用户名: 密码: 验证码:
ACR基离聚物型PVC多功能加工助剂的合成与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氯乙烯(PVC)综合性能优越,作为五大通用塑料之一广泛应用于建材、轻工、农业、电线电缆外皮等领域。然而,由于PVC在加工中存在易降解、难塑化等缺点,配方中需加入热稳定剂及其它加工助剂。随着人们环保和健康意识地不断增强,传统的铅盐、镉盐稳定剂因高毒性而受到多方限制,无毒高效的钙/锌及稀土/锌复合稳定剂逐渐成为研究和应用的热点。在使用中,传统钙/锌或稀土/锌热稳定剂无法兼顾PVC制品的透明性和促进塑化的性能,前期着色较重且自身易迁移并降低制品的维卡软化点,大大限制了其在硬制品、透明制品及对外观要求严格的制品中的应用。将具有稳定作用的官能团引入到与PVC相容性好的高分子上,被认为是解决该问题的方法之一
     丙烯酸酯型加工助剂ACR401分子量高,与PVC相容性良好,可促进PVC塑化。本论文采用表面刻蚀水解法,在不改变ACR颗粒形态与尺寸情况下将粒子表面羧酸化,采用离子配位法将金属元素修饰在ACR401粒子表面,制备ACR离聚物,以期得到兼具稳定性、促进塑化、保持制品透明性和力学性、低迁移率、安全环保的新型多功能PVC加工助剂。
     迄今,离聚物型加工助剂的相关研究与应用报道鲜有涉及。本文采用刚果红法、比色法、哈克转矩流变仪等测试手段系统研究了离聚物中金属基团种类与含量、羧酸含量、增塑剂种类等因素对离聚物结构及PVC性能的影响,探讨离聚物对PVC的稳定及促进塑化机理。
     研究发现镧型离聚物/硬脂酸锌(ZnSt2)复合稳定剂的热稳定效率与硬脂酸镧(LaSt3)/ZnSt2复合稳定剂相当。由于离聚物与PVC相容性良好,与LaSt3相比,使用离聚物可更好地保持PVC制品的透明性,透明度接近于以有机锡或液态钡锌为稳定剂的PVC透明制品。另外,镧型离聚物/ZnSt2复合稳定剂可比LaSt3/ZnSt2复合稳定剂更为有效地抑制PVC制品在加工中的前期着色。与小分子型稳定剂相比,离聚物加工助剂可赋予PVC更高的拉伸强度和模量。镧型离聚物成功地克服了金属皂类稳定剂透明性、前期着色性差,影响制品力学性能等缺点。ACR本身可降低PVC塑化时间,镧型离聚物促进PVC塑化能力明显强于ACR,塑化效率提高40%左右。
     与小分子稳定剂不同,镧型离聚物的热稳定效率并非随镧含量增加而逐渐增加,而是存在一个最佳羧酸镧基团含量。离聚物中镧基团超过该值后,热稳定效率反而降低。经动态力学热分析(DMTA)、差示扫描量热仪(DSC)、刚果红实验及傅立叶变换红外光谱(FT-IR)测试发现,羧酸镧官能团易在离聚物基体中团聚,形成cluster。团聚体在加工温度下保持稳定,阻碍官能团与PVC热分解产物氯化氢(HCl)及ZnSt2发生相互作用,影响稳定效率。与LaSt3相似,镧型离聚物与ZnSt2可形成复合物,发生协同效应。但是离聚物与ZnSt2形成复合物的速率较慢,可更好地抑制PVC的前期着色。羧酸镧与PVC分子间相互作用较强,可提高熔体强度,故离聚物具有比ACR更强的促进PVC塑化效率。
     增加离聚物中羧酸含量,可有效抑制cluster生成,提高离聚物对PVC的热稳定及塑化效率;另一方面,羧酸含量提高,镧离子可通过配位键与羧酸基结合,且羧酸基之间形成氢键,在PVC加工温度下金属离子从团聚体中解离速率更慢,从而降低羧酸镧基团与PVC、HCl及ZnSt2的作用速度。因此,提高离聚物中羧酸含量将降低离聚物对PVC的热稳定及塑化效率。这对竞争关系导致存在一个最佳羧酸含量,使离聚物具有最佳功能特性。
     邻苯二甲酸二异辛酯(DOP)能增塑离聚物中低极性基体部分,可更加有效地提高低镧型离聚物的促进塑化及热稳定效率。丙三醇可破坏离聚物中金属团聚体结构或使团聚体在更低的温度下发生解离,可更加有效地提高高镧型离聚物的促进塑化及热稳定效率。
     在相同羧酸含量的情况下,钙型离聚物更易形成cluster。故在羧酸钙基团含量较低(小于0.8mmol/g)时,钙型离聚物促进PVC塑化及热稳定效率均不如镧型离聚物显著。锌型离聚物较难形成cluster,促进PVC塑化的能力优于镧型、钙型离聚物,塑化效率比ACR401提高近一倍。然而,锌型离聚物易引起PVC锌烧,热稳定效率最差。
     环氧大豆油与离聚物/ZnSt2体系联用,可延缓PVC锌烧,提高PVC热稳定性。环氧大豆油还可有效促进PVC塑化,与离聚物/ZnSt2联用后,锌型离聚物促进PVC塑化的能力在三种离聚物中变为最差,镧型离聚物最好。全面衡量稳定性及促进PVC塑化能力,镧型离聚物的综合性能最佳。在加工过程中(180℃,65rpm,6min),含环氧大豆油/钙、锌型离聚物的PVC的粘度、塑化时间均低于含等量ACR/环氧大豆油的PVC混合物。这为开发更加有效、节能的加工助剂体系提供了新思路。
Due to the excellent comprehensive performance, poly(vinyl chloride)(PVC) is one of the five most commonly used plastics and widely used in building materials, light industry, agriculture field and so on. However, it is prone to degrade and hard to fuse during processing. Hence, the thermal stabilizers and processing aids are necessities especially for the rigid PVC products. In the last decades, in respect of environmental protection and health, the traditional stabilizers, such as lead salts and cadmium salts are forbidden. Non-toxic calcium/zinc or rare earth/zinc composite stabilizers attract more and more attention. Nevertheless, metal soaps with short fatty or naphthenic chains are easy to volatilize during PVC processing and reduce heat deformation temperature of PVC products, though they could maintain the transparency of the products due to their good compatibility with PVC. On the other hand, the soaps stabilizers with long alkyl chains may undergo fogging easily owing to their limited compatibility with PVC, which limits their usage in transparent products. Acrylate processing aids (ACR) having a good compatibility with PVC are usually used to promote fusion of PVC in almost all rigid formula and many flexible ones. In this study, a ACR-based ionomer was synthesized with purpose to combine the fusion promotion function of ACR with a good compatibility to PVC and the stabilization function of rare earth compounds.
