青蒿醛脱氢酶基因克隆及青蒿琥酯抗菌增敏作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     青蒿素以高效抗疟作用最为著名,但它也具有抗肿瘤、抗炎症(自身免疫病)等多种功效。由于世界市场供应的青蒿素主要来自我国人工种植的青蒿,其青蒿素含量偏低,生产成本较高,加之种植规模逐年萎缩,因而难以完全满足全球疟疾感染者对青蒿素类抗疟药的庞大需求,于是利用基因工程微生物大规模生产青蒿素成为当前最有希望的解决方案。本研究还对青蒿琥酯的抗菌作用进行了分子药理学评价,为利用抗生素增敏剂克服“超级细菌”日益严重的抗生素耐药性提供新思路。
     方法:
     本研究从青蒿中克隆了一个新的青蒿素前体合成基因——青蒿醛脱氢酶基因-1(ALDH1),并经双酶切、扩增和重测序予以确认。通过构建pESC-ALDH1表达载体(含尿嘧啶合成基因)并导入酿酒酵母YPH501菌株(尿嘧啶缺陷型)后,获得能在SD-U(尿嘧啶缺陷培养液)中生长的转化子。将酵母工程菌培养48-72h后,加入半乳糖处理12h诱导ALDH1基因表达,由青蒿试管苗制备无细胞提取液,对酵母发酵产物进行生物转化。
     在青蒿琥酯抗菌增敏作用研究体外实验中我们检测经过缺氧适应的地衣芽孢杆菌产生的NO值和生长状态(OD值)以及单纯添加抗生素和抗生素和青蒿琥酯联用时NO值和过氧化氢酶活性。在体内实验中以大肠杆菌和地衣芽孢杆菌分别作为革兰氏阴性菌(G-)和阳性菌(G+)的代表,通过粪便菌落培养和计数或血清NO含量测定,在活菌饲喂导致肠道细菌感染的小鼠中评价了青蒿琥酯对抗生素的体内增敏效果。
     结果:
     通过气象色谱-质谱分析可见,转化样品中的青蒿素含量高于对照样品,初步证实青蒿ALDH1基因已在酵母细胞中实现功能表达。
     青蒿琥酯抗菌作用体外实验结果可见青蒿琥酯与一氧化氮合酶(NOS)抑制剂L-NMMA一样,可阻断缺氧及缺氧+冷处理诱导的细菌一氧化氮(NO)合成,也能抑制细菌过氧化氢酶(CAT)活性。体内实验可见,青蒿琥酯不仅能提高头孢菌素对G-细菌和利福平对G+细菌的杀伤效果,而且还可辅助氨苄青霉素抑制抗药性细菌的繁殖。
     结论:
     以上结果为进一步创建青蒿素全合成微生物平台奠定了基础,为克服“超级细菌”的抗生素抗性提供了新思路。
Objective
     While artemisinin is most famous as a highly effective anti-malarial drug, it can also possess other therapeutic efficacies including anti-tumor and anti-inflammation (autoimmune diseases). Artemisinin that has been supplied in the global anti-malarial market is mainly manufactured from field cultivated Artemisia annua in China. Due to the limitation of lower artemisinin content, higher production cost, and less scale of plantation annually, much need for artemisinin-derived drugs can not be fully met for all malarial patients worldwide. Large-scale production of artemisinin in genetically engineered microorganisms, therefore, has become the most promising solution. This study has also evaluated the anti-bacterial role of artesunate from the viewpoint of molecular pharmacology.
     Methods
     The present study has reported the cloning of a new artemisinin precursor gene, artemisinic aldehyde dehydrogenase1(ALDH1), which was clarified by double digestions, amplification, and re-sequencing. Upon constructing the expression vector pESC-ALDH1(containing a uracil synthetic gene), ALDH1was introduced into YPH501of Saccharomyces cerevisiae (a deficient strain of uracil biosynthesis) and a transformed colony was available in SD-U (a uracil-deficient medium). After the engineered yeast was cultured for48-72h, galactose was added and incubated for12h to induce the overexpression of ALDH1gene. A cell-free extract was prepared from seedlings of in vitro cultured A. annua for biotransformation of the yeast fermentation product.
