海流兔流域生态植被变化与环境影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯高原煤、石油、天然气等矿产资源丰富,开发潜力巨大,是我国21世纪重要的能源基地。海流兔河流域地处鄂尔多斯高原北部,由于本身处于干旱半干旱的毛乌素沙漠东南部边缘,因此生态环境十分脆弱。近年来由于国家对此区域的开发加大,致使生态环境发生严重变化:地下水位降低、部分地区出现盐碱化沙地以及由于开矿导致的区域生态环境的破坏。这不符合国家的环境可持续发展战略。所以为了更合理的开发鄂尔多斯盆地,加强此地区的生态勘查,评价此地区的生态环境显得尤为重要。本题用植被这个环境中最重要的因子作为研究重点,以归一化植被指数(NDVI)为主要研究指标,分析1985~2008年24年间植被的年际变化规律和区域变化规律,以2008年植被为主要研究对象探讨植被月际变化规律;通过这些规律进一步分析植被与气象因子、地面高程、地貌、地下水以及人为因素的相互关系。
     通过分析发现:(1)海流兔河流域年平均NDVI在0.05~0.35之间徘徊,1985~2008年间海流兔河流域的植被除1989年之外总体状况逐年变好(2)近二十五年来海流兔河流域植被变化最大的地区为海流兔河谷地区,变化最明显的地区为北部沙地地区,与1985年相比北部沙地地区的NDVI平均增长了200%。变化最不明显的地区为补浪河上游地区和西南部灌木地区。(3)在影响植被分布的气象因子中,温度与降水起主导作用,降水对植被的影响有一年左右的延迟时间,对植被影响最不明显的气候因子是蒸发量。(4)在植被与高程相互关系中发现,在高程1350m左右出现了一个NDVI相对低值,在1050m,1300m处出现了NDVI相对高值区。(5)植被与地下水位的关系中发现0.3m为水生植被临界水位埋深,0.8 m为土壤盐渍化极限水位埋深,2.9m为植被发育最好水位埋深,2.8m为当地最优势植被发育水位,0.8~4m为当地优势植物适合发育水位区间。(6)人为因素对植被的影响具有明显的突变性。
Erdos Plateau is rich in coal, oil, gas and other mineral resources. It will be one of the most important energy bases of China in the 21st century. Hailiutu River basin is located in the north of the Erdos Plateau. Because it is in arid and semi-arid southeastern edge of Maowusu Desert, the ecological environment is very fragile. In recent years, the increasing development of the region resulted in severe environmental changes: depletion of groundwater level, salinization and environmental destruction caused by mining in some regions. This does not meet with national environmental strategies for sustainable development in China. Therefore, strengthening the regional ecological environment survey and evaluation are very important to the rational development of the Erdos Plateau. The study selected vegetation as the research focus, which is the most important factor in environment and the normalized difference vegetation index (NDVI) as the main indicators. By means of variation analysis of vegetation during 24 years(1985 to 2008) and monthlyvariation of vegetation in 2008, the relationship between vegetation and impact factors of meteorology, elevation, topography, groundwater, and the human activity were discussed in this thesis.
     It is found that: (1) the annual average NDVI of Hailiutu River basin is changed between 0.05and 0.35, and the vegetation became better with year from 1985 to 2008 except the year of 1989. (2)In the last twenty-five years the largest Vegetation changes was in valley region. The most obvious change was in sandy areas in northern region, which average NDVI in northern sandy region increased by 200% compared with 1985. The most unobvious changes of vegetation appeared in Bulang River region and the southwestern shrub areas. (3)In the meteorological factors which affecting the distribution of vegetation, temperature and precipitation played the most dominant roles and there was a one year delay about the effect of rainfall on vegetation. The evaporation has liitle impact on vegetation change. (4) Through the relationship between vegetation and elevation, it is found that: the NDVI in the elevation of 1050m is relatively low and in the data of the elevation of 1350m and 1300m is relatively high. (5) Based on the relationship between vegetation and groundwater level, it is found that: 0.3m is the threshold of the ground water depth for aquatic vegetation, 0.8m is threshold of groundwater depth of soil salinization, 2.9m is the groundwater depth with best vegetation growth, 2.8m is best groundwater depth for the dominant vegetation, 0.8 ~ 4m plant was suitable water depth for the local dominant vegetation. (6) The impact of human activity on the vegetation is changed obviously.
引文
Blake GJ,Branson FA. Root survey for hydrological experiments [M]. UNESCO,1973,SC/WS/543,Paris.
    Cooper,D.J.,D. R. D’Amico,M.L.Scott. Physiological and morphological response patterns of Populus deltoids to alluvial ground water pumping [J]. Environmental Management, 2003,31:215-226.
    Davis,S.D.,F. W. Ewers,J.S. Sperry,K.A.,et al. Shoot dieback during prolonged drought in Ceanothus(Rhamnaceae) chaparral of California:a possible case of hydraulic failure[J]. American,Journal of Botany,2002,89:820-828.
    EamusD,Froend R.Groundwater-dependent ecosystems:the where,what and why of GDEs [J].Australian Journal of Botany,2006,54:91–96.
    Faio F,Porporato A, Ridolfi L, Rodriguez-Iturbe I. Plants in water-controlled ecosystems: active role in hydrological processes and response to water stress: vegetation stress[J].Adv water Res 2001,24(7):725-744.