     Up to now, few relevant work about ionomer used as stabilizer for PVC is reported and the mechanism is nearly ignored. In this paper, the influence of ion content, acid content, the type of plasticizer and ion type of ionomer on the thermal stabilization, fusion behavior, transparency and mechanical properties of PVC was investigated by congo red test, color comparison, hake torque rheometer and so on. Furthermore, we try to explore the mechanism of stabilizing and promoting fusion of ACR-based ionomer.
     The results revealed lanthanide-containing ionomer behaves as a good HCl scavenger and shows synergistic effect with ZnSt2for stabilizing rigid PVC. It could improve static stability time and promote fusion of PVC with improvement of minimum and fusion torques. The transparency of the compounds stabilized by this kind of ionomer compares favourably with those stabilized by organotin and liquid Ca/Zn stabilizers. The ionomer has a comparable stabilizing efficiency to the commonly used lanthanide stearate for PVC. Moreover, the ionomer stabilized compounds show better initial discoloration, transparency and tensile strength than those stabilized by LaSt3.
     Being different from small molecular stabilizer, there is a critical content in ionomer. Increasing stabilizing functional groups further will lead a decrease in stabilizing efficiency of ionomer for PVC which is attributed to formation of cluster because of the serious aggregation of stabilizing functional groups. The aggregation is stable under processing temperature which restricts the reaction between stabilizing functional groups in it and hydrochloride (HCl) or zinc stearate (ZnSt2). The reaction rate between stabilizing functional groups in ionomer and ZnSt2is much slower than that between LaSt3and ZnSt2which endows PVC a better initial discoloration.
     Acid contents in ionomer strongly influence the structure and functionality of ionomer. The size of aggregation decreases with the acid content increasing, owing to restricting the formation of cluster. This is a positive factor of stabilizing and promoting fusion for PVC. On the other hand, increasing acid content in ionomer will increase dissociation temperature and slower the rate of dissociation which considerably lowers the stabilization and promoting fusion function of the ionomers. It is suggested that there is an optimal acid contents of the ionomer to reach a best functionality.
     Diisooctyl phthalate (DOP) could only plasticize the matrix of ionomer. So it could improve stabilizing and promoting fusion efficiency of the ionomer containing lower amount of stabilizing functional groups more significantly. Glycerol could improve the stabilization of PVC remarkably, but it will postpone the fusion of PVC. It could plasticize the ionic aggregation region in ionomer, destroy part of the ionic aggregation or lower the dissociation temperature of ionic aggregation. Hence, it could improve stabilizing and promoting fusion efficiency of the ionomer containing higher amount of stabilizing functional groups more significantly.
     It is more easily to form cluster for calcium-containing ionomer. So its stabilizing and promoting efficiency for PVC is lower than that of lanthanide-containing ionomer with stabilizing functional groups no more than0.8mmol/g. While it is more difficult to form cluster for zinc-containing ionomer, so its promoting fusion efficiency for PVC is better than calcium and lanthanide-containing ionomer. However, zinc ionomer will lead zinc burning which makes its stabilizing efficiency is the worst in these three kinds of ionomer.
     Epoxy soybean oil could improve the stabilization and promote fusion of PVC. When it is used with ionomer/ZnSt2together, it could make promoting fusion efficiency of zinc-containing ionomer become to be the worst of the three and that of lanthanide-containing ionomer become to be the best one. Epoxy soybean oil/ZnSt2/calcium or zinc-containing ionomer could make PVC fuse faster with a lower viscosity (180℃,65r/min,6min) compared with PVC compound containing the same epoxy soybean oil/zinc stearate/ACR content. Based on these results, it may provide a new method to develop a higher efficient and less energy cost processing aid formula.
引文
1.徐彬.聚氯乙烯生产技术及市场现状.化工技术经济,2004;22(9):32-37.
    2.王晶.聚氯乙烯行业的现状及发展趋势.齐鲁石油化工,2011;39(1):77-80.
    3.刘建平,方廉,宋霞.PVC热稳定剂的现状与发展.中国塑料,2001;1:15-18.
