高压氧和低压缺氧预处理对大鼠脊髓损伤神经保护作用及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经保护是指在神经损伤发生前或神经损伤早期采用药物治疗或某些处理措施将神经的损伤降低到最低程度的一种治疗策略。脊髓损伤防治涵盖的内容较广,涉及继发损害的防治、亚急性/慢性阶段的神经保护、轴索/神经元的持续再生以及神经再支配的获得。每一部分又包含着若干亟待解决的课题。近20年来国内外学者对脊髓损伤的生物学机制进行了大量的实验和临床研究,已经在细胞水平和分子水平对脊髓损伤机制有了更深入的了解,在此基础上研究者致力于寻求神经保护治疗手段,以求改善脊髓损伤的预后。预处理作为一种与传统有别的神经保护的重要防治手段,近年来已开始越来越多地引起人们的兴趣和关注,成为神经科学研究领域中的一个热点。预处理可触发或动员机体内在的防御系统,从而对随后的严重损伤产生强大的保护作用。目前对于低氧缺血预处理对中枢神经缺血再灌注损伤保护的研究取得了很大的进展,还有药物预处理的研究也不断深入,因上述预处理受伦理学限制,难以在临床推广,故高压氧预处理有良好的应用前景。但高压氧预处理对脊髓损伤神经保护的研究尚处于初级探索阶段。本实验采用SD大鼠为脊髓损伤打击模型,分组给予高压氧和低压缺氧预处理,观察预处理对脊髓损伤的神经保护效应,并对保护机制进行初步探讨,同时对高压氧治疗脊髓损伤的疗效给予评估。本文共分为以下三个部分内容:
     一、高压氧和低压缺氧预处理对大鼠脊髓损伤后神经保护效应的实验研究
     目的:
     通过建立高压氧和低压缺氧预处理脊髓损伤动物模型,观察预处理对成年大鼠急性脊髓损伤后不同时期神经功能的影响,以探讨预处理对脊髓损伤后的神经保护效应。
     方法:
     1、高压氧和低压缺氧预处理动物模型的建立:成年雌性大鼠随机分组后,利用实验动物高压氧舱和低压氧舱,在相应的实验条件下,分别预处理5天。
     2、脊髓损伤模型的建立:麻醉状态下,手术显露椎管及硬膜囊,用30g冲击棒自5cm高度自由落体下坠致伤脊髓。冲击棒下端直径3mm,致伤能量为150gcf,建立脊髓损伤模型。
     3、观察项目:
     (1)行为学评价:采用BBB运动功能评分法,分别在脊髓损伤后1d、1w、2w、4w和8w进行评分。
     (2)诱发电位的测定:各组大鼠分别在损伤后不同时期测定体感诱发电位和运动诱发电位检测。
     (3)透射电镜:灌注固定后取损伤区中心1mm3置入10%戊二醛液,制片,电镜下观察采图。
     (4) HE染色光镜下观察:各组大鼠分别在损伤后不同时期灌注固定取材,行脊髓矢状和冠状石蜡切片的HE染色观察
     (6)神经束路示踪:生物素化萄聚糖胺顺行示踪和辣根过氧化物酶逆行示踪,观察上行和下行轴突再生情况,预处理对轴突再生的影响。
     4、实验内容数据采用SPSS12.0软件进行统计处理。
     结果:
     1、本实验高压氧和低压缺氧预处理及大鼠脊髓打击伤模型建立可靠稳定,具有较好的可重复性。
     2、大鼠脊髓打击模型在伤后1d BBB评分为0分,1w为2.86+1.03分,以后逐渐恢复,8w为14.12+2.15分,经高压氧和低压缺氧预处理后在各时期与非预处理损伤组相比较,1w为3.56+2.43分和3.98+0.02分,8w分别为15.63+2.02分和16.38+1.18分,评分明显增高,低压缺氧预处理组更为明显,差异有显著性(p<0.05),4w后进入平台期。
     3、运动诱发电位和体感诱发电位的潜伏期在脊髓损伤后明显延长, 1w MEP及SEP潜伏期分别为(30.68+4.35)ms和(25.38+1.42)ms,4w后分别为(17.98+6.62)ms和(18.08+3.12)ms ,经高压氧和低压缺氧预处理1w分别为(27.56+5.86)ms、(24.15+1.23)ms和(24.21+3.69)ms、(24.15+1.23)ms,4w后分别为(14.67+2.05)ms、(17.05+5.02)ms和(17.42+2.75)ms、(15.26+3.16)ms,在1w-4w各时期与非预处理损伤组相比较,潜伏期缩短,低压缺氧预处理组更为明显,差异有显著性(p<0.05),4w后相对稳定。
     4、光镜及电镜观察:脊髓损伤后1d可见,损伤区中央灰质出现大片出血、细胞肿胀、尼氏体消失,并有大量单核或多核炎性细胞浸润;脊髓损伤第1w损伤区组织出现大片坏死灶,炎性反应加剧;2w后脊髓损伤及周围区炎性细胞浸润减轻,4w损伤脊髓组织出现囊腔样变化,8w以胶质瘢痕为主。电镜下凋亡样细胞主要表现为胞浆减少,核深染、固缩状态。经高压氧和低压缺氧预处理后脊髓损伤2w内,病理变化较非预处理损伤组减轻,尤其在损伤区周围更为明显,4w后差异不显著。5、神经束路示踪显示经高压氧和低压缺氧预处理后,上行和下行示踪标志阳性纤维明显增多,低压缺氧预处理组较高压氧预处理组更为显著。
     结论:
     1、大鼠打击伤SCI模型与人类SCI有一定相似性,个体差异不明显,模型制备简单,稳定重复性强。
     2、高压氧和低压缺氧预处理后,大鼠在脊髓损伤后不同时期脊髓功能改善,运动诱发电位和体感诱发电位潜伏期缩短,病理变化减轻,神经束路示踪标志阳性纤维明显增多,提示对大鼠脊髓损伤均有神经保护作用。
     3、高压氧和低压缺氧预处理对大鼠脊髓损伤具有一定的神经保护作用。(本实验建立的是中度脊髓损伤模型)。
     4、在本实验条件下,低压缺氧预处理对脊髓损伤的内源性保护作用较高压氧预处理的保护作用更为显著。
     二、高压氧和低压缺氧预处理对大鼠脊髓损伤后神经保护作用机制的探讨
     目的:
     探讨高压氧和低压缺氧预处理对大鼠脊髓损伤后神经保护作用机制,为脊髓损伤的防治提供理论基础。
     方法:
     预处理及脊髓打击伤实验动物模型建立分组后,在不同时期内取材,行免疫组织化学染色,RT-PCR和Westblot(蛋白印迹法)检测,观察预处理对脊髓损伤后神经细胞凋亡、神经干细胞、神经胶质细胞、血管内皮生长因子、轴突生长抑制因子和嘌呤受体的影响。实验内容数据采用SPSS12.0软件进行统计处理。
     观察项目:
     1、神经细胞凋亡,TUNEL染色观察
     2、GFAP免疫组织化学染色观察
     3、Nestin免疫组织化学染色观察
     4、VEGF免疫组织化学染色观察
     5、Nogo免役组织化学染色观察
     6、P2X7嘌呤受体mRNA和蛋白的定量观察
     结果:
     1、非预处理脊髓损伤1d TUNEL阳性细胞逐渐增多,分布不均匀,灰质和白质中均可见,1w后TUNEL染色的阳性细胞逐渐减少,阳性细胞主要位于周围白质中, 2w后可见少量的阳性细胞。经预处理后细胞凋亡出现的时间与非预处理损伤组基本相似,但分布和数量不同,即损伤区内TUNEL阳性细胞数相对较少, TUNEL阳性细胞主要分布在损伤区的边缘部位,1w后TUNEL阳性细胞较非预处理损伤组明显减少。
     2、GFAP表达于正常脊髓的中央灰质和周围白质。非预处理损伤组:1d在损伤区周围增加,2w达到高峰,以脊髓中央管室管膜区表达最为明显。4w囊腔开始形成,GFAP主要表达在囊腔周围的星形胶质细胞的胞体及突起,数量减少。低压缺氧预处理组:2w内阳性细胞数量明显增多,4w明显减少,而高压氧预处理组在各时期表达与非预处理损伤组比较明显增加。
     3、非预处理SCI1w,脊髓实质中即可见到少量的nestin免疫染色阳性细胞,2 w后观察到大量的nestin免疫染色阳性细胞,胞体为多角形或卵圆形,有较多突起,部分细胞突起的伸展方向和细胞的长轴一致,损伤附近的脊髓灰质可见少数nestin呈阳性表达的神经元,4 w以后, nestin阳性表达明显下调。预处理后1w-4w表达增加,尤其以低压缺氧预处理组更为显著。
     4、非预处理SCI 1d VEGF在大鼠脊髓损伤区及损伤周边区高表达,主要出现在软脊膜和脊髓灰、白质血管壁上的血管内皮细胞胞浆内,脊髓灰、白质内的神经胶质细胞和巨噬细胞胞浆内也出现表达,一般脊髓白质中更为多见,1w后下调,而预处理组1w VEGF的表达较正常组增加。
     5、非预处理SCI后1d,在脊髓损伤区中央,未见到nogo阳性细胞。2w后,损伤区附近白质, nogo阳性免疫细胞有少量表达,SCI后8w,见胶质瘢痕区nogo阳性表达反应,并且nogo表达阳性区与胶质瘢痕区相一致;高压氧和低压缺氧预处理组与非预处理损伤组表达无差异。
     6、SCI后P2X7受体的表达变化:在低压缺氧预处理组,伤后12h、3d、5d目的条带几乎不可见,而高压氧预处理组和非预处理损伤组却表现明显,尤其高压氧预处理组在12h表达更为明显。伤后7d三组无明显差异。
     结论:
     1、高压氧和低压缺氧预处理均可以通过抑制神经细胞凋亡起到神经保护作用。
     2、在脊髓损伤的早期(本实验观察到为2w之内),高压氧和低压缺氧预处理均可以促进星形胶质细胞活化,起到保护神经元的作用。脊髓损伤后期(本实验观察到为4w之后),高压氧预处理有促进胶质细胞过度增生,增强胶质瘢痕形成的可能。
     3、脊髓损伤后可以激活神经干细胞或前体细胞,高压氧和低压缺氧预处理均可以促进神经干细胞增殖和分化,尤其低压缺氧预处理更为显著。
     4、脊髓损伤可以导致内源性VEGF在脊髓实质中的表达增强,高压氧和低压缺氧预处理可以促进这一过程,通过促进血管生成、改善局部微循环间接地保护神经免受缺血缺氧损伤。
     5、脊髓损伤后期(本实验观察到为4w之后),轴突生长抑制因子nogo的高表达是影响轴突生长的重要因素,高压氧和低压缺氧预处理对脊髓损伤后nogo表达的影响不显著。
     6、低压缺氧预处理可以在短期内通过抑制P2X7受体的表达,对脊髓损伤起到神经保护作用,而高压氧预处理则不能,是通过其他途径起到神经保护作用的。
     三、高压氧治疗实验性大鼠脊髓损伤的疗效评价
     目的:
     通过分组高压氧治疗,评估治疗效果,为脊髓损伤的治疗提供依据。
     方法:
     1、实验大鼠分为四组:非预处理损伤组、非预处理损伤后高压氧治疗组、高压氧预处理后的高压氧治疗组和低压缺氧预处理后的高压氧治疗组,立即分别给予高压氧治疗2周。
     2、观察项目:
     (1)行为学评价:采用BBB运动功能评分法,分别在治疗后1w、2w、4w和8w进行评分。
     (2)诱发电位的测定:各组大鼠分别在治疗后不同时期进行体感诱发电位和运动诱发电位检测。
     (3)透射电镜:灌注固定后取损伤区中心1mm3置入10%戊二醛液,制片,电镜下观察采图。
     (4) HE染色光镜下观察:各组大鼠分别在治疗后不同时期灌注固定取材,行脊髓石蜡切片的HE染色观察。
     (5)免疫组织化学染色:观察高压氧治疗后nestin和GFAP的表达变化。
     (6)神经束路示踪:生物素化萄聚糖胺(BDA)顺行示踪观察下行轴突再生情况,观察高压氧治疗对轴突再生的影响。
     3、实验内容数据采用SPSS12.0软件进行统计处理。
     结果:
     1、经高压氧治疗后各组在各时期与非预处理损伤组相比较,评分明显增高,非预处理损伤组SCI后1w为2.86+1.03分,8w为14.12+2.15分,而低压缺氧预处理后高压氧治疗组1w为5.38+1.22分,8w为18.18+1.72分,差异最为明显(p<0.01)。
