基于RS和GIS技术三江源生态环境演变及驱动力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏三江源是生态环境脆弱的典型地区,近几十年来受自然因素和人为因素的共同影响,三江源地区生态环境不断恶化,严重影响了中、下游地区经济和社会的可持续发展。通过RS和GIS技术分析三江源生态环境变迁状况,为合理保护三江源生态环境提供参考。
     为了解三江源生态环境退化与恢复状况,探讨三江源生态环境演化区域特征及变化规律。本文以多源遥感数据及统计监测数据为数据源,借助RS和GIS技术提取三江源生态环境变化要素,从地形、土地利用/土地覆盖、气候、水文和植被等自然环境要素以及人类活动影响两个方面分析研究区生态环境变迁。本文利用时空序列分析方法重点探讨研究区气候、水资源和植被覆盖的时空变化规律,利用景观格局分析法探讨研究区土地利用/覆盖方式变化,并对研究区蒸发量进行遥感定量化提取与分析。最后,以县级行政区为基础分析单元,探讨三江源生态环境综合演化趋势及环境变迁驱动力因素,并分析地形和蒸发量与其它生态环境要素间的相互关系。
Three rivers source in Qinghai-Tibet Plateau is the source region of the Yangtze River, Yellow River and the Lancang River, which has a high density of rivers, abundance of lakes and wetlands, and far-flung of mountain glaciers, known as "the river source" and " the water tower of china". However, in the context of global warming, due to the natural conditions restrictions and human activities effects, the ecological environment problems in the three rivers source have become increasingly prominent, such as the temperature raise, precipitation reduction, glaciers shrinkage, the grassland degradation, the water and soil serious erosion, and the ability of water conservation debasement, and so on. The deterioration of headstream ecological environment had negative effects on the economy and social sustainable development of the middle or lower reaches of the Yangtze River, Yellow River and Lancang River.
     Source regions of the three rivers were the most sensitive and vulnerable areas of ecological environment changes in Qinghai-Tibet Plateau. In recent years, the deterioration of the three rivers source’s ecological environment had caused widely attention. The previous studies of ecological environment degradation in the three rivers source were mainly focused on the analysis of certain particular factor of the ecological environment degradation, such as the climate variety, grassland degradation, land use change, the vegetation coverage change and so on. In this paper, taken the ecological environment of the three rivers source as research object, analyzed the ecological environment changes from two elements that was natural factors and human factors, in which that natural factors were used to analyze the natural characters of the environment, such as the conditions of regional hydrology, vegetation, climate and so on, and that human factors mainly considered the human population and the graze activities effects on the ecological environment. In this paper, taken remote sensing and geographic information systems as technical support, on the principle of the landscape bionomics, multivariate statistical analysis, and the environment evolution of the regional differentiation, based on the space-time series analysis method to study the ecological environment variance of the three rivers source, which analyzed each factor’s characters of dynamic changes, the rules of dynamic changes and development trends in spatially and quantitatively, furthermore, analyzed the mainly driving force of the ecological environment changes in the study region, in order to providing a reference to the three rivers source ecological environmental protection.
     Based on the multi-source remote sensing data, the thematic data and climate statistics data, extracted the elements data of ecological environment changes such as water resources, vegetation index, climate change and so on. In this paper, based on DEM data extracted the terrain factors of the gradient and slope length; making use of meteorological data to calculate the regional wetness index; and using the MODIS data combined with meteorological data based on the surface energy balance equation to estimate the regional evaporations. Based on the two periods of land use data, explored the area changes, the types of transformation and the spatial change characteristics about the land use, and combined with the landscape analysis, analyzed the changes of land use spatial patterns in study area. Based on the meteorological data, explored the characteristics of the climate changes among temperature, precipitation and evaporation. Carrying through the margin analysis, the percentage change analysis, the change vector analysis and the linear regression trend analysis, explored the spatio-temporal changes of vegetation coverage, intensity of changes, as well as the trends of changes. Making use of lakes and wetlands data in different periods, explored the spatial distribution of lakes and wetlands change intensity. Using the space-time series analysis, analyzed the climate, water resources and vegetation changes. By statistical analysis methods, analyzed the status of population changes and the human grazing activities variations in the three rivers source. Synthetically analyzed the status of all the natural environment elements changes in each district units, and attempting to analyze the influence relationship among the topography, evaporation and any other environmental factors. Finally, making use of principal component analysis, from two aspects of ecological environment changes that were the natural factors and the human activities, explored the driving force of ecological environment dynamic changes.
