, 2011, 18(1): 127-135.
    [119]DAS K M, TRIPATHI S D. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella(Val.) [J]. Aquaculture, 1991(1), 92: 21-32.
    [120]SQUIRES E J, HAARD N F, FELTHAM L A W. Gastric proteases of Green- -land cod Gadus ogac[J]. Biochem Cel1 Bio1, 1986, 64(3): 215-222.
    [121]SANCHEZ-CHIANG L, CISTEMAS E, PONCE O. Partial purification of pepsins from adult and juvenile salmon fish Oncorhynchus keta, effect of NaC1 on proteolytic activities[J]. Comp Biochem Physio, 1987, 87(4): 793-797.
    [122]NODA M, MURAKAMI K. Studies of proteinases from the digestive organs of sardine II Purification and characterization of two acid proteinase from the stomach[J]. Bioch Bioph Acta, 1981, 658(1): 27-32.
    [123]尾崎久雄著(李爱杰译).鱼类消化生理(下册)[M].上海:上海科学技术出版社, 1985, 548-558.
    [124]CHIU Y N, BENITEZ L V. Studies on the carbohydrates in the digestive tract of the milkfish chanos[J]. Mar Biol, 1981, 61(2-3): 247-254.
    [125]Miglavs, Jobling I M. The effects of feeding regime on proximate body composotion and patterns of energy deposition in juvenile Arctic charr, Salvelinus alpinus. Fish Biol, 1989, 35: 1-11.
    [126]GAYLORD T G, GATLIN III D M. Dietary protein and energy modifications to maximize compensatory growth of channel catfish ( Ictalurus punctatus )[J]. Aquaculture, 2001, 194(3-4): 337-348.
    [127]尾崎久雄(许学龙等译).鱼类血液与循环生理.上海:上海科学技术出版社, 1982, 6-96.
    [128]ANDENEN D E, REID S D, MOON T W, et al. Metabolic effects associated with chronically elevated cortisol in rainbow trout (Oncorhynchus mykiss)[J]. Can J Fish Aquat Sci, 1991, 48(9): 1811-1817.
    [129]VIJAYAN M M, MOON T W. Acute handling stress alters hepatic glycogenmetabolism in food-deprived rainbow trout (Oncorhynchus mykiss)[J]. Can J Fish Aquat Sci, 1992, 49(11): 2260-2266.
    [130]BURTIS C A, ASHWOOD E R. Tietz Fundamentals of Clinical Chemistry [M]. Philadelphia: W B Saunders Company, 1996.
    [131]陈成勋,邢克智,孙学亮.急性拥挤胁迫对半滑舌鳎血液指标的影响[J].华北农学报, 2011, 26(1): 229-233.
    [132]冀德伟,李明云,王天柱,等.不同低温胁迫时间对大黄鱼血清生化指标的影响[J].水产科学, 2009, 28(1): 1-4.
    [133]崔杰峰,潘柏申.急性心肌梗死血清酶标志物沿革[J].上海医学检验杂志, 2000, 15(1): 13-14.
    [134]BERENT D, SCHMIDT H, WAHLI T, et al. Effluent from a sew age treatment works causes changes in serum chemistry of brown trout (Salmo trutta L.) [J]. Ecotox Environ Safe, 2001, 48(2): 140-147.
    [135]黄周英,陈奕欣,赵扬,等.三丁基锡对文蛤鳃酸性磷酸酶,碱性磷酸酶和Na+,K+- ATP酶活性的影响[J].海洋环境科学, 2005, 24(3): 56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700