    4. Starnes Jr. WH. Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Prog. Polym. Sci.,2002; 27:2133-2170.
    5. Cauter KV, Bossche BJ. VD, Speybroeck VV, Waroquier M. Ab Initio Study of Free-Radical Polymerization:Defect Structuresin Poly(vinyl chloride). Macromolecules,2007; 40:1321-1331.
    6. Wieme J, Reyniers MF, Marin GB. Microkinetic modeling of structure properties of poly(vinyl chloride). Macromolecules,2009; 42:7797-7810.
    7. Endo K. Synthesis and structure of poly(vinyl chloride). Prog. Polym. Sci.,2002; 27:2021-2054.
    8. Luo YR. Handbook of bond dissociation energies in organic compounds, New York: CRC Press; 2003.
    9. Boughdady NM, Chynoweth KR, Hewitt DG. Thermal dehydrochlorination of poly(vinyl chloride) model compounds. Ⅱ. Computer analysis of kinetic results. Aust. J.Chem.,1991; 44 (4):581-592.
    10. Mayer Z. Thermal decomposition of poly(vinyl chloride) and of its low-molecular-weight model compounds. J. Macromol. Sci., Rev. Macromol. Chem., 1974; 10:263-292.
    11. Mayer Z, Obereigner B, Lim D. Thermal dehydrochlorination of poly(vinyl chloride) models in the liquid phase. J. Polym. Sci., Part C:Polym. Symp.,1971; 33: 289-305.
    12.方龙.稀土稳定剂对PVC稳定效率的影响.浙江大学硕士学位论文,2010年.
    13. Troitskii BB, Troitskaya LS. Degenerated branching of chain in poly(vinyl chloride) thermal degradation. Eur. Polym. J.1999; 35:2215-2224.
    14. Montaudo G, Puglisi C. Evolution of aromatics in the thermal degradation of PVC: A mechanistic study. Polym Degrad Stab 1991;33:229-262.
    15.吕世光,塑料助剂手册,北京;轻Ⅰ一业出版社:1986;281
    16. Starnes Jr. WH, Edelson D. Mechanistic Aspects of the Behavior of Molybdenum (VI) Oxide as a Fire-Retardant Additive for Poly(vinyl chloride). An Interpretive Review. Macromolecules,1979; 12:797-802.
    17. Raghavachari K, Haddon RC, Starnes Jr. WH. Primary event in the thermal dehydrochlorination of pristine poly (vinyl chloride):intermediacy of a cyclic chloronium ion. J. Am. Chem. Soc.,1982; 104:5054-5056.
    18. Ivan B, Kennedy JP, Kelen T, Tudos F, Nagy TT, Turcsanyi B. Degradation of PVC obtained by controlled chemical dehydrochlorination. J. Polym. Sci., Polym. Chem. Ed.1983; 21 (8):2177-2188.
    19. Meier RJ, Kip BJ. Proceedings of the 14th International Conference on Advances in the Stabilization and Degradation of Polymers, Luzern, Switzerland; May 1992.
    20. Starnes Jr.WH, Girois S. Degradation and Stabilization of Poiy (vinyi chioride): The Current Status. Polymer Yearbook,1995; 12:105.
    21. Tran VH. Polaron mechanism in the thermal degradation and stabilization of poly(vinyl chloride). J. Macromol. Sci., Rev. Macromol. Chem. Phys.,1998; 38:1-52.
    22. Ivan B, Kennedy JP, Kende 1, Kelen T, Tudos F. Degradation, cyclopentadienylation and grafting of vinyl chloride/2-chloropropene copolymers. J. Macromol. Sci.:Part A Chem.1981; 16 (8):1473-1491
    23. Haddon RC, Starnes Jr. WH. Recent fundamental developments in chemistry of polyvinyl-chloride degradation and stabilization. Adv. Chem. Ser.,1978; 169: 309-323.
    24. Owen ED, editor. Degradation and stabilization of PVC. London and New York: Elsevier Applied Science Publishers,1984.
    25.王建军,胡中文,雷金林.PVC热稳定剂及国内发展现状.塑料助剂,2005;5:5-12.
    26.刘岭梅,侯学军.PVC热稳定剂现状及发展态势.聚氯乙烯,2004;3:6-9.
    27.林龙,张军,崔黎.铅盐稳定剂对低卤阻燃PVC/PNBR热稳定性的影响.塑料科技,2006;34(2):22-25.
    28.吕宏初.复合铅盐稳定剂在PVC电缆料中的应用.浙江化工,2002:33(4):24-25.
    29.段儒哲,蒋平平,张小燕.工业聚氯乙烯(PVC)环保型热稳定剂研究新进展.精细与专用化学品,2007.15(6):1-4.
    30.刘又年,刘燕,舒万艮.PVC热稳定剂-三(硬脂酸巯基乙酯)锑的合成及应用.化学反应工程及工艺,2001,17(3):249-252.
    31.刘建平,郑玉斌.PVC热稳定剂含硫有机锑的合成及应用.中国塑料,2003,17(11):65-68.
    32. Cooray BB, Scott G. The effect of thermal processing on PVC- Part V:The effect of thiotin stabilisers on heat and light stability. Polym. Degrad. Stab.,1980; 2 (1):35-51.
    33. Burleva JW, Huttona RE. A possible mechanism to explain the synergistic effects exhibited by mixtures of alkyltin mercaptoesters as stabilisers for PVC. Polym. Degrad. Stab.,1981; 3 (4):285-294.
    34. Vymazala Z, Vymazalovaa Z. Photodegradation of PVC stabilized by organotin compounds. Eur. Polym. J.,1991; 27 (11):1265-1270.