     2、运动诱发电位和体感诱发电位的潜伏期在脊髓损伤后明显延长,经高压氧治疗后各组在各时期与非预处理损伤组相比较,潜伏期缩短,低压缺氧预处理后高压氧治疗组更为明显,差异有显著性。
     3、经高压氧治疗后各组在各时期与非预处理损伤组相比较病理变化减轻,尤其在损伤区周围更为明显。
     4、经高压氧治疗后各组GFAP和nestin表达增加,2 w-4 w较非预处理损伤组差异显著,低压缺氧预处理后高压氧治疗组更为明显。5、神经束路示踪显示高压氧治疗后损伤区远端及胶质瘢痕周围的下行阳性纤维增加。
     结论:
     1、SCI后早期行高压氧治疗可以减轻脊髓损伤后的病理反应,促进内源性神经干细胞增殖,促进胶质细胞活化,促进轴突再生,有利于脊髓损伤后神经功能恢复。
     2、脊髓损伤前行低压缺氧预处理,损伤后立即行高压氧治疗,是脊髓损伤防治的重要策略之一。
Neuroprotection treatment is applied before or after nerve injury by means of medicine or some special procedure to minimize the degree of nerve injury.There are many aspects of prevention and cure for spinal cord injury(SCI),including prevention for secondary lesion,neuroprotection for subacute and chronic stage,neuraxis and neuron regeneration and reinnervation obtaining etc.,and there are many issues remained unclear in each aspect.In the past two decades, researchers in and abroad did a lot experimental and clinical studies to investigate the biology mechanism of SCI,which led to a more profound understanding of SCI on cellular and molecular level.Based on these researches,this study is to explore new neuroprotection treatment for improving the prognosis of SCI. Preconditioning is an important prevention method which is different from traditional neuroprotection treatments,and researchers has been paying more and more attention on this new subject.Preconditioning could mobilize the defence system in corpore so as to produce powful protection for the sequentia major injury.Hypoxia preconditioning has been studied a lot in the protection for ischemical reperfusion injury in central nervous system and made significant progress,but the study of its role in SCI protection is just started.This study utilized SD rat as a SCI model, divided them into different groups applying hyperbaric oxygen(HBO) and hypobaric hypoxia preconditioning respectively, observed the neuroprotective effect for SCI,investigated its possible mechanism in each group,and also evalutaed the curative effect of HBO treatment for SCI.There are three parts in this study as follows:
     1.neuroprotective effect of HBO and hypobaric hypoxia preconditioning on SCI in rats
     Object:To establish an animal model for HBO and hypobaric hypoxia preconditioning, investi- gate the impact of such preconditioning on the adult rat in different preriod after acute SCI,and evaluate the neuroprotective effect of such preconditioning in SCI.
     Method:1) Animal model establishment for HBO and hypobaric hypoxia preconditioning:SD rats were divided into two groups randomly,and preconditioned for 5 days respectively in HBO or hypobaric hypoxia chambers.
     2) SCI animal model establishment: Micrurgy were applied on the rats under anaesthesia to expose canalis spinalis and dural sac,utilizing a 30g lash stick to strike on the spinal cord from a height of 5 cm.The inferior extremity of the lash stick is 3 mm in diameter,with a shock energy of 150 gcf.
     3) Observation items:
     (1) Behavioral assessment:We applied BBB motor function score system in this study, and assessed the score at 1d,1w,2w,4w,and 8w after SCI.
     (2) Evoked potential examination: Somatosensory evoked potentia(SEP) and motor evoked potential(MEP)were detected at different time after SCI in each group.
     (3) Transmission electron microscope(TEM) observation:We removed a volume of 1 mm3 tissue right in the central of the injured region after being reperfused and fixed,placed the tissue into 10% glutaric dialdehyde fluid,made TEM slices and did the observation.
     (4) HE dyeing and observation under light microscope: the samples of spinal cord were obtained at different time after SCI, made paraffin section in anteroposterior axes,performed HE dyeing and observed the slices under light microscope.
     (5) Nerve-tract tracing: Anterogradely and retrogradely traceing were performed using biotin dextran amine(BDA) and horseradish peroxidase(HRP) respectively,observed the regenerated neuraxis ascendingly and descendingly,so as to identify the effect of such preconditioning on neuraxis regeneration.
     4) Data were analyzed by using SPSS12.0 statistics software.
     Result:1)The experimental animal model established is reliable and stable,presenting a good repeatability.
     2) The BBB score was dramatically dropped right after SCI,and then gradually increased afterward.The score of preconditioning groups was higher than the control group,especially in the hypobaric hypoxia group of which the difference was significant;the score in all groups entered a platform 4w after the SCI.
     3) SEP and MEP showed a prolonged lantency after SCI in all groups,the lantency in preconditioning groups was shorter compared with control group, and there was significant difference in hypobaric hypoxia preconditioning group.The SEP and MEP was relatively stable 4w after SCI.