    Hancock P J,Hunt R J,Boulton A J.Preface:hydrogeoecology,the interdisciplinary study of groundwater dependent ecosystems[J].Hydrogeology Journal,2009,17(1):1-3.
    Jackson, R. B.,J. Canadell, J. R. Ehleringer, et al. A global analysis of root distributions for terrestrial biomes [J]. Oecologia, 1996,108, 389-411.
    Lubczynski MW..The hydrogeological role of trees in water-limited environments [J]. Hydrogeology Journal, 2009, 17 (1): 247-259.
    Mahoney,J. M and S. B. Rood. Streamflow requirements for cottonwood seeding recruitment: An integrative model [J]. Wetlands,1998,18:634-645.
    Moreo MT,Laczniak RJ,Stannard DI.Evapotranspiration rate measurements of vegetation typical water discharge areas in the Basin and Range carbonate-rock aquifer system, Nevada and Utah, 2005–August 2006[M].U.S. Geological Survey Scientific-Investigations Report,2007-5078,36 p.
    O'Grady AP,Cook PG, Howe P, Werren G. Groundwater use by dominant tree species in tropical remnant vegetation communities [J]. Australian Journal of Botany, 2006, 54, 155-171.
    Schenk, H. J.,R. B. Jackson.The global biogeography of roots[J]. Ecol. Monographs, 2002a,72(3):311-328.
    Scott, M. L.,P. B. Shafroth, G. T. Auble. Responses of riparian cottonwoods to alluvial water table declines [J]. Environmental Management, 1999, 23:347-358.
    Snyder KA,Williams DG.Water sources used by riparian trees varies among stream types on the San Pedro River,Arizona[J].Agricultural and Forest Meteorology,2000,105:227–240.
    Stromberg, J. C. Restoration of riparian vegetation in the southwestern United States: importance of flow regimes and fluvial dynamism [J]. Journal of Arid Environments, 2001, 49: 17-34. Stromberg, J.C.S.D.Wilkins, J. A. Tress. Vegetation-hydrology models: implications for management of Prosopis velutina riparian ecosystems [J]. Ecological Application, 1993, 307-314.
    Tyree,M. T.F. W. Ewers. The hydraulic architecture of trees and other woody plants [J]. New Phytologist,1991,119:345-360.
    Zencich SJ,Froend RH,Turner JT,Gailitis V.Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow , sandy coastal aquifer[J].Oecologia,2002,131:8–19.
    陈荷生.西北干旱地区水资源系统开发对植被的影响[J].干早区资源与环境,1991,5(l):57-65.
    陈劲松,遥感方法在西北干旱地区生态地质环境评价中的应用,中国地质大学博士学位论文,2002
    池宏康,黄土高原地区提取植被信息方法的研究,植物学报,第38卷第1期,1996
    宫兆宁,宫辉力,邓伟,等.浅埋条件下地下水-土壤-植物-大气连续体中水分运移研究综述[J].农业环境科学学报,2006,25(增刊): 365-373.
    金晓媚,万力,张幼宽,薛忠歧,殷瑛.银川平原植被生长与地下水关系研究.地学前缘[J],2007,14(3):197-203.
    金晓媚,黑河流域天然植被的面积变化研究,地学前缘,第12卷特刊,2005
    李春晖,杨志峰,黄河流域NDVI时空变化及其与降水径流关系,地理研究,第23卷第6期,2004
    邱国玉.陆地生态系统中的绿水资源及其评价方法.地球科学进展,2008,23(7) :713-722.
    彭定志,熊立华,郭生练,胡彩虹,张红,MODIS在水文水资源中的应用与展望,水科学进展,第15卷第5期,2004
    孙睿,刘昌明,朱启疆,黄河流域植被覆盖度动态变化与降水的关系,地理学报,第56卷第6期,2001
    田庆久,闵祥军,植被指数研究进展,地球科学进展,第13卷第4期,1998 万力,曹文炳,胡伏生,梁四海,金晓媚.生态水文学与生态水文地质学[J].地质通报,2005,24(8):700-703.
    杨建峰,李宝庆,李运生.浅地下水埋深区潜水对SPAC系统作用初步研究[J].水利学报,1999,(7):27-32.
    杨胜天,刘昌明,孙睿,近20年来黄河流域植被覆盖变化分析,地理学报,第57卷第6期,2002
    杨胜天,刘昌明,孙睿,黄河流域干旱状况变化的气候与植被特征分析,自然资源学报,第18卷第2期,2003
    杨泽元,王文科,黄金廷等.陕北风沙滩地区生态安全地下水位埋深研究.西北农林科技大学学报(自然科学版) [J].西北农林科技大学学报(自然科学版),2007,34(8):67-74.
    郑丹,李卫红,陈亚鹏等.干旱区地下水与天然植被关系研究综述[J].资源科学, 2005, 27(4): 160-166.
    曾亦键,万力,苏中波,等.浅层土壤水汽昼夜运移规律及其数值模拟研究[J].地学前缘, 2008,15(5):330-343.
    张国盛,王林和,董志,等.毛乌素沙地几种植物蒸腾速率的季节变化特征[J].内蒙古林学院学报(自然科学版),1998,20(1): 7-12.
    张国盛,刘海东,王林和,等.毛乌素沙地臭柏匍匐茎蒸腾速率和水势的日变化[J].干旱区资源与环境,2005,19(6): 173-179.
    张天曾.中国干旱区水资源利用与生态环境[J].自然资源,1981,(3):62-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700