严寒地区空气源土壤蓄热式热泵系统及运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤源热泵作为节能环保的新型空调技术,在国内外被广泛推广和应用。但在严寒地区建筑冷热负荷相差很大,土壤源热泵系统长期运行将导致土壤温度逐年降低,热泵供暖性能也将逐年下降,室温不能满足要求。为此,本文基于季节性土壤蓄热思想,提出了空气源土壤蓄热式热泵(Heat Pump with Air-Source Soil Heat Storage,简称HPASSHS)系统,夏季将自然空气中的热量储存到土壤中,冬季再由热泵从土壤取热供入室内。与太阳能蓄热相比,空气源蓄热设备简单,投资和维护费用较低。在没有集中供热管网,并且不具备足够的屋顶或其它空间安装太阳能集热器时,采用空气源蓄热方法也能实现自然能量的移季利用,为严寒地区应用土壤源热泵供热技术提供了新途径。本文主要从以下几个方面对该系统展开了研究:
     首先,介绍了HPASSHS系统的主要运行模式及工作原理,建立了系统各传热环节的数学模型。兼顾计算量和准确性,采用当量方形截面单管代替垂直U型埋管,建立了管群土壤换热器的准三维非稳态传热模型,并通过形状因子法得出管壁与土壤的换热边界条件。在上述模型基础上,研究制定了不同运行模式的启停控制条件,为模拟系统动态运行特性奠定基础。
     其次,在哈尔滨工业大学建立HPASSHS实验系统,并进行了近2年的实验研究。通过实测数据分析空气源土壤蓄热特性、土壤源热泵供热特性和土壤温度变化特性得出:严寒地区空气源季节性土壤蓄热可以有效提高土壤温度,蓄热效果主要受空气温度影响,间歇运行能提高土壤换热器的换热效率。通过模拟结果和实验结果的比较,验证了模型的可靠性和正确性。
     再次,为哈尔滨节能住宅建筑设计了HPASSHS系统,分别模拟计算了有无空气源蓄热情况下系统连续10年的运行情况。从运行参数、供热效果、性能系数、土壤温度场等方面分析了有蓄热系统的全年运行特性,并将有无蓄热情况下系统的逐年运行性能进行对比得出:严寒地区土壤源热泵系统只有增加季节性土壤蓄热后才能实现土壤温度场的逐年热平衡,并且具备持续的供热能力。
     另外,模拟分析了蓄热时间、埋管换热面积、热泵容量、室内外风机盘管换热面积对系统运行特性的影响。在此基础上,以费用年值最低为目标对系统进行优化,得到了模拟条件下HPASSHS系统的最优参数组合,并将最优系统同电锅炉供暖、电地热供暖和燃气供暖进行节能性和经济性对比得出,HPASSHS供暖系统在严寒地区应用具有一定优势。
     最后,将系统拓展应用于寒冷地区,在北京某一节能建筑中设计了HPASSHS系统。夏季采用土壤直接供冷、土壤源热泵供冷和空气源蓄热交替运行,冬季采用土壤源热泵供热。通过模拟计算,分析了HPASSHS系统的全年运行特性,并同传统土壤源热泵系统的运行情况进行对比,结果表明:HPASSHS系统能很好的满足冬夏室温要求,采用土壤直接供冷显著提高了系统供冷性能系数,通过空气源蓄热可使系统全年土壤排热量和取热量平衡,而传统土壤源热泵系统排热量仅为取热量的65%,不利于长期供热。选取两种供热空调方案同HPASSHS系统进行节能性和经济性比较得出,应用HPASSHS系统能明显减少一次能源消耗量,并且经济费用较低。
     通过模拟和实验研究,证明了严寒和寒冷地区季节性空气源土壤蓄热的可行性,并且HPASSHS系统具有持续高效的供热性能。本文的研究成果将为该系统的应用提供理论基础和技术支持。
     本课题为“十二五”国家科技支撑计划课题“严寒地区供热系统节能降耗关键技术研究与工程示范”(2011BAJ05B04)的部分内容。
The ground-coupled heat pump has been widely popularized and applied athome and abroad as a new air conditioning technology of energy conservation andenvironmental protection. But because the difference between the building heatingload and cooling load in severe cold area, the soil temperature would descend yearby year due to the long-term operation of the ground-coupled heat pump system. Asa result, the heating performance of the heat pump would drop year by year and theindoor temperature can’t meet heating requirement. Therefore, this paper presentedthe heat pump system with air-source soil heat storage (HPASSHS) based on theidea of the seasonal heat storage using the soil as medium. The heat of the naturalair was injected in the soil in summer and was extracted from the soil by the heatpump for space heating in winter. Compared with the solar energy storage, the air-source heat storage has the advantages of simple device and the less cost ofinvestment and maintenance. If there was no the central heating network and no theenough roof space or other space to install the solar collector, the air-source heatstorage could remove the natural energy from summer to winter too, whichprovides a new way for the application of ground-coupled heat pump in severe coldarea. This study is based on the following aspects:
     Firstly, the operation modes and principles of HPASSHS system wereintroduced, and the numerical model of each heat transfer part in the system wasbuilt. Considering the computational complexity and accuracy, the quasi three-dimensional transient heat transfer model of the multi-pipe ground heat exchangerwas developed using equivalent single pipe with square cross section instead of U-tube, and the heat transfer boundary condition between the equivalent pipe and thesoil was calculated by shape factor method. Based on the above models, the on/offconditions of the different modes were researched and determined, so that thedynamic operation characteristics of HPASSHS system can be simulated.