     4) light microscope and TEM observation: In control group, the central gray of injured region appeared hemorrhage,cellular swelling,tigroid body abolition,and a great quantity of mononuclear or polynuclear inflammatory cells infiltration at 1d after SCI;Necrosis focuses appeared in injured region at 1w after SCI,and the inflammatory reaction was stronger;the inflammatory cell infiltration began to abate at 2w after SCI in injured and peri-injured region;capsular space-like change occurred in injured myeloid tissue at 4w after SCI, and at 8w after SCI glial scar became the major component.Apoptotic cells showed cytoplasm depletion,karyo-anachromasis and karyopyknosis under electron microscope.In HBO and hypobaric hypoxia preconditioning groups,the pathological change were less severe within 2w after SCI compared with control group,especially the surrounding area of injured region,and no significant difference were found after 4w after SCI.
     5) Nerve tract tracing revealed that the number of regeneration neuraxis ascending and descending increased in preconditioning groups,of which the hypobaric hypoxia group was much more obvious.
     Conclusion:1)the rat SCI model is resemblant with human SCI ,which is reliable with an insignificant individual difference and a good reproducibility,and a simple preparation process.
     2) Compared with the control group,rats in the preconditioning groups present a higher BBB score,a shorter lantency of SEP and MEP,a less severe pathological change,an increased regeneration neuraxis etc.,which indicate a neuroprotective effect of such preconditioning on rat SCI.
     3) Our study indicates that HBO and hypobaric hypoxia preconditioning have an effect of neuroprotection at certain degree.
     4) Hypobaric hypoxia preconditioning is more effective in neuroprotection for SCI than HBO preconditioning.
     2.Mechanism of the neuroprotective effect of HBO and hypobaric hypoxia preconditioning in rat SCI.
     Object:To investigate the mechanism of the neuroprotective effect of HBO and hypobaric hypoxia preconditioning in rat SCI,so as to provide rationale for its clinical application.
     Method:After divided into different groups for distinct preconditioning situation and preparation for SCI model, samples were collected at different time after SCI,then immunohistochemistry,RT-PCR and Westernblot were performed to identify neurocyte apoptosis,nerve stem cells,neuroglia cells,vascular endothelial growth factor,axon growth inhibitor and purinoceptor etc. Data were analyzed by using SPSS12.0 statistics software.
     Observation items:
     1) neurocyte apoptosis observation by means of TUNEL.
     2) immunohistochemistry for GFAP observation.
     3) immunohistochemistry for Nestin observation.
     4) immunohistochemistry for VEGF observation.
     5) immunohistochemistry for Nogo observation.
     6) quantitative observation for P2X7 purinoceptor.
     Result:1)In control group,apoptotic-positive cells increased from 1d after SCI,with a maldistribution in both gray and white matter, then gradually deceased from 1w after SCI with a mainly distribution in white matter surrounding the injured area,and only few apoptic-positive cells were found 2w after SCI.In preconditioning groups apoptic-positive cells appeared simultaneously with control group,but mainly concentrated in marginal part of injured region,and at 1w after SCI the apoptic-positive cells in preconditioning groups are much more less than that in control group.
     2) GFAP expresses in both gray matter and white matter in normal spinal cord.In the control group,GFAP expression began to increase surrounding the injured region at 1d till 2w after SCI,especially in the ependyma of spinal medullary canal.Capsular space began to form 4w after SCI,and GFAP expression decreased and mainly centered in the glia cell body and process surrouding the capsular space.GFAP expression in HBO preconditioning group is similar with control group;while in the hypobaric hypoxia preconditioning group,GFAP-positive cells were notablely increased at 2w after SCI and significantly decreased at 4w after SCI compared with control group.
     3) In control group,a few nestin immunostaining positive cells were observed at 1w after SCI in spinal cord parenchyma,and at 2w after SCI,a large amount of nestin-positive cells were seen.Most nestin-positive cells were polygon or orbicular-ovate in cell body with a lot of processes, which extended coincidently with the cell long axis;a minority of nestin-positive neurons were found in the vicinal gray matter of injured region.Nestin- positive cells were obviously decreased at 4w after SCI.In the preconditioning groups, nestin expression was stronger than that in control group after SCI,and hypobaric hypoxia preconditioning group is much more significant.
     4) VEGF expression increased in the injured and perimeter region at 1d after SCI,mainly in the cytoplasm of vascular endothelia cell(VEC) of the spinal pia mater and gray and white matter of spinal cord, as well as glial cell and macrophage of white matter;VEGF expression began to decrease at 1w after SCI.While in the preconditioning groups, VEGF expression was stronger than that of control group.
     5) In control group, no nogo-positive cells were found at 1d after SCI;2w later,a few nogo-positive cells were observed in the white matter nearby the injured region;8w after SCI,nogo were strongly expressed in the glial scar.No significant difference were seen in preconditioning groups.
     6) P2X7 receptor expression:In the HBO preconditioning and control group,strap for P2X7 receptor were obtained at 12h,3d and 5d after SCI,while in the hypobaric hypoxia preconditioning group nothing were found.No significant difference were found after between each group 7d after SCI.
     Conclusion:1)HBO and hypobaric hypoxia preconditioning has an effect of inhibiting nerve cell apoptosis;
     2) In the early state after SCI,HBO and hypobaric hypoxia preconditioning could both promote horizontal cell activation so as to protect neuron;while in the later stage, it may facilitate the hyperplasy of glial cell to form glial scar.
     3) Spinal cord injury could activate nerve stem or precursor cell,and HBO and hypobaric hypoxia preconditioning have an effect of promoting nerve stem or precursor cell proliferation and differentiation,while hypobaric hypoxia preconditioning is more effective.
     4) VEGF expression is stronger after SCI, and both preconditioning treatments could enhance its expression,thus to promote vascularizaiton and improve microcirculation to protect the nerve from hypoxia.
     5) In the later stage after SCI,the strong expression of axon growth inhibitor nogo may play an important role in hindering axon growth,and both HBO and hypobaric hypoxia preconditioning has no obvious impact on the nogo expression.
     6) After SCI,hypobaric hypoxia preconditioning could inhibit P2X7 receptor expression in a short term so as to lead a neuroprotective role,however,the HBO preconditioning is not involved in the same process.
     3.Evaluation of curative effect of HBO on experimental rat SCI Object:To evaluate the curative effect of HBO on rat SCI and provide reliable evidence for its clinical useage.
     Method:1)Rats were divided into 4 groups:SCI control group(group 1),SCI with HBO therapy group(group 2),SCI with HBO preconditioning and HBO therapy group(group 3) and SCI with hypobaric hypoxia preconditioning and HBO therapy group(group 4).The HBO therapy duration is 2w.
     2) Observation items:
     (1) behavioral assessment: BBB motor function score system was utilized in this study, and assessed the score at 1d,1w,2w,4w,and 8w after SCI.
     (2) Evoked potential examination: Somatosensory evoked potentia(SEP) and motor evoked potential(MEP)were detected at different time after SCI in each group.
     (3) TEM observation:Removed a volume of 1 mm3 tissue right in the central of the injured region after being perfused and fixed,placed the tissue into 10% glutaric dialdehyde fluid,made TEM slices and did the observation.
     (4) HE dyeing and observation: the samples of spinal cord were obtained at different time after SCI, made paraffin section in anteroposterior axes,performed HE dyeing and observed the slices under light microscope.
     (5) immunohistochemistry for nestin and GFAP expression.
     (6) Nerve-tract tracing: Anterogradely traceing were performed using biotin dextran amine(BDA) to see the regeneration of neuraxis descendingly,so as to identify the effect of HBO therapy on SCI.
     3) Data were analyzed by using SPSS12.0 statistics software.
     Result:1)BBB score in HBO therapy groups are higher than the control group,and the difference between group4 and group 1 is significant.
     (2) SEP and MEP showed a prolonged lantency after SCI in all groups,while after HBO therapy,the lantency in group2,3 and 4 is shortened compared with group1,and the difference in group 4 is significant.
     (3) The pathological change is lighter in group 2,3 and 4 compared with group 1,especially in the vicinity of the injured region.
     (4) GFAP and nestin expression increases in HBO therapy groups which is much more notable during 2w~4w after SCI,and group 4 shows a significant differnence.
     (5) Nerve-tract tracing indicates that the descending regeneration neuraxis increases in the distal end of injured region and peremeter of glial scar after HBO therapy.
     Conclusion:1)HBO therapy could relieve the pathological change after SCI,promote endogenous nerve stem or precusor cell proliferation,glial cell activation and neuraxis regeneration,thus to facilitate recovery of neurofuction after SCI.
     2) Combination of Hypobaric hypoxia preconditioning and immediately HBO treatment is effective in SCI prevention and cure.