     Under the study of this paper, we can gain the following conclusions:
     1. The climate change laws in the three rivers source in the past 30 years: temperature in the study region presented a fluctuation upward trend, particularly in the post 2000 the temperature ascending trend enhanced obviously; the precipitation showed the changes trend of "from increase to reduction"; the regional evaporation increased evidently, and it restricted by the variations of the topography, vegetation coverage and spatial distribution of water and hydrothermal conditions, and the temperature and precipitation were the mainly influenced factors of regional evaporation; the wetness indexes of study region were between 0.20 and 0.50, on the whole, the study region belongs to semi-arid areas, and the wetness index values showed upward trend in the study region. Integrated analysis of climate changes indicated that the climate of three rivers source presented the warm and wetness trend.
     2. The regional land use change analysis results showed that: grassland was the main type of land use in three rivers source, and the unused land or woodland distributions less than grassland were the secondary land use type. The vegetation coverage in study region showed a significant decline, the grasslands and the woodlands reduced at a large area, and the desertification degree presented increasing trend. The landscape pattern analysis showed that the grassland was the dominant type of landscape in three rivers source, and the increasing number of unused land speckles indicated that the unused land showing a fragmentation trend.
     3. In three rivers source, lakes showed the trends from increasing to reducing and wetlands degraded continually, and the number of lakes and wetlands speckles increased obviously, which indicated that the lakes and wetlands fragmentation trends presented obviously, the lakes shrinking and expansion trend were evidence in the surrounding areas of Zhaling Lake and Eling Lake in the Yellow River basin, and the phenomenon of wetlands severe degradation in the Yangtze River should be paid more attention to it.
     4. The spatial distribution of yearly NDVI had regional differences in the study region. The NDVI value was higher in southeast region, and lower in northwest region. Based on a linear regression method, we analyzed the NDVI change trends and the NDVI increasing extents, the results showed that due to the NDVI degradation region areas accounting for a larger proportion in the study region, the vegetation coverage presented downward trend in source region.
     5. Integrated analysis the correlations among the ecological environment elements in the source region, the results showed that: in general, the altitude was sensitive to the conditions of temperature and precipitation; in the height of 3500 to 4000 meters, the vegetation coverage increased, lakes expansion, wetlands degradation, and human activities also focus on this height.
     6. The evaporation increasing was the main factor of Zhaling Lake’s surface water shrinking, moreover the evaporation decreased obviously in the shrinking lakes region; but the evaporation in the Eling Lake which was a stable lake had no significant changes, indicated that evaporation was sensitive to the lake shrinking areas, and the temperature, precipitation and evaporation together affected the wetland region changes in the source region.
     7. The main factor of ecological environment changes in the three rivers source was the syntheses of natural factors, mainly including temperature, precipitation, lakes and wetlands of the water resources.
引文
[1]殷青军,徐维新.利用“3S”技术建立“三江源”地区生态环境动态监测系统[J].高原地震, 2001, 13 (3): 57-61.
    [2]杨改河,王得祥,李轶冰.有关江河源区的科学问题[J].西北农林科技大学学报(自然科学版), 2004, 32 (1): 1-4.
    [3]王根绪,李琦,程国栋,等. 40a来江河源区的气候变化特征及其生态环境效应[J].冰川冻土, 2001, 23 (4): 346-352.
    [4]董锁成,周长进,王海英.“三江源”地区主要生态环境问题与对策[J].自然资源学报, 2002, 17 (6): 713-720.
    [5]韩永荣,韩晓红.防治三江源区生态环境恶化局势刻不容缓[J].城市减灾, 2006: 13-16.