    35. Ableler G. Polymeric Modifying Agents. US.4644276 [P],2000.
    36. Gay PJ, Hedges ES. Stabilization of chlorinated rubber:DE,925313 [P].1955,03, 17.
    37. Kulas FR, Thorshaug NP. Influence of stabilizers on the fusion of rigid poly (vinyl chloride). Polym. Eng. Sci.,1974; 14 (5):366-370.
    38. Gunther N. Analysis of organotin stabilizers. Fresen. Zeit. fuer Anal. Chem.,1964; 203 (4):265-272.
    39. Luijten JGA, Pezarro S. Dialkyltin compounds with long-chained alkyl groups as heat stabilizers for poly (vinyl chloride). British Plastics and Moulded Products Trader,1957; 30:183-186.
    40. Takashi M, Tadashi T, Hideo M, et al. Stabilized poly (vinyl chloride) compositions having good processability:JP,51007051 [P].1976,01,21.
    41. Borzenkova AY, Kokhanov YV, Kazaryan KS, et al. Stabilization of poly (vinyl chloride):SU,280831 [P].1970,09,03.
    42. Mcheili IC, Mohammed MH, Cole WJ. A detailed analysis of the pyrolysis products from dioctyltin maleate and its mixture with PVC. Polym. Degrad. Stab., 1998; 61 (1):95-108.
    43. Friedrich S, Dieter C. Poly(vinyl chloride) mixtures for antistatic hollow bodies and blown foils:DE,1803787 [P].1970,04,23.
    44. Haruo M, Yasumi S, Shoichi K. Antioxidative properties of methyltin S-2-ethylhexyl thioglycolates for mineral oils. Sekiyu Gakkaishi,1978; 21 (4): 266-270.
    45.林秋红,刘移民,刘薇薇等.1起接触有机锡致低血钾症事故的调查分.中国职业医学,2007;34(4):337-338.
    46.朱建全,何俊,翟明芬等.一起职业性有机锡中毒事故分析.中国工业医学杂志,2008;21(2):132-133.
    47.王茜丽.职业性有机锡中毒6例报告.中国工业医学杂志,2007;20(6):379-380.
    48.高尔金,唐伟,孟建新,陈建军,瞿英俊,周才梅.塑料助剂,2011;86(2):46-49.
    49. Czak 6 a E, Vymazala Z, Vymazalovaa Z, Skalskyl J, Stepeka J. Effect of stabilizers in the thermal treatment of PVC—Ⅴ. Effect of Ba and Cd butyrates, 2-ethylhexoates, laurates and stearates on the dehydrochlorination of PVC. Eur. Polym. J.,1978; 14 (12):1011-1014.
    50. Czak 6 E, Vymazal Z, Vymazalova Z, Stepek J. Effect of stabilizers in the thermal treatment of PVC—Ⅲ:Effect of Ba and Cd stearates on the dehydrochlorination of PVC. Eur. Polym. J.,1977; 13 (11):847-850.
    51. Vymazala Z, Volkab K, Sabaaa MW, Vymazalovaa Z. Effect of stabilizers in the thermal treatment of PVC—ⅩⅢ:Study of the stabilization efficiency of combinations of Ba and Zn stearates in PVC. Eur. Polym. J.,1983; 19 (1):63-69.
    52. Vymazala Z, Volkal K, Vymazalovaa Z, Svorika V. Effect of stabilizers in the thermal treatment of PVC—ⅩⅠ:Effect of the reaction products on the stability of PVC mixtures stabilized by barium and cadmium stearates. Eur. Polym. J.,1982; 18 (3): 211-217.
    53. Tran VH, Alain M, Alain G. Chloride formation and polymer coloration during thermal degradation of PVC stabilised with a Zn-Ca recipe. Polym. Degrad. Stab.. 1979; 1 (3):237-248.
    54. Benavides R, Edge M, Allen NS. The mode of action of metal stearate stabilisers in poly(vinyl chloride).I Influence of pre-heating on melt complexation. Polym. Degrad. Stab.,1994; 44:375-378.
    55. Benavides R, Edge M, Allen NS, Tellez MM. Stabilization of poly(vinyl chloride) with preheated metal stearates and costabilizers. Ⅰ. Use of a β-diketone. J. Appl. Polym. Sci.,1998; 68:1-10.
    56. Benavides R, Edge M, Allen NS, Tellez MM. Stabilization of poly(vinyl chloride) with proheated metal stearates and co stabilizers. ∏ Use of a polyol. J. Appl. Polym. Sci.,1998; 68:11-27.
    57. Thomas NL. Calcium/Zinc stabilizers for PVC pressure pipe. Plast. Rubber Compos. Process Appl.,1993; 19:263-271.
    58. Onozuka M. Mechanism of thermal stabilizers for poly(vinyl chloride). ∏. Synergistic effect of combination of metal soaps. J. Polym. Sci. A. Polym. Chem., 1967; 5 (9):2229-2245.
    59.吴茂英.PVC热稳定剂的发展趋势与技术进展.塑料.2010;39(3):1-7.
    60.高田幸人.ビニル树脂安定化法[P].日本特许公报,昭46—40421,1971.
    61. Ducros P. Organo rare earth:the new comers in the organo-metallic world. J. Less common Met.,1985; 111:37-42.
    62.吴茂英,罗勇新.PVC热稳定剂的发展趋势与锌基无毒热稳定剂技术发展.聚氯乙烯,2006;10:1-6.
    63.卢树人.稀土稳定剂的应用与探讨.原料助剂,2004;4:49-53.