引文
1. Pickett W,Simpson K,Walker J,et al.Traumatic spinal cord injury in Ontario, Canada[J].Trauma. 2003,55 (6):1070 - 1076.
    2. David N Loy,Angela E Sroufe ,Jennifer L Pelt,et al.Serum biomarkers for experimental acute spinal cord injury: rapid elevation of neuron-specific enolase and S-100[J].Neurosurgery,2005 , 56(2):391-397.
    3. Kawamura N,Schmelzer JD,Wang Y,et al. The therapeutic window of hypothermic neuroprotec -tion in experimentalischemic neuropathy: protection in ischemic phase and potential deterioration in later reperfusionphase. Exper Neurology, 2005,195(2): 305-312.
    4. Hinkle JL, Bowman L.Neuropotection for ischemic stroke.J Neursci Nurs,2003,35 (2):114-118.
    5. Gonzalez SL, Labombarda F, Deniselle MC,et al. Progesterone neuroprotection in spinal cord trauma involves up-regulation ofbrain-derived neurotrophic factor in motoneurons. J Ster Bio Mole Biology,2005,94(3):143-149.
    6. Wrathall JR; Emch GS .Effect of injury severity on lower urinary tract function after experimentalspinal cord injury. Brain Res,2006,152(15):103-134.
    7. Rune S, Marie C, Svein-Ole M,et al. Ischemic Preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts.Cell ,2004,11(4):51-66.
    8. Kadono J,Hamada N, Fukueda M,et al. Advantage of ischemic preconditioning for hepatic resection in pigs. J Surg Res,2006,134(2):173-181.
    9. Ran R,Xu H,Lu A,et al. Hypoxia preconditioning in the brain.Dev neuro, 2005,27(2):87-92 .
    10. Herrero F,Morales D,Baamonde C,et al. Ischemic preconditioning and kidney transplantation: in vivonitric oxide monitoring in a rat ischemia-reperfusion experimental model. Transplantation proceedings,2006,38(8):2600-2602.
    11. Stroev SA,Tjulkova EI,Gluschenko TS .The augmentation of brain thioredoxin-1 expression after severe hypobarichypoxia by the preconditioning in rats.Neuro Let,2004,370(2):224-229.
    12. XIONG L i-Ze,DONG Hai-Long,ZHU Zheng-Hua,et al.Mechanism of hyperbaricoxygen precondition inginduced ischemic tolerance in spinal cord of rabbits.J Fourth Mil Med Univ,2001,22 (23):2166-2169.
    13. Tritto I,D’A ndrea D,Eramo N,et al.Oxygen radicals can induce preconditioning in rabbit hearts [J].Circ Res, 1997,80 (5):743- 748.
    14. Wang X,Arcuino G,Takano T,et al.P2X7 receptor inhibition improves recovery after spinal cord injury[J].Nat Med, 2004 ,10(8):821-827.
    15.毛伯镛.脊髓损伤治疗的策略与进展.中华创伤杂志,2002,18(11):645-647.
    16. Gage FH. Mammalian neural stem cells [ J ].Science ,2000 ,287 :1433 - 1441.
    17. Blesch A, Lu P, TuszynskiMH.Neurotrophic factors, gene therapy and neural stem cells for sp inal cord repair [ J ]. Brain ResBull, 2002,57 (6) : 833 - 838.
    18. Lammertse DP.Update on pharmaceutical trials in acute spinal cord injury. J Spinal Cord Med,.2004.27(4):319-325.
    19. Asamoto S,Sugiyama H,Doi H, et al.Hyperbaric oxygen (HBO)therapy for acute traumatic cervical spinal cord injury.Spinal Cord,2000,38(8) :538-540.
    20. Miljkovic-Lolic M, Silbergleit R,Fiskum G,et al.Neuroprotective effects of hyperbaric oxygen treatment in experimental focal cerebral ischemia are associated with reduced brain leukocyte myeloperoxidase activity[J]. Brain Res ,2003 ,2 (3): 90-94.
    21. Calvert JW,Yin W,Patel M,et al.Hyperbaric oxygenation prevented brain injury induced by hypoxia-ischemia in a neonatal rat model.Brain Res,2002, 27 : 1-8.
    22. Yin D,Zhou C,Kusaka I,et al.Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model. J Cereb Blood Flow Metab,2003 ,23 : 855-864.
    23. Li X,Heinzel FR,Boengler K,et al. Role of connexin 43 in ischemic preconditioning does not involveintercellular communication through gap junctions. J Mole Cell Cardiolo- gy,2004,36(1):161-163.
    24. Bajrovic FF,Sketelj J,Jug M,et al.The effect of hyperbaric oxygen treatment on early regeneration of sensory axons after nerve crush in the rat.J Peripher Nerv Syst,2002,7 (9):141-148.
    25. Shi XY, Tang ZQ, Sun DA,et al. Evaluation of hyperbaric oxygen treatment of neuropsychiatric disordersfollowing traumatic brain injury. J Chin Med ,2006, 119(23):1978-1982.
    26. Johansson CB,Momma S,Clarke DL,et al. Identification of a neural stem cell in theadult mammalian central nervous system[J ], Cell ,1999,96:25 - 34.
    27. Jin K,Minami M ,Jing Q.Neurogenesis in dentate subgranular zone and rost ral subvent ricular zone after focal cerebral ischemia in t he rat [J ]. PNAS , 2001,4710 - 4715.
    28. Xiong L,Zhu Z,Dong H,et al.Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model[J],Chin Med J,2000,113(9):836-839.
    29. Prass K,Wiegand F,Schumann P,et al.Hyperbaric oxygenation induced tolerance against forcal cerebral ischemia in mice is strain dependent[J].Brain Res,2000,871(1):146-150.
    30. Wada K,Miyazawa T,Nomura N,et al,Mn-SOD and Bcl-2 expression after repeated hyperbaric oxygenation[J].Acta Neurochir Suppl,2000,76:285-290.
    31. Dong HL,Xiong L Z,Zhu ZH. Hyperbaric oxygen preconditioning induces to lerance against sp inal cord ischem ia in rabbits [J ]. J Fou rth Mil Med Univ, 2000; 21(4): 55- 57.
    32. Vannucci RC,Towfighi J ,Vannucci SJ. Hypoxic preconditioning and hypoxic- ischemic brain damage in the immature rat : pathologic and metabolic correlates. J Neurochem, 1998 ,71: 1-15.
    33. Schmid Elsaesser R, Zausinger S,Hungerhuber E, et al.Acritical reevaluation of the intraluminal thread of model of focal cerebral ischemia.Stroke,1998,29(10) :2 1-26.
    34. Lu GW, Liu HY. Downregulation of nitric oxide in the brain of mice during their hypoxic preconditioning [J ] . J A ppl Physiol ,2001 ,91 (3): 1193-1198.
    35. Turcotte ML,Parliament M,Franko A,et al.Variation in mitochondrialfunction in hypoxia sensi- tive and hypoxia-tolerant human glioma cells [J ].Br J Cancer,2002,86 (4) : 619-624.
    36. SHEN Jun, WANG Qing rong, ZHANG Hui, et al. Effect of acute moderate and severe altitude hypox ia on blood-bra in barr ier permeability in rats.Chin J Aero space Med,2000,11(4):233-235.
    37. Yarnell PR ,Heit J ,Hackett PH.High altitude cerebral edema (HACE):the denver/ front range experience [J ] .Semin Neurol,2000,20(2) :209-210.
    38. Hackett PH,Roach RC.High altitude illness [J ]. N Engl J Med,2001,345(2) : 107-109.
    39. Walder S, Zhang F, Ferretti P.Up-regulation of neural stem ell markers suggests the occurrence of dedifferentiation in regenerating spinal cord.Dev Genes Evol, 2003,213:625-630.
    40. Rosenzweiga ES, McDonalda JW.Rodent models for treatment of spinal cord injury:research trends and progress toward useful repair.Curr Opin Neurol, 2004, 17:121-131.
    41. Qi ML , Wakabayashi Y, Enomoto M,et al.Changes in neurocan expression in the distal spinal cord stump following complete cord transaction:acomparison between inf ant and adult rats. Neuroscience Res. 2003, 45: 181-188.
    42. Purdy PD, Dong RT, White CL, et al. Percutaneous translumbar spinal cord compression injury in a dog model that uses angioplasty balloons: MR imaging and histopathologic findings. AJNR Am J Neuroradiol, 2003, 24(2): 177-184.
    43.吕国蔚,崔秀玉,赵兰峰.低氧预适应的脑机制.中国应用生理学杂志,2004,20 (1):98-100.
    44. Riksen NP,Smits P,Rongen GA,et al.Ischaemic preconditioning: from molecular characterisation to clinical application--part II. J Neth Med,2004,62(11):409-423.
    45.刘秀华,苏静怡.缺血预处理的研究现状.生理科学进展,2001, 32 (1):83-86.