    [6]史培军.研究的理论与实践—鄂尔多斯地区晚第四纪以来地理环境演变研究[M].北京:科学出版社, 1991.
    [7]张增祥,杨存建,田光进.基于多源空间数据的中国生态环境综合评价与分析[J].遥感学报, 2003, 7 (1): 58-65.
    [8]王徽.生态环境地球化学的研究进展[J].地质与勘探, 2001, 37 (5): 67-70.
    [9]傅伯杰,牛栋,赵士洞.全球变化与陆地生态系统研究—回顾与展望[J].地球科学进展, 2005, 20 (5): 556-560.
    [10] Turner M. G. et al. Predieting the spread of disturbance across heterogenieous landscape [J]. Oikos, 1989, 55 (2): 121-129.
    [11] Yanwen Jia, Cunwen Niu, Hao Wang. Integrated modeling and assessment of water resources and water environment in the Yellow River Basin [J]. Journal of Hydro-Environment Resear- ch, 2007, 1: 12-19.
    [12] Bo Wu, Long J. Ci. Landscape change and desertification development in the Mu Us Sandland, Northern China [J]. Journal of Arid Environments, 2002, 50: 429-444.
    [13] Ryutaro Ohtsuka, Tsukasa Inaoka, Masahiro Umezaki, et al. Long-term subsistence adaptat- ion to the diversified Papua New Guinea environment Human ecological assessments and prospects [J]. Global Environmental Change, 1995, 5 (4): 347-353.
    [14] A.S.Yadav, S.K.Gupta. Effect of micro-environment and human disturbance on the diversity of woody species in the Sariska Tiger Project in India [J]. Forest Ecology and Management, 2006, 225: 178-189.
    [15] Michele E. Taylor, Michael D. Morecroft. Effects of agri-environment schemes in a long-term ecological time series [J]. Agriculture Ecosystems and Environment, 2009, 130: 9-15.
    [16] L.-M.Rebelo, C.M.Finlayson, N.Nagabhatla. Remote sensing and GIS for wetland inventory, mapping and change analysis [J]. Journal of Environmental Management, 2009, 90: 2144- 2153.
    [17] Zhou Ting, Peng Shaolin. Spatial scale types and measurement of edge effects in ecology [J].Acta Ecologica Sinica, 2008, 28 (7): 3322-3333.
    [18] HAO Huimei, REN Zhiyuan, Land Use/Land Cover Change (LUCC) and Eco-Environment Response to LUCC in Farming-Pastoral Zone China [J]. Agricultural Sciences in China, 2009, 8 (1): 91-97.
    [19]马生林.青藏高原生物多样性保护研究[J].青海民族学院学报(社会科学版), 2004, 30 (4): 76-78.
    [20]姚檀栋,朱立平.青藏高原环境变化对全球变化的响应及其适应对策[J].地球科学进展, 2006, 21 (5): 459-464.
    [21]魏奋子,岳敏.青藏高原东北缘地带50多年来农业生态经济系统可持续发展分析[J].水土保持通报, 2008, 28 (4): 191-197.
    [22]孙鸿烈.青藏高原科学考察研究的回顾与展望[J].资源科学, 2000, 22 (3): 6-8.
    [23]王根绪,程国栋,沈永平.江河源区的生态环境变化及其综合保护研究[M].兰州:兰州大学出版社, 2001.
    [24]尹孝萍,张文英,秦爱民.三江源自然保护区的建立将会对江河源头生态环境恢复发挥积极作用[J].青海农林科技, 2001, (1): 63.
    [25]王江山,李海红,许正旭.三江源生态环境监测研究[J].气象, 2003, 29 (11): 49-51.
    [26]杨建平,丁永建,陈仁升,等.长江黄河源区多年冻土变化及其生态环境效应[J].山地学报, 2004, 22 (3): 278-285.
    [27]刘纪远,徐新良,邵全琴.近30年来青海三江源地区草地退化的时空特征[J].地理学报, 2008, 63 (4): 364-376.