     Like the nitric oxide synthase (NOS) inhibitor L-NMMA, artesunate can block the induction of nitric oxide (NO) synthesis by hypoxia and hypoxia +cold treatments. thereby elevating intracellular hydrogen peroxide titers and facilitating bacterial apoptosis. Choosing Escherichia coli and Bacilus licheniformis as representatives of Gram negative bacteria (G-) and positive bacteria (G+), and through stool culture and colony counting or serum NO determination, the in vivo sensitization effect of antibiotics by artesunate was evaluated in mice with gastrointestinal infection due to live bacterial feeding.
     Results
     By GC-MS quantification, it was noted that artemisinin content is higher in transformed samples than control samples, thereby preliminarily confirming ALDH1gene from A. annua being functionally expressed in yeast cells.
     While bacteria protect themselves from antibiotic killing through releasing NO, artesunate enhances the sensitivity of bacteria to antibiotics by inhibiting bacterial NOS activity, and artesunate also inhibits bacterial catalase (CAT) activity. Consequently, artesunate accelerates the killing effect of both cefotaxime against G and rifampicin against G+.Additionally, it also assists ampicillin to repress the propagation of drug tolerant bacteria.
     Conclusion
     These results should shed light on the further establishment of the microbial platform for full-synthesis of artemisinin, and have paved a new path towards abrogation of superbug's antibiotic resistance.
引文
[1]Hsu E. The history of qing hao in the Chinese materia medica [J]. Trans R Soc Trop Med Hyg,2006,100:505-508.
    [2]李英编.青蒿素研究[M].上海科学技术出版社,2007.
    [3]张剑方主编.迟到的报告——五二三项目与青蒿素研发纪实[M].羊城晚报出版社,2006.
    [4]世界卫生组织.世界卫生报告[C].日内瓦,1999-2004年各年版.
    [5]WHO. Antimalarial drug combination therapy, Report of a WHO technical consultation [C].2001.
    [6]Bhattarai A, Ali AS, Kachur SP, et al. Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar [J]. PLoS Med,2007,4:e309.
    [7]WHO. World Malaria Report [C].2010.
    [8]Mathers CD, Ezzati M, Lopez AD. Measuring the burden of neglected tropical diseases:The global burden of disease framework [J]. PLoS Negl Trop Dis,2007, 1:e114.
    [9]Zeng QP, Qiu F, Yuan L. Production of artemisinin by genetically modified microbes [J]. Biotechnol Lett,2008,30:581-592.
    [10]Hale V, Keasling JD, Renninger N, et al. Microbially derived artemisinin:A biotechnology solution to the global problem of access to affordable antimalarial drugs [J]. Am J Trop Med Hyg,2007,77:198-202.
    [11]Liu B, Wang H, Du Z, et al. Metabolic engineering of artemisinin biosynthesis in Artemisia annua L [J]. Plant Cell Rep,2010,30:689-694.
    [12]汪猷,夏志强,周凤仪等.青蒿素生物合成的研究:青蒿素和青蒿素B生物合成中的关键性中间体青蒿酸[J].化学学报,1988,46:1152-1153.
    [13]Sangwan R S, Agarwal K, Luthra R, et al. Biotransformation of arteannuic acid into arteannuin B and artemisinin in Artemisia annua [J]. Phytochemistry,1993, 34:1301-1302.
    [14]Nair H S R, Basile D V.Bioconversion of arteannuin B to artemisinin [J]. J Nat Prod,1993,56:1559-1566.
    [15]Bharel S, Gulati A, Abdin M Z, et al. Enzymatic synthesis of artemisinin from natural and synthetic precursors [J]. J Nat Prod,1998,61:633-636.