    46. Gurke L,Mattei A,Chaloupka K,et al. Mechanisms of ischemic preconditioning in skeletal muscle. J Surg Res ,2000 ,94 :18-27.
    47. Pradillo JM, Romera C, Hurtado O,et al. TNFR1 upregulation mediates tolerance after brain ischemic preconditioning.J cerebral blood flow and metabolism, 2005.25(2): 193-203.
    48. Centeno JM, Orti M,Sick TJ et al. Nitricoxide is involved in anoxic precond- itioning neuroprotection in rat hippocampal slices. Brain Res,1999,83(6 ): 62-69.
    49. Tong KM, Brown EC,Leed FK,et al. Ischemic preconditioning and nicotinamide in spinal cord protection in anexperimental model of transient aortic occlusion. Euro J Surgery,2003,23(6):1028-1033.
    50.胡胜利,金清东,刘智,等.高压氧预适应对大鼠高原颅脑损伤的影响.军事医学科学院院刊, 2006,30(6):541-543.
    51.邓聪颖,张礼均,李飞,等.高压氧及低压氧预适应对家兔大脑中动脉闭塞后梗死灶体积的影响.第三军医大学学报,2007,29(22):2116-2119.
    52. Joyeux Faure M,Ramond A,Beguin PC,et al. Early pharmacological precondit- ioning by erythropoietin mediated by inducible NOS and mitochondrial ATP- dependentpotassium channels in the rat heart. Fun Cli Pharm,2006.20(1):51-56.
    53. Jones NM,Lee EM, Brown TG.Hypoxic preconditioning produces differential expression of hypoxia-induciblefactor-1alpha (HIF-1alpha) and its regulatory enzyme HIF prolyl hydroxylase in neonatal rat brain. Neuro Letters,2006, 404(1):72-77.
    54. Raphael J,Drenger B,Rivo J,et al. Berenshtein EIschemic preconditioning decreases the reperfusion-related formation of hydroxyl radicals in a rabbit model of regional myocardial ischemia and reperfusion: the role of K(ATP) channels. Free Rad Res,2005,39(7):747-754.
    55. Roth KA , Kuan C ,Haydar TF,et al. Epiatatic and independent functions of Caspase 3 bcl-X(L) in developmental programmed cell death[J].Proc Natl Acad Sci USA ,2000, 97(6):466-471.
    56. Xiao QingT,Jun LiZ,Yu C,et al. Hydrogen peroxide preconditioning protects PC12 cells against apoptosis induced by dopamine.Life sciences,2005.78(1):61-66.
    57. Casha S, YuWR, FehlingsMG. Oligodendroglial apoptosis occurs along degener- ating axons and is associated with FAS and p75 expression following spinal cord injury in the rat.Neuroscience, 2001,103: 203 - 218.
    58. Beattie MS ,Farooqui AA ,Bresnahan JC. Review of current evidence for apoptosis after spinal cord injury[J ]. J Neurotraum ,2000 ,17 :915~925.
    59. Recent advances in pathophysiology and treatment of spinal cord injury[J].Advan Physiol Educ,2002, 26:238—255.
    60. AliKhan SE,Hales BF.Caspase-3 mediates retinoid induced apoptosis in the organogenesis- stage mouse limb[J]. Birth Defects Res A Clin Mol Teratol, 2003, 67(10):848—860.
    61. Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection.Circulation Research, 2004,94(1):7-16.
    62. Gimenezy RM , Menet V , Privat A.The role of astrocytes in axonal regeneration in the mammalian CNS. Prog Brain Res,2001,132: 587- 610.
    63. Merola A,Haher M,O'Brien .Attenuation of CNTF in ASCI treated with intravenous methylprednisolone.The Spine Journal,2002,2(5):109-109.
    64. Roberts DS, Hu Y,Lund IV,et al. Brain-derived neurotrophic factor (BDNF)-inducedsynthesis of early growthresponse factor 3 (Egr3) controls the levels of type A GABA receptor alpha subunits in hippocampalneurons. J Bio Chemis, 2006,281(40): 29431-29435.
    65. Dougherty KD ,Dreyfus CF,Black IB. Brain-derived neurotrophic factor in astrocy- tes,oligodendrocytes,and microglia/ macrophages after spinal cord injury[J] . Neurobiol dis. 2000,7(6) :574 - 585.
    66. Casper KB, Carthy KD.GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS .Mole Cell Neuro,2006,31(4):676-684.
    67. Eng LF, Ghirnikar RS, Lee YL.Glial fibrillary acidic p rotein:GFAP-thirty-one years (1969-2000). Neurochem Res, 2000,25:1439– 1451.
    68. Dougherty KD,Dreyfus CF,Black IB.Brain derived-neurotrophic factor in astrocytes, oligodendrocytes, and microglia /macrophages after spinal cord injury.Neurobiol Dis,2000,7:574 -585.
    69. Bondan,Eduardo F, Lallo, MA. Investigation into the astrocytic immunoreactivity to GFAP and vimentin in the brainstem of Wistar rats submitted to the ethidium bromide gliotoxic model. Arq Neuro,2003,61(3):642-649.
    70. Leme RJ ,Chadi G.Distant microglial and astroglial activation secondary to experimental spinal cord lesion [J] . Arq Neuropsi quiatr. 2001 ,59 (3 - A):483 - 92.
    71.万选才等主编.现代神经生物学.北京:北京医科大学中国协和医科大学联合出版社,1999: 92– 97.
    72.周建军,吴国材,胡容,等.大鼠实验性脊髓损伤后胶质瘢痕分布规律研究.中华神经外科杂志,2007,23(5):347-350.
    73. Conrad S, Schluesener HJ, Adibzahdeh M, et al. Spinal cord injury induction of lesional exp ression of profibrotic and angiogenic connective tissue growth factor confined to reactive astrocytes, invading fibroblasts and endothelial cells[ J ]. J Neurosurg Spine,2005,2 (3):319-326.
    74. H u Dayong , H e Lihua, H u Bing , et al. Astrocyte in CNS of rat can express Gc after spinal cord injury.Chinese Journal of Neuroanatomy, 2003,19 (2):165-168.
    75. Dundar K,Topal T,Ay H,et al. Protective effects of exogenously administered or endo- genously produced melatonin on hyperbaric oxygen-induced oxidative stress in the rat brain. Cli Exp Pharm Phys,2005,32(11):926-930.
    76. Dore D P,Katychev A; Wang X,et al. CNS microvascular pericytes exhibit multipotential stem cell activity.J Cerebral Blood Flow and Metabolism, 2006, 26(5):613-624.
    77. Shihabuddin LS , Horner PJ , Ray J ,et al . Adult spinal cord stem cells generate neurons after t ransplantation in t he adult dentate gyrus[J ]. J Neurosci , 2000 ,20 :8727 - 8735.
    78. Vescovi A, Gritti A, Cossu G,et al. Neural stem cells: plasticity and their transdifferentiation potential.Cells Tissues Organs,2002,171(1):64-76.
    79. Almazan G, Vela JM,Molina-Holgado E, et al. Re-evaluation of nestin as a marker of oligodendrocyte lineage cells [J]. Microsc Res Tech, 2001, 52 (6) :753 - 765.
    80. Janette M,Krum R,Jeffrey M. Transient coexpression of nestin,GFAP and vascular endothelial growth factor in mature reacive astroglia following neural grafting or brain wounds [J].Exp Neuro,1999,160(4):348 -360.
    81. Aihara M, Sugawara K,Torii S,et al. Angiogenic endothelium-specific nestin expression is enhanced by the firstintron of the nestin gene. Lab Inves,2004,84(12):1581-1592.
    82. Neil D,Rainald SK,Antoine MH.Nestin expression in reactive astrocytes following focal cerebral ischemia in rats [J]. Brain Res,1997,768(8):1 - 9.
    83.魏丽春,曾丽华,田芙蓉,等.正常成年大鼠中枢神经系统内nestin蛋白免疫阳性结构的分布[ J ].第四军医大学学报, 2003,24 (22) : 2072 - 2075.
    84. Jin K,Minami M ,Jing Q. Neurogenesis in dentate subgranular zone and rost ral subvent ricular zone after focal cerebral ischemia in t he rat [J ].PNAS ,2001,4710 - 4715.
    85. Akiyama Y, Honmou O, Kato T, et al. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheralmyelin in the rat sp inal cord [ J ]. Exp Neurol, 2001, 167(1) : 27 - 39.
    86.闫铭,罗卓荆.细胞移植在脊髓损伤再生修复中的作用[J].中华神经外科疾病研究杂志, 2004,3 (2):186– 187.
    87. Martens DJ ,Seaberg RM ,Derek V. Invivo infusions of exogenous growt h factors into the fourt hvent ricle of the adult mouse brain increase the proliferation of neural progenitors around t he fourt hvent ricle and the cent ral canal of the spinal cord [ J ] .Eur J Neurosci,2002,16:1045 - 1057.