    [28]董立新,孔金玲,王文科,等.基于RS与GIS的典型地区土地利用/覆盖变化研究—以三江源生态环境重点保护区玛多县为例[J].遥感技术与应用, 2005, 20 (4): 399-403.
    [29]张镱锂,丁明军,张玮,等.三江源地区植被指数下降趋势的空间特征及其地理背景[J].地理研究, 2007, 26 (3): 500-507.
    [30]任广鑫,王得祥,杨改河,等.江河源区区域生态环境质量评价的理论问题[J].西北农林科技大学学报(自然科学版), 2004, 32 (2): 9-13.
    [31]龙晶.三江源区位置面积及景观生态遥感研究[J].林业资源管理, 2005, 4: 30-34.
    [32]青海省地方志编篡委员会.青海省志—长江黄河澜沧江源志[M].郑州:黄河水利出版社, 2000.
    [33]王启基,来德珍,景增春,等.三江源区资源与生态环境现状及可持续发展[J].兰州大学学报(自然科学版), 2005, 41 (4): 50-55.
    [34]青海新闻网—三江源. http://www.qhnews.com/sjy/index.shtml.
    [35]三江源生态环境保护协会. http://www.snowland-great-rivers.org.
    [36]冯永忠,杨改河,杨世琦,等.江河源区地域界定研究[J].西北农林科技大学学报(自然科学版), 2004, 32 (1): 11-14.
    [37]青海统计局,青海省第五次人口普查办公室.青海省第五次人口普查快速汇总资料汇编[Z].西宁:青海统计局印刷厂, 2001.
    [38]樊启顺,曹广超,唐兴,等.江河源区近40年来气温变化特征的研究[J].青海师范大学学报, 2004, (1): 81-85.
    [39]李林,李凤霞,郭安红,等.近43年来“三江源”地区气候变化趋势及其突变研究[J].自然资源学报, 2006, 21 (1): 79-85.
    [40]郎国清.关于三江源生态环境的理论思考[J].中国党政干部论坛, 2003, (3): 58-59.
    [41]王谋,李勇,潘胜,等.气候变化对青藏高原腹地可持续发展的影响[J].中国人口、资源与环境, 2004, 14 (3): 92-95.
    [42]何友均,邹大林.三江源地区的生态环境现状及治理对策[J].中国林业, 2002, (1): 39.
    [43]阿怀念,石蒙沂,李生荣.青海高原环境演化及生态对策[J].青海环境, 2003, 13 (4): 162-163.
    [44]卢素锦.三江源生态环境保护分析[J].甘肃农业, 2005: 28-29.
    [45]赵应时.遥感应用分析原理与方法[M].北京:科学出版社, 2003.
    [46]陆书玉.环境影响评价[M].北京:高等教育出版社, 2002.
    [47]陈文惠.国内生态环境遥感监测的内容与方法探讨[J].亚热带资源与环境学报, 2007, 2 (2): 62-67.
    [48]李爱军,朱翔,赵碧云,等.生态环境动态监测与评价指标体系探讨[J].中国环境监测, 2004, 20 (4): 35-38.
    [49]王静,郭旭东,何挺.区域资源与生态环境综合监测及评价指标体系初探[J].长江流域资源与环境, 2003, 12 (6): 574-578.
    [50]李秀彬.全球环境变化研究的核心领域—土地利用/土地覆被变化的国际研究动向[J].地理学报, 1996, 51 (6): 553-558.
    [51]廖克,陈文惠,陈毓芬,等.生态环境综合信息图谱的初步研究—以福建省为例[J].测绘科学, 2005, 30 (6): 11-14.
    [52]齐清文,何大明,邹秀萍,等.云南沿边境地带生态环境3S监测、评价与调控研究[J].地理科学进展, 2005, 24 (2): 1-12.
    [53]吴炳方,李苗苗,颜长珍,等.生态环境典型治理区5年期遥感动态监测[J].遥感学报, 2005, 9 (1): 32-38.