     Secondly, the experimental platform of HPASSHS system was set up in theHarbin University of Technology and about two years experiment was performed.The characteristics of the air-source soil heat storage and heating by the ground-coupled heat pump as well as the temperature variation characteristics of the soilwere analyzed base on the measured data. It can be concluded that the soiltemperature could be increased effectively via the air-source soil heat storage, theair temperature was the main influence factor of the heat storage effect, and the heat exchange efficiency of the ground heat exchanger could be improved by theintermittent operation mode. The reliability and validity of the models establishedabove were verified by comparing the simulation results and the experimentalresults.
     Thirdly, a HPASSHS system was designed for an energy-saving residencebuilding in Harbin, and the10years operation performance of the system with andwithout the air-source heat storage was simulated, respectively. The annualcharacteristics of the system with the air-source heat storage was studied fromoperation parameters, heating effect, coefficient of performance and soiltemperature field and so on, and comparing the system performance with andwithout the heat storage year by year, it was found out that only with the seasonalheat storage could ground-coupled heat pump system realize the soil temperaturefield balance year after year and be sustainable for heating in severe cold area.
     Fourthly, the impacts on the system operation characteristics caused by themajor parameters including heat storage time, heat exchange area of ground heatexchanger, heat output of heat pump, heat exchange areas of indoor and outdoorfan-coil units were simulated and analyzed, respectively. On the basis ofparameters analysis, the annual minimum cost was taken as the objective tooptimize the system parameters, and the optimal parameter combination of thesystem was gained under the simulation conditions. The HPASSHS system with theoptimal parameter combination was compared with that of electric boiler heating,electric ground heating and gas heating on the sides of energy-saving and economy.The results show that the application of HPASSHS system has a certain advantagein severe cold area.
     Finally, the HPASSHS system was applied to an energy-saving build ofBeijing in cold area. The soil cooling directly, the cooling by the ground-coupledheat pump and the air-source heat storage operated alternately in summer, and theheating by the ground-coupled heat pump operated in winter. The annual operationcharacteristics of the HPASSHS system were analysed and compared with those ofthe traditional ground-coupled heat pump system by the simulative calculation. Thefollowing conclusions can be drawn: the HPASSHS system can meet the indoortemperature requirement in summer and winter, the cooling coefficient ofperformance of the system rised significantly by the soil cooling directly. Throughthe air-source heat storage, the heat injected into the soil could be equal with theheat exacted from the soil during the HPASSHS system operation. While the heatinjected into the soil was only65%of the heat exacted from the soil during theoperation of the ground-coupled heat pump system, which was not good for thelong-term heating. The energy-saving and economic performances of the HPASSHS system were compared with those of the two heating and air-conditioning plans, theresults indicated that the application of the HPASSHS system in cold area coulddecrease markly the primary energy consumption, and the total cost was less.