    88. Okano H.The application of stem cells in spinal cord injury [C] .New Orleans : Soc Neurosci 2000-Conference ,2000,6:113-118.
    89. Ryu JD,Kirpalani PA,Kim JM. Expression of vascular endothelial growth factor and angiogenesis in thediabetic frozen shoulder. J shoulder and elbow Surgery, 2006, 15(6):679-685.
    90. Mata GE,Grobe A,Kumar S. Cyclic stretch increases VEGF expression in pulmonary arterial smooth musclecells via TGF-beta1 and reactive oxygen species: a requirement for NAD(P)H oxidase.American J Physiology,2005,289(2):288-289.
    91. Sun FY,Guo X. Molecular and cellular mechanisms of neuroprotection by vascular endothelialgrowth factor. J Neuro Res,2005,79(2):180-184.
    92. Sun Y,Jin K,Xie L,et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focalcerebral ischemia. J Clin Investigation, 2003,111 (12):1843-1851.
    93. Rosenstein JM,Krum JM. New roles for VEGF in nervous tissue-beyond blood vessels. Exp Neuro,2004,187(2):246-253.
    94. Facchiano F, Fernandez E, Mancarella S,et al. Promotion of regeneration of corticosp inaltract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. Neurosurg,2002, 97 (1) : 161~168.
    95. Jin KL, Zhu YH, Sun YJ, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo [J]. Sci.USA,2002, 99: 11946~11950.
    96. Zhu Y, J in K, Mao X. et al. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E-Fexpression.FASEB J,2003, 17: 186~193.
    97. 97.Facchiano F, Fernandez E, Mancarella S,et al. Promotion of regeneration of corticosp inaltract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. Neuro-surg,2002, 97 (1) : 161-168.
    98. Ostrowski RP,Colohan AR,Zhang JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage.Journal of cerebral blood flow and metabolism,2005,25(5):554-571.
    99. Jin Y, Fischer I, Tessler A, et al. Transplants of Fibroblasts Genetically Modified to Express BDNF Promote Axonal Regeneration from Supraspinal Neurons Following Chronic Spinal Cord Injury. Exp Neurol, 2002, 177: 265-275.
    100. Grijalva I, Guizar-Sahagun G. Efficacy and safety of 4-aminopyridine in patients withlong-term spinal cord injury: a randomized, double-blind, placebo-controlled trial.Pharmacotherapy, 2003, 23 (7): 823-834.
    101. Hofstetter CP, Schwarz EJ, Hess D, et al. Marrow stromal cells from gaiding strands in the injured spinal cord and promote recovery. Prac Natl Acad Sci USA, 2001, 99:2199-2204.
    102. Maxwell WL. Histopathological changes at central nodes of Ranvier after stretch-injury. Microsc. Res Tech., 1996, 34: 522–535.
    103. Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev., Neurosci,2002, 3: 216– 227.
    104. Teng YD, Lavik EB, Qu X, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA, 2002, 99: 3024 -3029.
    105. Zheng,B, Ho C, Li S, Keirstead H. Lack of enhanced spinal regeneration in Nogo-deficient mice. Neuron,2003, 38: 213–224.
    106. Vacanti MP, Leonard JL, Dore B, et al. Tissue-engineered spinal cord. Transplant Proc,2001, 33: 592-598.
    107. Liu Y, Himes BT, Solowska J, et al. Intraspinal delivery of neurotrophin-3 using neural stem cells geneticallymodified by recombinant retrovirus. Exp Neurol, 1999, 158(4)): 9-26.
    108.周建军,冯华,卞修武.Nogo蛋白及其抗体NgR与中枢神经再生.中国临床康复,2004,8(16):3116-3117.
    109. Chen L, Brosnan CF. Regulation of immune response by P2X7 receptor.Critical Reviews in Immunology,2006,26(6):499-513.
    110. Abbracchio MP,Williams M. Purinergic and yrimidinergic ignalling I:molecular, nervous and urogenitary system function[M].New York:Springer- Verlag Berlin Heidelberg,2001:1114-1116.
    111. Hillman KA, Harada H,Chan CM,et al. Chicken DT40 cells stably transfected with the rat P2X7 receptor ion channel:a system suitable for the study of purine receptor-mediated cell death. Bio Pharmacology,2003,66(3):415-424.
    112.张芹,彭黎明.p2Z/p2X7嘌呤能受体的研究进展[J].细胞生物学杂志,2001, 23(2):77-79.
    113. Duan S, Anderson CM, Keung EC et al. p2X7 receptor-mediated release of excitatory amino acids from astrocytes [J]. J Neurosci. 2003,23 (4 ):1320 -1328.
    114. Lundy PM,Nelson P, Mi L,et al. Pharmacological differentiation of the P2X7 receptor and themaitotoxin-activated cationic channel. Euro J Pharmacology, 2004,487(3):17-28.
    115. Li Q, Luo X, Muallem S,et al.Regulation of the P2X7 receptor permeability to large molecules byextracellular Cl- and Na+.J Bio Chemis,2005,280(29): 26922-26927.
    116. Atasoyu EM,Yildiz S,Cimsit M,et al. Investigation of the effect of hyperbaric oxygen on experimental cyclosporine nephrotoxicity. Bas Clin Pharm Toxic, 2006,98(2): 150-154.
    117. Allan SM, Rothwell NJ.Cytokines and acute neurodegeneration. Nat Rev Neurosci,2001, 2: 734–744.
    118. Yan P, Li Q, Kim GM, et al. Cellular localization of tumor necrosis factor-alpha following acute spinal cord injury in adult rats. J Neurotrauma,2001, 18: 563–568.
    119. Asamoto S , Sugiyama H , Doi H , et al .Hyperbaric oxygen ( HBO)therapy for acute traumatic cervical spinal cord injury. Spinal Cord , 2000 , 38 :538-540.
    120. John W,Calvert,Changman Zhou,et al. Effect of hyperbaric oxygen on apoptosis in neonatal hypoxia-ischemia rat model .J App Physi,2003,95(5):2072-2080.
    121. Zhong JY, Cristina C, Xi Y,et al. Hyperbaric oxygenation mitigates focal cerebral injury and reduces striatal dopamine release in a rat model of transient middle cerebral artery occlusion. Euro J App Physi,2002,87(2):101-107.
    122. Ishihara H , Kanamori M ,Kawaguchi Y, et al.Prediction of neurologic outcome in patients with spinal cord in injury by using hyperbaric oxygen t herapy[J ].J Ort hop Sci,2001,6 (5):385-389.
    123. WANG Gang , LIU Shi-qing. Effect of hyperbaric oxygen on the expression of GAP-43 in the spinal cord of rats underwent spinal cord injury.Chin J Phys Med Rehabil ,2004,26(12):713-715.
    124. Jon A Buras, Aristidis Veves, Daniel Orlow,et al. The Effects of Hyperbaric Oxygen on Cellular Proliferation and Platelet-derived Growth Factor Receptor Expression in Non-Insulin-dependent Diabetic Fibroblasts .Academic Emergency Medicine, 2001,8 (5):518-519.
    125. Paule Hardy, Jean-Paul Collet .Neuropsychological effects of hyperbaric oxygentherapy in cerebral palsy[J].Dev Med Chil Neurology,2002.44(7):436-446.
    126. Freiberger JJ;Suliman HB;Sheng H ,et al. A comparison of hyperbaric oxygen versus hypoxic cerebral preconditioning inneonatal rats. Brain Research, 2006. 1075(1): 213-222.
    127. Toshiyuki U, Kazuhiro S. Growth associated protein-43 mRNA expression in nucleus ambiguus motoneurons after recurrent laryngeal nerve injury in the rat.Acta Oto Laryngologica,2003,123(2):292-296.
    128. Calvert JW, Yin W, Patel M,et al . Hyperbaric oxygenation prevented brain injury induced by hypoxia-ischemia in a neonatal rat model . Brain Res ,2002 , 27 : 1- 8.
    129. Yin D , Zhou C , Kusaka I ,et al . Inhibition of apoptosis by hyperbaric oxygen in a rat focal cerebral ischemic model .J Cereb Blood Flow Metab ,2003 ,23 : 855- 864.
    130. Bajrovic FF , Sketelj J , Jug M,et al . The effect of hyperbaric oxygen treatment on early regeneration of sensory axons after nerve crush in the rat.J Peripher Nerv Syst, 2002 ,7:141-148.
    131. Atochin DN, FisherD, Thom SR, et al. Hyperbaric oxygen inhibits neutrophil infiltration and reduces postischemic brain injury in rats. Ross Fiziol Zh Im IM Sechenova, 2001, 87: 1118-1125.