    [16]Dhingra V, Rajoli C, Narasu M L.Partial purification of proteins involved in the bioconversion of arteannuin B to artemisinin [J]. Bioresource Techno], 2000,73:279-282.
    [17]Brown G D, Sy L K. In vivo transformations of artemisinic acid in Artemisia annua plants [J]. Tetrahedron,2007,63:9548-9566.
    [18]Brown G D. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao) [J]. Molecules,2010,15:167603-7698.
    [19]Lindal AL, Olsson ME, Mercke P, et al. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae [J]. Biotechnol Lett, 2006,28:571-580.
    [20]Eisenreicha W, Bacher A,Arigoni D, et al. Biosynthesis of isoprenoids via the non-mevalonate pathway [J]. Cell Mol Life Sci,2004,61:1401-1426.
    [21]王红,叶和春,刘本叶等.青蒿素生物合成分子调控研究进展[J].生物工程学报.2003,19(6):646-650.
    [22]Bouwmeester HJ, Wallaart TE, Janssen MHA, et al. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis [J]. Phytochemistry,1999,52:843-854.
    [23]Bertea CM, Freije JR, van der Woude H, et al. Identification of intermediates and enzymes involved in the early steps in artemisinin biosynthesis in Artemisia annua [J]. Planta Med,2005,71:40-47.
    [24]Teoh KH, Polichuk DR, Reed DW, et al. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin [J]. FEBS Lett,2006,580:1411-1416.
    [25]Zhang Y, Teoh KH, Reed DW, et al. The molecular cloning of artemisinic aldehyde A Cl1 (13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua [J]. J Biol Chem,2008,283:21501-21508.
    [26]Teoh KH, Polichuk DR, Reed DW, et al. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua [J]. Botany,2009,87:635-642.
    [27]Wallaart TE, van Uden W, Lubberink 11G, et al. Isolation and identification of dihydroartemisinic acid from Artemisia annua and its possible role in the biosynthesis of artemisinin [J]. J Nat Prod,1999,62:430-433.
    [28]Wallaart TE, Pras N, Quax WJ.Isolation and identification of dihydroartemisinic acid hydroperoxide from Artemisia annua:A novel biosynthetic precursor of artemisinin [J]. J Nat Prod,1999,62:1160-1162.
    [29]Kim NC, Kim SU. Biosynthesis of artemisinin from 11,12-dihydroarteannuic acid [J]. J Kor Agric Chem Soc,1992,35:106-109.
    [30]Wallaart TE, Pras N, Beekman AC, et al. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin:Proof for the existence of chemotypes [J]. Plant Med, 2000,66:57-62.
    [31]Lommen WJM, Schenk E, Bouwmeestcr HJ, et al. Trichome dynamics and artemisinin accumulation during development and senescence of Artemisia annuii leaves [J]. Plant Med,2006,72:336-345.
    [32]杨瑞仪,杨雪芹,冯丽玲.青蒿素生物合成基因的转录谱分析[J].广州中医药大学学报,2010,27:393-398.
    [33]杨瑞仪,杨雪芹,冯丽玲等.黄花蒿cyp71av1启动子的分离及表达特性分析[J].中草药,2011,42:765-769.
    [34]Olofsson L, Engstrom A, Lundgren A, et al. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L [J]. BMC Plant Biol,2011,11:45.
    [35]Ryden AM, Ruyter-Spira C, Quax WJ, et al. The molecular cloning of dihydro-artemisinic aldehyde reductase and its implication in artemisinin biosynthesis in Artemisia annua [J].Plant Med,2010,76:1778-1783.
    [36]Laughlin JC. Post-harvest drying treatment effects on antimalarial constituents of Artemisia annua L [J]. Acta Horticult,2002,576:315-320.
    [37]Irfan QM, Israr M, Abdin MZ, et al. Response of Artemisia annua L. to lead and salt-induced oxidative stress [J]. Environ Exp Bot,2005,53:185-193.