    64.郭玉军.浅析聚氯乙烯稀土热稳定剂的稳定机理.聚氯乙烯,2006;10:25-26.
    65.张永祥,张弘,张涛.聚氯乙烯稀土热稳定剂的稳定机理探讨.塑料,1999;28(5):48-51.
    66.葛铁军,张汉兴,陈荣华.稀土稳定剂硬质聚氯乙烯中的稳定机理研究.沈阳化工学院学报,2001;15(1):43-46.
    67.赵劲松,付志敏,王栋.稀土复合稳定剂在PVC加工中的应用及稳定机理探讨.聚氯乙烯,2002;3:30-34.
    68.吴茂英.硬脂酸稀土用作无毒聚氯乙烯热稳定剂的研究.稀土学报,1998;19(4):51-54.
    69.吴茂英,吴雅红.PVC用热稳定剂马来酸单酯稀土.现代塑料加工应用,2001;13(1):32-34.
    70.刘建平,宋霞,方廉.马来酸单酯稀土作为PVC热稳定剂的应用实验.中国塑料,2002;1:71-73.
    71.刘光烨,陈杨中,沈经纬.水杨酸稀土对聚氯乙烯的热稳定作用的研究.聚氯乙烯,1990;3:1-4.
    72.韩怀芬,钱捷,徐立新.稀土盐对聚氯乙烯热稳定作用的研究.塑料工业,1997;2:39-42.
    73.刘跃建,沈经纬,刘云杰.羧酸酯稀土对聚氯乙烯的加工热稳定作用研究.中国塑料,1993;7(4):54-57.
    74.刘跃建,沈经纬,张承琦.羧酸酯稀土对聚氯乙烯的热老化稳定作用研究.高分子材料科学与工程,1994;4:111-114.
    75.刘跃建,沈经纬.羧酸酯稀土对聚氯乙烯的光老化稳定作用.高分子材料科学与工程,1995;11(3):128-132.
    76.葛铁军,张汉兴,陈荣华.稀土稳定剂硬质聚氯乙烯中的稳定机理研究.沈阳化工学院学报,2001;15(1):43-46.
    77.刘光烨,沈经纬.聚氯乙烯-稀土稳定体系加工及力学性能的研究.青岛化工学院学报,1991:12(3):1-6.
    78.钱捷,吕亚萍,钟明强.稀土氧化物和硫酸盐对聚氯乙烯稳定作用的研究.中国塑料,1999;13(1):85-89.
    79.杨占红,舒万艮,沈宁一.稀土-锌复合热稳定剂的制备.中南工业大学学报,1999;30(1):34-36.
    80.杨占红,舒万艮,龙怀中.稀土热稳定剂对聚氯乙烯热稳定性能的影响.稀土学报,1999;20(2):60-62.
    81.曾冬铭,许志惠,舒万艮.PVC塑料稀土复合热稳定剂的研制.稀土学报,2001;22(1):20-21.
    82.曾冬铭,胡爱平,舒万艮,刘又年,许志惠.碱式羧酸稀土盐稳定剂及其协同效应的研究.稀土学报,2002;23(4):20-22.
    83.刘二烈,李响,徐晓楠.一种新型稀土热稳定剂的合成与应用研究.塑料,2006;35(3):56-58.
    84. Summers JW. Lubrication mechanism of poly(vinyl chloride) compounds: Changes upon PVC fusion (gelation). J. Vinyl Addit. Technol,2005; 57-62.
    85. Rabinovitch EB, Summers JW. Poly(vinyl chloride) processing morphology. J. Vinyl Technol.,1980; 2 (3):165-168.
    86. Summers JW, Rabinovitch EB, Quisenberry JG. Polyvinyl chloride processing morphology:Part Ⅲ-twin screw extrusion. J. Vinyl Technol.,1982; 4:67-69.
    87. Summers JW, Rabinovitch EB, Booth PC. Measurement of PVC fusion (gelation). J. Vinyl Technol.,1986; 8 (1):2-6.
    88.刘晓明.硬聚氯乙烯改性与加工.北京:北京轻工业出版社,1997.
    89.杨中文,刘西文.国产聚氯乙烯塑化性能改善技术进展.世界塑料,2007;25(4):44-48.
    90. Disson JP, Girois S, Acrylic Process Aids for PVC:From Theoretical Concepts to Practical Use, J. Vinyl Addit. Technol.,2003; 9 (4):177-187.
    91.郭少云,徐俘.力化学降解对聚氯乙烯加工流变行为的影响.高等学校化学学报,1994;15:1244-1247.
    92.郭少云,徐俘.在应力作用下聚氯乙烯降解的研究.高分子科学与工程,1993;6:106-110.
    93.郭少云.MC100新型聚氯乙烯加工助剂.聚氯乙烯,2002;5:31-34.
    94.郑德,李壮利,王文治,霍金生,刘永华.稀土改性的PVC加工助剂应用研究.塑料.2004;33(2):1-4.
    95.王二虎.加工助剂WAC-1010改进PVC-U边角料流动性的研究.塑料助剂,2005;8(1):22-24.
    96. Braun D, Belik P, Richter E. Polymeric costabilisers for poly(vinyl chloride). Die Angew. Makromol. Chem.,1999,268 (1):81-86.
    97.刘建平.含有机锡组分聚合型PVC热稳定剂的合成研究.大连理工大学博士 学位论文,2009年.
    98.杜辛颖.有机稀土共聚物的合成与应用.济南大学硕士学位论文,2011年.