     The simulative and experimental studies in this paper have proved that the air-source seasonal soil heat storage is feasible in severe cold area or cold area and theHPASSHS system has sustainable and efficient heating performance, which canprovide theoretical basis and technical support for the system application.
     This research topic is a part of the project 'Research on Key Technologies andEngineering Demonstration for Energy Saving and Consumption Reduction of theHeating System in Severe Cold Area', which is the country '11th Five-Year Plan' tosupport science and technology project (No.2011BAJ05B04).
引文
[1]英国石油公司.2012年BP世界能源统计年鉴[R].伦敦:普氏(Platts),2012:6-41.
    [2]马晓舫.2011年全球二氧化碳排放量上升3%[EB/OL].(2012-7-31)[2012-9-17].http://www.chinadaily.com.cn/micro-reading/dzh/2012-07-31/content_6594977.html.
    [3]许银娟.研究称全球变暖2℃海平面升1.5米到4米[EB/OL].(2012-6-27)[2012-9-17].http://www.chinadaily.com.cn/dfpd/2012-06/27/content_15526660.ht-m?prolongation=1.
    [4]陈剑敏,田鸿雁.我国能源利用现状对发展低碳经济的制约与对策[J].改革与战略,2012,(4):45-46.
    [5]张宏彬.能源问题、环境污染与“节能减排”[J].改革与开放,2010,(20):97.
    [6]时红秀.欧盟的节能减排战略[J].学习月刊,2008,306(1):7.
    [7]张绍鸿,曾凡银,尤建新.节能减排立法的国际经验及其借鉴[J].国家行政学院学报,2010,(4):117-122.
    [8]本刊记者一部,北京华嘉机构,经济管理研究中心.解救能源危机发展可再生能源是人类社会实现可持续发展的必由之路[J].科技智囊,2005,(12):12-15
    [9]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,35(5):30-40.
    [10]何金刚,王磊,吴杨.节能环保技术在暖通空调系统中的应用[J].建筑节能,2008,36(7):6-9.
    [11]霍海霞.中国建筑节能现状与对策探析[J].学理论,2010,(21):147-148.
    [12]琚伟.土壤源热泵空调系统的性能模拟分析[J].南昌大学学报(工科版).2011,33(2):185-189.
    [13]本刊编辑部.世界地源热泵行业发展概况[J].供热制冷,2012,(9):60-61.
    [14]鹿清华,张晓熙,何祚云.国内外地热发展现状及趋势分析[J].石油石化节能与减排,2012,2(1):39-42.
    [15]罗继杰.节能减排——暖通空调(设计)行业面临的机遇和挑战[J].暖通空调,2012,42(1):1-16.
    [16]江亿.我国建筑节能战略研究[J].中国工程科学,2011,(6):30-38.
    [17] Ingersoll L R, Plass H J. Theory of the Ground Pipe Heat Source for the Heat Pump[J]. Heating, Piping&Air Conditioning,1948,(6):119-122.
    [18] Ingersoll L R, Zobel O J, Ingersoll A C. Heat Conduction with Engineering,Geological and Other Applications [M]. NewYork: McGraw-Hill,1954: l-56.
    [19] Metz P D. Design, Operation and Performance of a Ground Coupled Heat PumpSystem in a Cold Climate [C]//Proceedings of the Intersociety Energy ConversionEngineering Conference. Atlanta: ASME,1981,2:1705-1710.
    [20] Metz P D. A Simple Computer Program to Model Three-Dimension UndergroundHeat Flow with Realistic Boundary Conditions [J]. Journal of Solar EnergyEngineering,1983,105:42-49.
    [21] Bose J E, Parker J D. Ground-Coupled Heat Pump Research [J]. ASHRAETransactions,1983,89(2B):375-390.
    [22] Johnson W S, McGraw B A, Baugh R N, Griffith W A. Ground-Coupled HeatPump Research at the University of Tennessee [R]. Washington DC.: Departmentof Energy,1984:10.