    [54]李轶冰.江河源区生态环境演变与时空格局[D].西北农林科技大学:资源与环境生态学院, 2006.
    [55]肖笃宁,李秀珍,高峻,等.景观生态学[M].北京:科学出版社, 2003.
    [56]沈泽昊.景观生态学的实验研究方法综述[J].生态学报, 2004, 24 (4): 769-774.
    [57]邬建国.景观生态学—格局、过程、尺度与等级[M].北京:高等教育出版社, 2002.
    [58]李振鹏,刘黎明,张虹波,等.景观生态分类的研究现状及其发展趋势[J].生态学杂志, 2004, 23 (4): 150-156.
    [59]方修琦.环境演变区域分异的表现形式[J].地学前缘, 1997, 4 (1-2): 52.
    [60]顾行发,田国良,李小文,等.遥感信息的定量化[J].中国科学E辑信息科学, 2005, 35: 1-10.
    [61]徐燕,周华容.初论我国生态环境质量评价研究进展[J].干旱区地理, 2003, 26 (2): 166-172.
    [62] Thomas.B.M, Douglas.L.K, et al. Identification of regional soil quality factors and indicatorsⅠ-Central and southern high plain [J]. Soil Science Society of American Journal, 2000, 64: 2115-2124.
    [63]陈涛,徐瑶.基于RS和GIS的四川生态环境质量评价[J].西华师范大学学报(自然科学版), 2006, 27 (2): 153-157.
    [64]王海青,张勃.黑河流域40多年来生态环境变化驱动力分析及对策[J].干旱区资源与环境, 2007, 21 (10): 43-47.
    [65]赵益新,赵珂,沈庆航.多因素主成分分析及其在生态环境研究中的应用[J].西南民族大学学报(自然科学版), 2008, 34 (2): 203-206.
    [66]纪宏金.地球化学数据的统计分析[M].吉林:长春地质学院, 1993.
    [67]汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社, 2006.
    [68]美国地质调查局. http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html.
    [69]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005.
    [70]谢飙,熊成品,刘寻续.三江源地区水土流失成因、特点及防治对策[J].中国水土保持, 2007, 11: 19-21.
    [71]中国西部环境与生态科学数据中心. http://westdc.westgis.ac.cn.
    [72]潘耀忠,龚道溢,邓磊,等.基于DEM的中国陆地多年平均温度插值方法[J].地理学报, 2004, 59 (3): 366-374.
    [73]廖顺宝,李泽辉.积温数据栅格化方法的实验[J].地理研究, 2004, 23 (5): 633-640.
    [74]李晓燕,王宗明,宋开山,等.松嫩平原气候数据空间分布模型及栅格化信息系统的建立[J].中国农业气象, 2007, 28 (1): 76-79.
    [75]刘祥梅,郭志华,肖文发.基于GIS的三峡库区生态环境综合评价Ⅱ气候评价[J].自然资源学报, 2007, 22 (4): 613-622.
    [76]廖顺宝,李泽辉,游松财.气温数据栅格化的方法及其比较[J].资源科学, 2003, 25 (6): 83-88.
    [77]廖顺宝,李泽辉.气温数据栅格化中的几个具体问题[J].气象科技, 2004, 32 (5): 352- 356.
    [78]李炳之.青海可可西里地区自然环境[M].北京:科学出版社, 1996.
    [79]杨建平,丁永建,沈永平,等.近40a来江河源区生态环境变化的气候特征分析[J].冰川冻土, 2004, 26 (1): 7-16.
    [80]左大康,覃文汉.国外蒸发研究的进展[J].地理研究, 1988, 7 (1): 86-94.
    [81]郭晓寅,程国栋.遥感技术应用于地表面蒸散发的研究进展[J].地球科学进展, 2004, 19 (2): 107-114.
    [82]辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报, 2003, 7 (3): 233-240.
    [83]莫兴国,刘苏峡,林忠辉.基于SVAT模型的冬小麦光合作用和蒸散过程研究[J].应用生态学报, 2002, 13 (11): 1394-1398.