    99. Eisenberg A, Editor. Ion-Containing Polymer:Physical Properties and Structure; Academic Press:New York,1977.
    100. Tsujita Y, Yasuda M, Takei M. Structure of ionic aggregates of ionomers.1. Variation in the structure of ionic aggregates with different acid content and degree of neutralization of ethylene and styrene ionomers. Macromolecules,2001; 34: 2220-2224.
    101. Capek I. Nature and properties of ionomer assemblies. Ⅱ. Adv. Colloid Interface Sci.,2005; 118:73-112.
    102. Capek I. Dispersions of polymer ionomers:I. Adv. Colloid Interface Sci.,2004; 112:1-29.
    103. Mauritz. K. A. Review and critical analysis of theories of aggregation in ionomers. J. Macromol. Sci. Rev-Macromol. Chem. Phys. Part C:Polvm. Rev.,1988; 28:65-98.
    104. Benetatos NM. Winey KI. Nanoscale morphology of poly(styrene-ran-methacrylic acid) ionomers:The role of preparation method, thermal treatment, and acid copolymer structure. Macromolecules,2007;40 (9):3223-3228.
    105. Eisenberg A, Hird B, Moore RB. A new multiplet-cluster model for the morphology of random ionomers. Macromolecules,1990;23 (18):4098-4107.
    106. Fitzgerald J J, Weiss RA. Synthesis, properties and structure of sulfonate ionomers. J. Macromol. Sci., Part C:Polym. Rev.,1988; 28 (1):99-185.
    107. Shoichi K. Masahiro G, Shinichi Y. Structure and dynamics of ionic aggregates in ethylene ionomers and their effect on polymer dynamics:A study by small-angle X-ray scattering and electron spin resonance spectroscopy. Macromolecules,2002; 35 (19):6298-6305.
    108. MacKnight WJ, Earnest TR. Jr. The structure and properties of ionomers. J. Polym. Sci.-Macromol. Rev.,1981;16 (1):41-122.
    109. Yarusso DJ, Cooper SL. Analysis of SAXS data from ionomer systems. Polymer, 1985:;26 (3):371-378.
    110. Eisenberg A. Clustering of ion organic polymers. A theoretical approach. Macromolecules.1970:3 (2):147-154.
    111. Grady BP, Review and critical analysis of the morphology of random ionomers across many length scales. Polym. Eng. Sci.,2008; 48 (6):1029-1051.
    112. Banks E, Okamoto Y, Ueba Y. Synthesis and characterization of rare earth metal-containing polymers.1. Fluorescesnt properties of ionomers containing Dy3+, Er3+, Eu3+ and Sm3+. J. Appl. Polym. Sci.,1980; 25 (3):359-368.
    113. Moussaif N. J(?) erome R. Miscibility of poly(vinylidene fluoride) and poly(methyl methacrylate-co-zinc polyacrylate) ionomers. Polymer,1999; 40 (24): 6831-6839.
    114. Okamoto Y. Ueba Y, Dzhanibekov NF, Banks E. Rare earthe metal containing polymers.3. Characterization of ion-containing polymer structures using rare earth metal fluorescenece probes. Macromolecules.1981; 14 (1):17-22.
    115. Pinheiro A. Mano JF. Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym. Test,2009; 28 (1): 89-95.
    116. Royall PG, Huang CY. Tang SWJ, Duncan J. Brown MB. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int. J. Pharm.,2005:301:181-191.
    117. Tomaszewska J, Sterzynski T, Piszczek K. Rigid poly(vinyl chloride) (PVC) gelation in the brabender measuring mixer. I. Equilibrium state between sliding, breaking, and gelation of PVC. J. Appl. Polym. Sci.,2004; 93 (2):966-971.
    118.杨占红,舒万艮,古映莹.单硬脂酸稀土及双单硬脂酸稀土的合成.稀土学报,1995;1:70-72.
    119. Welty A, Ooi S, Grady BP. Effect of water on internal aggregate structure in zinc-neutralized ionomers. Macromolecules,1999; 32 (9):2989-2995.
    120. Kutsumizu S, Tadano K, Yano S. Investigation of microphase separation and thermal properties of noncrystalline ethylene ionomers.2. IR. DSC. and dielectric characterization. Macromolecules,2000; 33 (24):9044-9053.
    121. Eisenberg A, Trepman E. Ion aggregation and thermal expansion in ionomers. J. Polym. Sci.-Polym. Phys. Ed, 1978; 16 (8): 1381-1387.
    122. Tsujita Y, Yasuda M, Kinoshita T, Takizawa A, Yoshimizu H, Davies GR. Structure of ionic aggregates of ionomers. II. Effect of humidity and temperature on ethylene and styrene ionomers. J. Polym. Sci. Part B: Polym. Phys., 2002; 40 (9): 831-839.
    123. Page KA, Cable KM, Moore RB. Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. Macromolecules, 2005; 38 (15): 6472-6484.
    124. Tierney NK, Register RA. Ion hopping in ethylene-methacrylic acid ionomer melts as probed by rheometry and cation diffusion measurements. Macromolecules, 2002; 35 (6): 2358-2364.
    125. Hirasawa E, Yamamoto Y, Tadano K, Yano S. Effect of metal cation type on the structure and properties of ethylene inomers. J. Appl. Polym. Sci.. 1991; 42 (2): 351-362.
    126. Gao Y, Choudhury NR, Dutta N. Organic-inorganic hybrid from ionomer via sol-gel reaction. Chem. Mater., 2001; 13 (10): 3644-3652.