    [38]Feng LL, Yang RY, Yang XQ, et al. Synergistic re-channeling of mevalonate pathway for artemisinin overproduction in transgenic Artemisia annua [J]. Plant Sci,2009,177:57-67.
    [39]曾庆平,赵 昌,尹录录等.青蒿素合成cDNA与新EST的克隆及其低温诱导表达的定量分析[J].中国科学C辑(生命科学),2008,38:147-159.
    [40]Yang RY, Zeng XM, Lu YY, et al.Senescent leaves of Artemisia annua are the most active organs for over-expression of artemisinin biosynthesis responsible genes upon burst of singlet oxygen [J]. Plant Med,2010,76:734-742.
    [41]Guo XX, Yang XQ, Yang RY, et al. Salicylic acid and methyl jasmonate but not Rose Bengal up-regulate artemisinin biosynthetic genes through invoking burst of endogenous singlet oxygen [J]. Plant Sci,2010,178:390-397.
    [42]Kim CH, Meskauskiene R, Apel K, et al. No single way to understand singlet oxygen signalling in plants [J]. EMBO Rep,2008,9:435-439.
    [43]Lee KP, Kim CH, Landgraf F, et al. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana [J]. Proc Natl Acad Sci USA,2007,104:10270-10275.
    [44]Zeng QP, Zeng XM, Yang RY, et al. Singlet oxygen as a signaling transducer for modulating artemisinin biosynthetic genes in Artemisia annua [J]. Biol Plant, 2011,55:669-674.
    [45]Guo XX, Yang XQ, Yang RY, et al. Salicylic acid and methyl jasmonate but not Rose Bengal up-regulate artemisinin biosynthetic genes through invoking burst of endogenous singlet oxygen [J]. Plant Sci,2010,178:390-397.
    [46]Keasling JD. Manufacturing molecules through metabolic engineering [J]. Science,2010,330:1355-1358.
    [47]Martin JJ, Pitera DJ, Withers ST, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J]. Nat Biotechnol,2003,21: 796-802
    [48]黄 瑛,尹录录,冯丽玲等.青蒿紫穗槐二烯合酶基因的克隆与表达[J].广州中医药大 学学报,2008,25(1):68-73.
    [49]Kong JQ, Wang W, Wang LN, et al.The improvement of amorpha-4,11-diene production by a yeast-conform variant [J]. J App Microbiol,2009,106:941-951.
    [50]Lindahl AL, Olsson ME, Mercke P, et al. Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae [J]. Biotechnol Lett, 2006,28:571-580.
    [51]Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature,2006,440:940-943.
    [52]Arsenault PA, Wobbe KK, Weathers PJ. Recent advances in artemisinin production through heterologous expression [J]. Curr Med Chem,2008,15:2886-2896.
    [53]Levesque F, Seeberger PH. Continuous-flow synthesis of the anti-malaria drug artemisinin [J]. Angew Chem Int Ed Engl,2012,51:1706-1709.
    [54]曾丽香.青蒿素前体合成酵母工程菌构建及发酵产物生物转化研究,广州中医药大学学位论文,2010.
    [55]Zeng QP, Zeng LX, Lu WJ, et al. Enhanced artemisinin production from engineered yeast precursors upon biotransformation [J]. Biocat Biotrans,2012,30:190-202
    [56]Covello PS, Teoh KH, Polichuk DR, et al. Functional genomics and the biosynthesis of artemisinin [J]. Photochemistry,2007,68:1864-1871.
    [57]Brown GD, Sy LK. In vivo transformations of dihydroartemisinic acid in Artemisia annua plants [J]. Tetrahedron,2004,60:1139-1159.
    [58]Zeng QP, Zhang PZ. Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase [J]. Nitric Oxide Biol Chem, 2011,24:110-112.