    [84]刘绍民,孙睿,孙中平,等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报, 2004, 59 (3): 311-340.
    [85]李守波,赵传燕.基于能量平衡的关川河流域蒸散发的遥感反演[J].遥感技术与应用, 2006, 21 (6): 521-526.
    [86]乔平林,张继贤,王翠华.石羊河流域蒸散发遥感反演方法[J].干旱区资源与环境, 2007, 21 (4): 107-110.
    [87]张寅生,潘建辰.青藏高原中部地面蒸发量观测计算与特征分析[J].冰川冻土, 1994, 16 (2): 166-172.
    [88]杜军,边多,鲍建华,等.藏北高原蒸发皿蒸发量及其影响因素的变化特征[J].水科学进展, 2008, 19 (6): 786-791.
    [89]曾群柱,谢应钦.青藏高原陆面可能蒸发量和干湿状况的研究[J].冰川冻土, 1986, 8 (2): 131-142.
    [90] CHEN Shen-bin, LIU Yun-fen, Axel Thomas. Potential evapotranspiration trends and its spatial distributions on the Tibetan Plateau from 1961 to 2000 [J]. Journal of Natural Resources, 2008, 23 (6): 990-1008.
    [91]谢贤群.遥感瞬时作物表面温度估算农田全日蒸散总量[J].环境遥感, 1991, 6 (4): 253- 260.
    [92]覃志豪,高懋芳,秦晓敏,等.农业旱灾监测中的地表温度遥感反演方法-以MODIS数据为例[J].自然灾害学报, 2005, 14 (4): 64-71.
    [93]田国良.热红外遥感[M].北京:电子工业出版社, 2006.
    [94]庞治国,付俊娥,李纪人,等.基于能量平衡的蒸散发遥感反演模型研究[J].水科学进展, 2004, 15 (3): 364-369.
    [95]周云轩,王黎明,陈圣波,等.吉林西部陆面遥感蒸散模型研究[J].吉林大学学报(地球科学版), 2005, 35 (6): 812-817.
    [96]施雅风.青藏高原环境大变化[J].科学大众, 2000.
    [97]郑剑非,段向荣,严荧.中国农业气候区划探讨简报[J].北京农业大学学报, 1982, 8 (4): 115-120.
    [98]向波,缪启龙,高庆先.青藏高原气候变化与植被指数的关系研究[J].四川气象, 2001, 21 (1): 29-36.
    [99]曹文炳,万力,曾亦键,等.气候变暖对黄河源区生态环境的影响[J].地学前缘, 2006, 13 (1): 40-47.
    [100]封建民,王涛,谢昌卫,等.黄河源区生态环境退化研究[J].地理科学进展, 2004, 23 (6): 56-61.
    [101]中华人民共和国国土资源部—长江源区多年冻土层退化. http://www. mlr.gov.cn.
    [102]美国国家航天航空局. http://glcf.umiacs.umd.edu/index.shtml.
    [103] University of Maryland Global Land Cover Facility Data Distribution, Global land cover facility[EB/OL]. http://glcf.umiacs.umd.edu/index.shtml.
    [104] EOS Data Gateway. http://edcimswww.cr.usgs.gov/pub/imswelcome.
    [105]顾娟,李新,黄春林. NDVI时间序列数据集重建方法述评[J].遥感技术与应用, 2006, 21 (4): 391-395.
    [106]陈云浩,李晓兵,陈晋,等. 1983-1992年中国陆地植被NDVI演变特征的变化矢量分析[J].遥感学报, 2002, 6 (1): 12-18.
    [107]梁四海,陈江,金晓媚,等.近21年青藏高原植被覆盖变化规律[J].地球科学进展, 2007, 22 (1): 33-40.
    [108]冯永忠,杨改河,杨世琦,等.畜牧业对江河源区生态环境演变的影响机理研究[J].草业科学, 2005, 22 (11): 77-80.
    [109]地球系统科学数据共享平台. http://www.geodata.cn.
    [110]张文霖.主成分分析在SPSS中的操作应用[J]. 2005, (12): 31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700