    132. Kakulas BA. The applied neuropathology of human spinal cord injury.Spinal Cord, 1999, 37: 79- 88.
    133. Basso DM, Beattie MS, Bresnahan JC. Graded histological and locomotor outcomes after spinal cord contusion using the NYU Weight-Drop device versus transection. Exp Neurol 1996, 139: 244-256.
    1. Evrengul H,Seleci D,Tanrverdi H,et al. The antiarrhythmic effect and clinical consequences of ischemic preconditioning.Cor Art Dis,2006,17(3):283-288.
    2. Blanco M,Lizasoain I,Sobrino T,et al. Ischemic preconditioning: a novel target for neuroprotective therapy. Cerebrovascular Dis ,2006,21(S2):38-47.
    3. Vannucci RC , Towfighi J , Vannucci SJ . Hypoxic preconditioning andhypoxic ischemic brain damage in the immature rat : pathologic and metabolic correlates. J Neurochem , 1998 , 71 ( 3 ) : 1215-1220.
    4. Pasquale A, Gianluca T. Cardioprotective effect of ischemic preconditioning is preserved in food-restricted senescent rats,Ame J Phys H Cir Phys,2002,. 282(6):1978-987.
    5. Samoilov MO,.Lazarevich EV. The adaptive effects of hypoxic preconditioning of brain neurons Neur Beh Physiol, 2003,33(1):1-11.
    6. Toprak A, Ozbilgin K,Toprak V,et al.A histological analysis of the protective effect of ischemic preconditioningin the rat retina. Current Eye Res,2002,24(3):234-239.
    7. Vanden Hoek TLV ,Becker BL ,Shao ZH ,et al. Preconditioning in cardiomyocytes protects by attenuation oxidant stress at reperfusion. Circ Res ,2000 ,86 :541-548.
    8. Ran R,Xu H,Lu A,et al..Hypoxia preconditioning in the brain.Deve Neuro Sci, 2005.27(4):87-92.
    9. Salvatore P. Dysfunctional ischemic preconditioning mechanisms in aging. Car Res,2001,49(1):11-14.
    10. Massoud A,Leesar, M, Stoddard F,et al.Delayed preconditioning-mimetic action of nitroglycerin in patients.Und Cor AngioCir,2001,103(24):2935-2941.
    11. Gurke L ,Mattei A ,Chaloupka K,et al. Mechanisms of ischemic preconditioning in skeletal muscle. J Surg Res ,2000 ,94 :18-27.
    12. Adanali G,Ozer K,Siemionow M.Early and late effects of ischemic preconditioning on microcirculation ofskeletal muscle flaps. Plas Recons Sur,2002,109(4):1344-1351.
    13. Wang WZ ,Tsai TM ,Anderson GL. Late-preconditioning protection is evident in the microcirculation of denervated skeletal muscle. J Orthop Res ,1999 ,17 :571-577.
    14. Daniel P,Davis,Piyush M.Ischemic preconditioning in the brain. Current Opin Anaes,2003,16(5):447-452.
    15.吕国蔚,崔秀玉,赵兰峰,等.低氧预适应的脑机制.中国应用生理学杂志,2004, 20(1):98-103.
    16. Barone FC , White RF , Spera PA , et al . Ischemic preconditioning and brain tolerance : temporal histological and functional outcomes , protein synthesis requirement , and interleukin-1 receptor antagonist and early gene expression. Stroke ,1998 ,29 : 1937-1951.
    17. R , Hu C P , Deng H W , et al. Calcitonin gene-related peptide-mediated ischemic preconditioning in the rat heart : influence of age.Regul Pept , 2001 ,99(223) :183~189
    18. Tani M , Honma Y, Takayama M , et al. Loss of protection by hypoxic preconditioning in aging Fischer 344 rat hearts related to myocardial glycogen content and Na + imbalance. Cardiovasc Res , 1999 ,41(3) :594~602
    19. Salvatore P. Dysfunctional ischemic preconditioning mechanisms in aging.Car Res,2001,.49(1):11-14
    20. Karin P, Chad E.,Darling L,et al. Cardioprotection 'Outside the Box': The evolving paradigm of remote preconditioning. Basic Res Car,2003,98(3):149-157.
    21. Zhang WL , Lu GW. Changes of adenosine and its A(1) receptor in hypoxic preconditioning. Biol Signals Recept , 1999 , 8 ( 425) :275-280.
    22. LIU RG, WANG WJ, SONG N,et al. Diazoxide preconditioning plus subsequent hypothermia increased resistance ofrat cultured hippocampal neurons against hypoxia-reoxygenation injury. Chin Med J,2006,119(11):887-893.
    23. Armstrong GA,Shoemaker KL, Money TG,et al.Octopamine mediates thermal preconditioning of the locust ventilatory centralpattern generator via a cAMP/protein kinase A signaling pathway. J Neur Sci,2006,26(47):12125-12126.
    24. Mandryk M, Fidecka S,Poleszak E,et al Participation of adenosine system in the ketamine-induced motor activity inmice. Pharm Reports,2005,57(1):58-60.
    25. Bond A , Lodge D , Hicks CA , et al . NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischemic tolerance in the gerbil hippocampus. Eur J Pharm ,1999 ,380 (223) :91-99.
    26. Grimm, C, Hermann, DM,Bogdanova, A,et al. Neuroprotection by hypoxic preconditioning: HIF-1 and erythropoietin protectfrom retinal degeneration. Sem Cell Devl Bio,2005,6(5):531-538.
    27. Bergeron M , Gidday J M , Yu AY, et al. Role of hypoxia-in-ducible factor-1 in hypoxia-induced ischemic tolerance in neonatal rat brain. Ann Neurol , 2000 , 48 (3) : 285-296.
    28. Garnier P , Demougeot C , Bertrand N , et al . Chemical preconditioning with 3-nitropropionic acid: Lack of induction of neuronal tolerance in gerbil hippocampus subjected to transient forebrain ischemia .Brain Res , 2002,58(1):33-39.
    29. Mori T,Muramatsu H,Matsui T,et al.Possible role of the superoxide anion in the development of neuronal tolerance following ischaemic preconditioning in rats.Neur App Neurol Biol,2000,26(1):31-40.
    30. An J, Rhodes SS,Jiang MT,et al.Anesthetic preconditioning enhances Ca2+ handling and mechanical andmetabolic function elicited by Na+-Ca2+ exchange inhibition in isolated hearts. Anesthesiology,2006.105(3):541-549.
    31. Kwak,HJ,Park,KM,Lee,S,et al. Preconditioning with low concentration NO attenuatessubsequent NO-inducedapoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway. Toxic App Pharm ,2006,217(2):183-184.
    32. Gidday JM, Shah AR , Maceren RG, et al . Nitric oxide mediates cerebral ischemic tolerance in a neonatal rat model of hypoxic preconditioning[J].J Cereb Blood Flow Metab ,1999 ,19 :331-340.
    33. Xiao F , Fratkin JD , Rhodes PG, et al . Neurosci Lett , 2000 , 285 (1) :5 - 8.
    34. Bell RM,Cave AC,Johar S,et al. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. Fase J,2005,19(14):2037-2039.
    35. Jeffrey MG, Aarti RS , Raymond GM, et al . J Cereb Blood Flow Metab , 1999 ,19 :331 - 340.
    36. Pasdois P,Beauvoit B,Tariosse L,et al. MitoK( ATP )-dependent changes in mitochondrial volume and in complex II activity during ischemic and pharmacological preconditioning of langendorff-perfused rat heart. J Bio Biome,2006.38(2):101-112.
    37. Beheshtian A,Demehri S,Kiumehr S,et al. ATP-sensitive potassium channels mediate the anti-ischemic properties of ischemic and pharmacologic preconditioning in rat random-pattern skin flap. Ann Plas Surg,2006,57(1):94-99.
    38. Raphael J,Drenger B,Rivo J.et al. Ischemic preconditioning decreases the reperfusion-related formation of hydroxyl radicals in a rabbit model of regional myocardial ischemia and reperfusion: the role of K(ATP) channels. Free Radical Res,2005,39(7):747-754.
    39. Gross GJ , Fryer RM. Sarcolemmal versus mitochondrial ATP-sesitive K+ channels and myocardial preconditioning[J ] . Circ Res , 1999 , 84 : 973.
    40. Jo SK,Ko GJ,Boo CS,et al.Heat preconditioning attenuates renal injury in ischemic ARF in rats: role of heat-shock protein 70 on NF-kappaB-mediated inflammation and on tubular cell injury. J Amer Soc Neph ,2006,17(11):3082-3092.
    41. Liu J , Ginis I , Spatz M, et al . Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide[J ] .AmJ Physiol Cell Physiol , 2000 ,278 :C144-C153.