    127. Hirasawa E, Yamamoto Y, Tadano K, Yano S. Formation of ionic crystallites and its effect on the modulus of ethylene ionomers. Macromolecules, 1989; 22 (6): 2776-2780.
    128. Wu Q, Weiss RA. Viscoelastic properties of poly(styrene-co-vinylphosphonate) ionomers. Polymer, 2007; 48 (26): 7558-7566.
    129. Fang L, Song Y, Zhu XN, Zheng Q. Influence of lanthanum stearate as a co-stabilizer on stabilization efficiency of calcium/zinc stabilizers to polyvinyl chloride. Polym. Degrad. Stab., 2009; 94: 845-850.
    130. Mehrotra RC, Bohra R. Metal Carboxylates, Academic Press, London, UK, 1983.
    131. Kutsumizu S, Ikeno T, Osada S, Hara H. Tachino H, Yano S. Structure and properties of the Neodymium(Ⅲ) salts of poly(ethylene-co-methacrylic acid). Polym. J. 1996; 28: 299-308.
    132. Nass LI. editor. Encyclopedia of PVC. Marcel Dekker, New York; 1986.
    133. Moussaif N, Jerome R. Miscibility of poly(vinylidene fluoride) and poly(methyl methacrvlate-co-zinc polyacrylate) ionomers. Polymer,1999; 40:6831-6839.
    134. Wang W, Chan TT, Perkowski JA, Schlick S, Winey KI. Local structure and composition of the ionic aggregates in Cu(II)-neutralized poly(styrene-co-methacrylic acid) ionomers depend on acid content and neutralization level. Polymer,2009; 50: 1281-1287.
    135. Karraker DG. Coordination of lanthanide acetates. J. Inorg. Nucl. Chem.,1969; 31 (9):2815-2832.
    136. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds 3rd ed, John Wiley & Sons, New York; 1978.
    137. Kutsumizu S, Ikeno T, Osada S, Hara H, Tachino H, Yano S. Structure and properties of the Neodymium(Ⅲ) salts of poly(ethylene-co-methacrylic acid). Polym. J.1996; 28:299-308.
    138. Page KA, Park JK, Moore RB, Sakai VG. Direct Analysis of the Ion-Hopping Process Associated with the alpha-Relaxation in Perfluorosulfonate Ionomers Using Quasielastic Neutron Scattering. Macromolecules,2009; 42:2729-2736.
    139. Klein JR, Welna TD, Weikel LA, Allcock RH, Runt J., Counterion effects on ion mobility and mobile ion concentration of doped polyphosphazene and polyphosphazene ionomers. Macromolecules,2007; 40:3990-3995.
    140. Bazuin CG. Plasticization studies of ionomers:a review. In:Utracki LA, Weiss RA, editors. Multiphase polymers:blends and ionomers. ACS symposium series, vol. 395. Washington, DC:American Chemical Society; 1989 [chapter 21].
    141. Lundberg RD, Makowski HS, Westerman L. The dual plasticization of sulfonated polystyrene ionomer. In:Eisenberg A, editor. Ions in polymers. Advances in chemistry series, vol.187.Washington, DC:American Chemical Society; 1980 [chapter 5].
    142. Agarwal PK, Makowski HS, Lundberg RD. Viscoelastic behavior of sulfonated ethylene-propylene terpolymer. Macromolecules,1980; 13:1679-1687.
    143. Weiss, RA. Time-dependent characteristics of sulfonated EPDM containing zinc stearate. I. Thermal behavior. J. Appl. Polym. Sci.,1983; 28 (11):3321-3332.
    144. Fitzgerald JJ, Kim D, Weiss RA. The effect of diluents on the ionic interactions in sulfonated polystyrene inomers. J. Polym. Sci. Part C Polym. Lett.,1986; 24: 263-268.
    145. Bazuin CG, Eisenberg A. Dynamic mechanical properties of plasticized polystyrene-based ionomers.1. Glassy to rubbery zones. J. Polym. Sci. Part B Polym. Phys.,1986; 24:1137-1153.
    146. Fitzgerald JJ, Weiss RA. The effects of low molar mass diluents on the microstructure of ionomers. J. Polym. Sci. Part B Polym. Phys.,1990; 28:1719-1736.
    147. Weiss RA, Fitzgerald JJ, Kim D. Viscoelastic behavior of plasticized sulfonated polystyrene ionomers. Macromolecules,1991; 24:1064-1070.
    148. Wollmann D, Williams CE, Eisenberg A. Aggregate modification via plasticization of ionomers dynamic mechanical and morphological studies. Macromolecules,1992; 25:6775-6783.
    149. Tong X, Bazuin CG. Blends of an amorphous ionomer with crystalline small molecules bearing a similar functional group. Chem. Mater.,1992; 4:370-377.
    150. Galin M, Mathis A, Galin JC. Statistical N-butyl acrylate sulfopropyl ammonium betaine copolymers.5. Plasticization studies. Macromolecules,1993; 26:4919-4927.
    151. Kim JS, Roberts SB, Eisenberg A, Moore RB. Preferential cluster phase plasticization of ionomers containing surfactant molecules. Macromolecules,1993; 26: 5256-5258.
    152. Plante M, Bazuin CG, Jerome R. Plasticization of biphasic ionomers by chemically identical, short, momofunctional oligomers. Macromolecules,1995; 28: 1567-1574.
    153. Plante M, Bazuin CG, Jerome R. Blends of biphasic ionomers with chemically monofunctional and bifunctional oligomers. Macromolecules,1995; 28:5240-5247.
    154. Ma X, Sauer JA, Hara M. Influence of plasticizers on poly(methyl methacrylate) ionomers. Polymer,1997; 38:4425-4431.