    [59]Zeng QP, Xiao N, Wu P, et al. Artesunate potentiates antibiotics by inactivating bacterial heme-harbouring nitric oxide synthase and catalase [J]. BMC Res Notes,2011,4:223.
    [60]Arsenault PR, Wobbe KK, Weathers PJ. Recent advances in artemisinin production through heterologous expression [J]. Curr Med Chem,2008,15:2886-2896.
    [61]Graham IA, Besser K, Blumer S, et al. The genetic map of Artemisia annua L. .identifies loci affecting yield of the antimalarial drug artemisinin [J]. Science,2010,327:328-331.
    [62]Chen DH, Liu CJ, Ye HC, et al. Ri-mediated transformation of Artemisia annua with a recombinant farnesyl diphosphate synthase gene for artemisinin production [J]. Plant Cell Tissue Organ Cult,1999,57:157-162.
    [63]Chen DH, Ye H C, Li GF. Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua:Transgenic plants via Agrobacterium tumefaciens mediated transformation [J]. Plant Sci,2000,155:179-185.
    [64]Han JL, Liu BY, Ye HC. Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua [J].J Integr Plant Biol,2006,48:482-487.
    [65]Aquil S, Husaini AM, Abdin MZ, et al. Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants [J]. Planta Med,2009,75:1453-1458.
    [66]Yang RY, Feng LL, Yang XQ, et al. Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants [J]. Planta Med,2008,74:1510-1516.
    [67]Zhang L, Jing F, Li F, et al. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing [J]. Biotechnol Appl Biochem,2009,52:199-207.
    [68]Chen JL, Fang HM, Ji YP, et al. Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene [J]. Planta Med,2011,77:1759-1765
    [69]Singh NP, Lai H. Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells [J]. Life Sci,2001,70:49.
    [70]Wang JX, Tang W, Zhou R, et al. The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses [J]. British J Pharmacol,2008,153:1303-1310.
    [71]李斌,周红.青蒿素及其衍生物药理作用研究有关进展[J].中国临床药理学与治疗学,2010,5:572-576.
    [72]曾静,曹建平,樊赛军等.青蒿素及其衍生物辐射增敏作用及其机制的研究进展[J].辐射研究与辐射工艺学报,2008,26(5):257-260.
    [73]林华妹,苏颍,陈增等.青蒿琥酯及其与放疗联用对CNE细胞的作用[J].福建医药杂志,2009,31(5):75-77.
    [74]杨斌,陈永顺,李静,等.青蒿琥酯对人肝癌HepG2细胞株凋亡、周期的体外作用[J].华西药学杂志,2008,23(4):435-437.
    [75]潘雷,邓小荣,左志刚,等.青蒿素联合琥珀酸亚铁对人肝癌细胞SMMC-7721选择性抑制作用的实验研究[J].江西医学院学报,2009,49(2):33-36.
    [76]黄清社,秦忆,张新华.急性白血病患者血浆GSH含量测定及其临床意义[J].中华现代临床医学杂志,2008,6(8):682-683.
    [77]Schnelldorfer T, Gansauge S, Gansauge F, et al. Glutathion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells [J]. Cancer,2000; 89:1440-1447.
    [78]Huang ZZ, Chen C, Zeng Z, et al. Mechanism and significance glutathione level in human hepatocellular carcinoma and liver regeneration [J]. FASEB J,2001, 15:19-21.
    [79]王静丽,赵临襄.谷胱甘肽的耗竭与肿瘤细胞凋亡[J].中国药物化学杂志,2003,13(6)361-365.
    [80]Chiarugi P. PTPs versus PTKs:the redox side of the coin [J]. Free Rad Res, 2005,39:353-364.
    [81]Inoguchi T, Takayanagi R. Role of oxidative stress in diabetic vascular complications [J]. Fukuoka Igaku Zasshi,2008,99(3):47-55.
    [82]Hyoudou K, Nishkawa M, Kobayashi Y, et al. SOD derivatives prevent metastatic tumor growth aggravated by tumor removal [J]. Clin Exp Met,2008,25:531-536.