    42. Chen Y, Ginis I , Hallenbeck JM, et al . The protective effect of ceramide bcl-2 and reduction of TUNEL-positive cells[J ] . J Cereb Blood Flow Metab , 2001 , 21 :34-40.
    43. Nakata N , Kato H , Kogure K. Ischemic tolerance and extracellular amino acidconcentrations in gerbil hippocampus measured by in-tracerebral microdialysis. Brain Res Bul , 1994 , 35 (3) : 247-251.
    44. .Xie Jing - Hui , Lu Guo - Wei , Hou Yan - Zhi . Biol Signal Recept ,1999 ,8 :267 - 274.
    45. Zhou FW, Li YJ , Lu R , et al . Protection of calcitonin gene-related peptide preconditioning against coronaaary endothelial dysfunction in-duced by reperfusion in the isolated rat heart [ J ] . Lif Sci , 1999 , 64(13) : 1091 - 1097.
    46. Hu GH,Lu XS. Effect of normothermic liver ischemic preconditioning on the expression of apoptosis-regulating genes C-jun and Bcl-XL in rats. World J Gastro ,2005,11 (17):2579-2582 .
    47. Rybnikova E , Tulkova E , Pelto2Huikko M, et al . Mild preconditioning hypoxia modifies nerve growth factor-induced gene A messenger RNA expression in the rat brain induced by severe hypoxia[J ] . Neurosci Lett , 2002 ,329 :49-52.
    48. Tomasevic G, Shamloo M, Israeli D , et al . Activation of p53 and its target genes p21 (WAF1/ Cip1) and PAG608/ Wig-1 in ischemic preconditioning. Brain Res Mol Brain Res ,1999 ,70 (2) :304-313.
    49. Wang X, Lix Erhardt JA , et al . Detection of tumor necrosis factor-alpha mRNA induction in ischemic brain tolerance by means of real-time poly-merase chain reaction. J Cereb Blood Flow Metab ,2000 ,20 (1) :15-20.
    50. Igor E, Konstantinov, Sara A,et al. The remote ischemic preconditioning stimulus modifies inflammatory geneexpression in humans. Physiol Genomics, 2005,19 (10): 143-150.
    1. Knight GE.Cellular Distribution and Functions of P2 Receptor Subtypes in DifferentSystems. Internl Rev Cyto,2004,240(240):301-304.
    2. Abbracchio MP,Williams M.Purinergic and pyrimidinergic ignalling I:molecular, nervous and urogenitary system function.New York:Springer-Verlag Berlin Heidelberg, 2001.
    3. ChenL, BrosnanCF.Regulation of immune response by P2X7 receptor. Cri Rev Immu,2006,26(6):499-513.
    4. Amadios D,Ambrosi N,Cavaliere F,et al.P2 receptor modulation and cytotoxic fuction in cultured CNS neurons [J].Neuropharmocology,2002,42:489-501.
    5. Wilson HL,Wilson SA,Surprenant A,et al.Epithelial membrance proteins induce membrance blebbing and interal with the P2X7 receptor C terminus.J Biol Chem,2002,277(37):34017-23.
    6. Narcisse L,Scemes E,Zhao Y,et al. The cytokine IL-1beta transiently enhances P2X7 receptor expression and function in human astrocytes.. Glia,2005,49(2):245-258.
    7. Sun SH,Lin LB,Hung AC,et al.ATP-stimulated Ca2+ influx and phospholipase D activities of a rat brain-derived type-2 astrocyle cell line.RBA-2,are mediated through P2X7 receptors.J Neuro Chem.1999,73(1):334-43.
    8. Pocinet S,Goinez-Munoz A,Marino A,et al.Regulation of phospholipase D by P2X7 receptors in submandibular ductal cells.Cell Signal,2003.15(10):927-35.
    9. North RA,Molecular physiology of P2x receptors.Physiol Rev.2002,82:1013-1067)
    10. Hiken JF,Steinberg TH. ATP downregulates P2X7 and inhibits osteoclast formation in RAW cells. Amer J Physiol, 2004,287(2):403-412.
    11.张芹,彭黎明. P2Z/P2X7嘌呤能受体的研究进展.细胞生物学杂志.2001,23(2):77-79.
    12. Rappold PM,Lynd BE,Joseph SA,et al. P2X7 receptor immunoreactive profile confined to resting and activatedmicroglia in the epileptic brain. Brain Res,2006,1089(1):171-178.
    13. Duan S,Anderson CM,Keung EC,et al. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci,2003,23(4):1320-1328 .
    14. Honore P,Mikusa J,Bianchi B,et al.TNP-ATP,a potent P2X3 receptor antagonist blocks acetic acid-induced abdominal constriction in mice:comparision with reference analgesics [J].Pain,2002,96:99-105.
    15. Davies DL,Machu TK,Guo Y,et al,Ethanol sensitivity in ATP-gated P2X receptors is subunit dependent [J].Alcohol Clin Exp Res.2002,26:773-778.
    16.郭进,何建平,安书成等.星形胶质细胞释放谷氨酸的途径及其调控机制.陕西师范大学继续教育学报,2006,9,23(3):111-112.
    17. Duan S, Anderson CM, Keung EC et al. P2X7 receptor-mediated release of excitatory amino acids from astrocytes [J]. J Neurosci. 2003,23 (4 ):1320 - 8.
    18. Jing- ming Zhang, Hui - kunWang, Chang - quan Ye etal. ATP released by astrocyte mediates Glutamatergic activity- dependent heterosynaptic suppression[J ]. Neuron, 2003,40: 971 - 982.
    19.孔虹,胥昌琼,黄志刚等.P2z/P2x7受体检测的研究进展.四川生理科学杂志.2002,24(1):12-13.
    20. Rampe D,Wang L,Ringheim GE. P2X7 receptor modulation of beta-amyloid- and LPS-induced cytokine secretionfrom human macrophages and microglia. J Neuroimm,2004,147(2):56-61.
    21. Cavaliere F,Amadio S,Sancesario G,et al. Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampalcultures. J Cere Blood Flow Meta,2004,24(4):392-398.
    22. Cavaliere F,Dinkel K,Reymann K,et al. Microglia response and P2 receptor participation in oxygen/glucosedeprivation-induced cortical damage. Neurosci, 2005,136(3):615-623.
    23. Hatta S,Sakamoto J,Horio Y.Ionchannels and diseases.Med Electron Microsc,2002,35(1):117-126。
    24. Honore P,Mikusa J,Bianchi B,et al.TNP-ATP,a potent P2X3 receptor antagonist ,blocks aceticacid induced abdominal constriction in mice:compatison with reference analgesics[J].Pain,2002,96:99-105.
    25. Labasi JM,Pestrushova N,Donovan C,et al.Absence of zhe P2X7 receptor altersleukocyte function and attenuates an infammcitory response[J].J Immunol,2002,15: 6436-6437.
    26. Virgilio D,Chiozzi F,Ferrari O,et al.Nucleotide receptors:an emerging family of regulatory molecules in blood cells[J].Blood,2001,97:587-600.
    27.王刚,祝延,孔德虎等.离子通道病研究的现状和展望.生理科学进展.2004. 35(3):253-254.
    1. Crowe MJ,Bresnahan JC,Shuman SL,et al.Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys[J]. Nat Med,1997,20(3):753-761.
    2. Sukoff MH. Effects of hyperbaric oxygenation[J].J Neurosurg , 2001,95(3):544-546.
    3. Roth KA , Kuan C ,Haydar TF,et al. Epiatatic and independent functions of Caspase3 bcl-X(L) in developmental programmed cell death[J].Proc Natl Acad Sci USA ,2000, 97(6):466-471.
    4. Majno G,Joris I. Apoptosis,oncosis,and necrosis[J]. Am J Pathol,1995,146(4):3-15.
    5. Fu Qiang,Hou Tiesheng,LU Kaiwu, et al. Neonatal apoptosis after spinal cord injury in rats [J].Traumatic surgery journal,2001,17(4):223-224.
    6. CALVERT JW,YIN W,PATEL M,et al .Hyperbaric oxygenation prevented brain injury induced by hypoxia ischemia in a neonatal rat model [J].Brain Res,2002,51(3):128-131.
    7. MINK RB, DUTKA AJ. Hyperbaric oxygen after global cerebral ischemia in rabbits does not promote brain lipid peroxidation [J].Crit Care Med,1995;23(2):1398-1402.
    8. LI Changchun,SUN Xuejun,HANG Rongchun, et al . Effects of hyperbaric oxygen pretreatment on cytokines production in neonatal rat microglias in vitro[J]. Acad J Sec Mil Med Univ,2003,24(1):58-60.
    9. BERNAUDIN M,NEDELEC AS, DIVOUX D, et al. Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia inducible factor-1 and its target genes , erythropoetin and VEGF,in the adult mouse brain[J]. Cerebr Blood Flow Metab,2002,22(4):390-393.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700