    155. Kim JS, Kim HS, Eisenberg A. Plasticization in unclustered poly(methyl methacrylate) ionomers. Bull. Korean Chem. Soc,1998; 19:625-628.
    156. Kim JS, Eisenberg A. SAXS study on plasticized poly(methyl methacrylate) ionomers. Polymer J.,1999; 31:303-305.
    157. Jackson DA, Koberstein JT, Weiss RA. Small-angle X-ray scattering studies of zinc stearate-filled sulfonated poly(ethylene-co-propylene-co-ethylidene norbomene) ionomers. J. Polym. Sci. Part B Polym. Phys.,1999; 37:3141-3150.
    158. Nah YH, Kim HS, Kim JS, Kim W, Lee Y. Effects of organic salts on dynamic mechanical properties of styrene ionomers. Polymer J..1999:31:309-312.
    159. Kim JW, Kim JS, Jarng SS. Disruption of the multiplets in poly(styrene-co-methacrylate) ionomers by the addition of aliphatic diacid salts. Polymer,2003; 44:2993-3000.
    160. Wakabayashi K, Register RA. Ethylene/(meth)acrylic acid ionomers plasticized and reinforced by metal soaps. Polymer,2006; 47:2874-2883.
    161. Luqman M. Song JM, Kim JS, Kwon YJ, Jarng SS, Shin K. Roles of mono-and di-functional organic salts as plasticizer and/or filler in styrene-based ionomers. Polymer,2008; 49:1871-1878.
    162. Ulman A. Formation and structure of self-assembled monolayers. Chem. Rev., 1996;96(4):1533-1554.
    163. Paul WK, Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,2005; 440:297-302.
    164. Parka C, Yoonb J, Thomas EL. Enabling nanotechnology with self assembled block copolymer patterns. Polymer,2003; 44:6725-6760.
    165. Stepek JZ, Dolezel VB. Thermal degradation of PVC. Mod. Plast.,1963; 40: 205-210.
    166. Wypych J. Basic principles of thermal degradation and thermal stabilization of polyvinyl-chloride.1. Factors effecting thermoldegradation and thermalstabilization of PVC compositions. Angew. makromol. Chem.,1975; 48:1-5.
    167. Hendrieks JG, White EL. Stabilization poly-oinyl Chloride. Type plastic. Ind. Eng. Chem.,1951; 43:2335-2338.
    168.夏士清,周达飞.紫外—可见光法分析增塑剂对PVC热降解的稳定作用.聚氛乙烯.1994;5:59-63.
    169. Levai G, Ocskaand G, Nyitrai Z. The effect of pentaerythritol on the kinetics of the heat stabilization of PVC with cadmium stearate. Polym. Degrad. Stab.,1992; 35: 261-265.
    170. Marongiu A, Faravelli T. Bozzano G, Dente M, Ranzi E. Thermal degradation of poly(vinyl chloride). J. Anal. Appl. Pyrol.,2003; 70:519-553.
    171. Briggs G, Wood NF. Investigation of mechanisms of synergistic interaction in PVC stabilization. J. Appl. Polym. Sci.,1971; 15:25-37.
    172.荆学珍,徐红等.锌硅分子筛VPI—7的合成及表征.无机化学学报,2002;2(2):177-180.
    173. Seals RD, Alexander R, Taylor LT, Dillard JG. Core electron on binding-energy study of group IIB-VIIA compounds. Inorg. Chem.,1973; 12:2485-2487.
    174. Walters RM, Sohn KE, Winey KI, Composto RJ. Local acid environment in poly(ethylene-ran-methacrylic acid) ionomers. J. Polym. Sci. Part B:Polym. Phys., 2002; 41:2833-2841.
    175. Kutsumizu S;Tagawa H, Muroga Y, Yano S. Small-angle X-ray scattering investigation of noncrystalline poly(ethylene-co-methacrylic acid) ionomers. Macromolecules,2000:33 (10):3818-3827.
    176. Vanhoorne P, Register RA. Low-shear melt rheology of partially-neutralized ethylene-methacrylic acid ionomers. Macromolecules,1996; 29 (2):598-604.
    177. Kutzumizu S, Tadano K, Matsuda Y, Goto M, Tachino H, Hara H, Hirasawa E, Tagawa H, Muroga Y, Yano S. Investigation of microphase separation and thermal properties of noncrystalline ethylene ionomers.2. IR, DSC, and dielectric characterization. Macromolecules,2000; 33 (24):9044-9053.
    178. Han K, Williams HL. Ionomers-2 Formation mechanisms and models. J. Appl. Polym. Sci.1991; 42 (7):1845-1859.
    179. Benanibaa MT, Belhaneche-Bensemrab N, Gelbardc G. Stabilization of PVC by epoxidized sunflower oil in the presence of zinc and calcium stearates. Polym. Degrad. Stab.2003; 82:245-249.
    180. Baltacioglu H, Balkose D. Effect of zinc stearate and/or epoxidized soybean oil on celation and thermal stability of PVC-DOP plastigels. J. Appl. Polym. Sci.,1999; 74:2488-2498.
    181. Karmalm P, Hjertberg T, Jansson A, Dahl R. Ankner K. Network formation by epoxidised soybean oil in plastisol poly(vinyl chloride). Polym. Degrad. Stab.2009; 94:1986-1990.
    182. Karmalm P, Hjertberg T, Jansson A, Dahl R. Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer. Polym. Degrad. Stab., 2009; 94 (12):2275-2281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700