    [83]Connor KM, Subbaram S, Regan KJ, et al. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation [J]. J Biol Chem,2005,280:16916-16924.
    [84]黄玲,张平祖,曾庆平.青蒿素增敏复方抑制肿瘤细胞增殖及延缓荷瘤裸鼠移植肿瘤生长的研究[J].广州中医药大学学报,2010,27(3):254-257.
    [85]Jenkins DC, Charles IG, Baylis SA, et al. Human colon cancer cell lines show a diverse pattern of nitric oxide synthase gene expression and nitric oxide generation [J]. Br J Cancer,1994,70:847-849
    [86]Fantappie 0, Masini E, Sardi L, et al. The MDR phenotype is associated with the expression of COX-2 and iNOS in a human hepatocel lular carcinoma cell line [J]. Hepatology,2002,35:843-852
    [87]张平祖.青蒿素增敏复方抗肿瘤的体内外评价及青蒿素靶向杀伤肿瘤细胞的机理研究.广州中医药大学学位论文,2010.
    [88]Walsh TR, Weeks J, Livermore DM, et al. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health:an environmental point prevalence study [J]. Lancet Infect Dis,2011,11:355 362.
    [89]李斌,周红.青蒿琥酯联合不同抗生素对四种细菌的抗菌增敏作用及机制研究[J].中国药理通讯.2008,4:32-32.
    [90]粱爱华,薛宝云,李春英等.青蒿琥酯对内毒素诱导的一氧化氮合成的抑制作用[J].中国中药杂志,2001,26(1):770-772.
    [91]谭骏,刘昕.基因工程原理及实验操作技术[M],北京:科学技术文献出版社,1994
    [92]Krishna S, Bustamante L, Haynes RK, et al. Artemisinins:their growing importance in medicine [J]. Trends Pharmacol Sci,2008,29:520-527.
    [93]Taylor CT, Moncada S. Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia [J]. Arterioscler Thromb Vase Biol,2010,30:643-647.
    [94]Gusarov 1, Shatalin K, Starodubtseva M, et al. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics [J]. Science,2009,325:1380-1384.
    [95]Corker H, Poole RK. Nitric oxide formation by Escherichia coli [J]. J Biol Chem,2003,278:31584-31592.
    [96]Gusarov I, Starodubtseva M, Wang ZQ, et al. Bacterial nitric-oxide synthases operate without a dedicated redox partner [J]. J Biol Chem,2008,283:13140 13147.
    [97]Robert A, Benoit-Vical F, Claparols C, et al. The antimalaria] drug artemisinin alkylates heme in infected mice [J]. Proc Natl Acad Sci USA,2005,102:13676-13680.
    [98]Zhang SM, Gerhard GS. Heme mediates cytotoxicity from artemisinin and serves as a general anti-proliferation target [J]. PLoS ONE,2009,4:e7472.
    [99]Bol DK, Yasbin RE. Analysis of the dual regulatory mechanisms controlling expression of the vegetative catalase gene of Bacillus subtilis [J]. J Bacteriol,1994,176:6744-6748.
    [100]Gusarov I, Nudler E. NO-mediated cytoprotection:instant adaptation to oxidative stress in bacteria [J]. Proc Natl Acad Sci USA,2005,102:13855-13860.
    [101]Woodmansee AN, Imlay JA. Reduced flavins promote oxidative DNA damage in non-respiring Escherichia coli by delivering electrons to intracellular free iron [J]. J Biol Chem,2002,277:34055-34066.
    [102]Li B, Yao Q, Pan XC, et al. Artesunate enhances the antibacterial effect of β-lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrABTolC [J]. J Antimicrob Chemother,2011,66:769-777.
    [103]Patel BA, Crane B. When it comes to antibiotics, bacteria show some NO how [J]. J Mol Cell Biol,2010,2:234-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700