    [23] Mei V C, Fischer S K. Vertical Concentric Tube Ground-Coupled Heat Exchangers[J]. ASHRAE Transactions.1983,89(2):391~406.
    [24] Mei V C. Theoretical Heat Pump Ground Coil Analysis with Variable GroundFour-Field Boundary Conditions [J]. AICHE Journal,1986,32(7):662-667.
    [25] Tarnawski V R, Leong W H. Computer Analysis, Design and Simulation ofHorizontal Ground Heat Exchangers [J]. International Journal of Energy Research,1993,17(6):467-477.
    [26] Piechowski M. Heat and Mass Transfer Model of a Ground Heat Exchanger:Theoretical Development [J]. International Journal of Energy Research,1999,23(7):571-588.
    [27] Xing L, Cullin J R, Spitler J D, Im P, Fisher D E. Foundation Heat Exchangers forResidential Ground Source Heat Pump Systems-Numerical Modeling andExperimental Validation[J]. HVAC and R Research,2011,17(6):1059-1074.
    [28] Sledz D, Sakaki T, Nakagawa M. Efficiency of Vertical U-tube under Varied SoilMoisture Content Conditions: Laboratory Experiments [J]. Transactions-Geothermal Resources Council.2010,34(2):875-877.
    [29] Garcia G R, Verhoef A, Vidale P L, Main B, Gan G, Wu Y. Interactions between thePhysical Soil Environment and a Horizontal Ground Coupled Heat Pump, for aDomestic Site in the UK[J]. Renewable Energy,2012,44:141-153.
    [30] Spilker E H. Ground-Coupled Heat Pump Loop Design Using ThermalConductivity Testing and the Effect of Different Backfill Materials on Vertical BoreLength [J]. ASHRAE Transactions,1998,104(1B):775-779.
    [31] Gu Y, O'Neal D L. Modeling the Effect of Backfills on U-tube Ground CoilPerformance [J]. ASHRAE Transations,1998,104(2):356-365.
    [32] Zhang Q, Murphy W E. Measurement of thermal conductivity for three boreholefill materials used for GSHP [J]. ASHRAE Transactions,2000,106.
    [33] Yavuzturk C, Chiasson A D. Performance Analysis of U-Tube, Concentric Tube,and Standing Column Well Ground Heat Exchangers Using a System SimulationApproach [J]. ASHRAE Transactions,2002,108(1):925-938.
    [34] Marzbanrad J, Sharifzadegan A, Kahrobaeian A. Thermodynamic Optimization ofGSHPS Heat Exchangers [J]. International Journal of Thermodynamics,2007,10(3):107-112.
    [35] Sayyaadi H, Amlashi E H, Amidpour M. Multi-Objective Optimization of aVertical Ground Source Heat Pump Using Evolutionary Algorithm [J]. EnergyConversion and Management,2009,50(8):2035-2046.
    [36] Zogou O, Stamatelos A. Optimization of Thermal Performance of a Building withGround Source Heat Pump System [J]. Energy Conversion and Management,2007,48(11):2853-2863.
    [37] Desmedt J, Bael J V. Efficiency Investigation and Energy Saving of VerticalGround Source Heat Pump [J]. Strojarstvo,2010,52(4):405-409.
    [38] Refrigerant Amount Detection Algorithm for a Ground Source Heat Pump Unit [J].Renewable Energy,2012,42:111-117.
    [39] Alvarado J. Design and Construction of a Lab-Scale Ground Source HeatPump[C]//ASEE Annual Conference and Exposition Conference Proceedings.Chantilly: ASEE,2007:17.
    [40] Trillat-Berdal V, Souyri B, Achard G. Coupling of Geothermal Heat Pumps withThermal Solar Collectors [J]. Applied Thermal Engineering,2007,27(10):1750-1755.
    [41] Ozgener O, Hepbasli A. A Parametrical Study on the Energetic and ExergeticAssessment of a Solar-Assisted Vertical Ground-Source Heat Pump System Usedfor Heating a Greenhouse [J]. Building and Environment,2007,42(1):11-24.
    [42] Kjellsson E, Hellstr m G, Perers B. Optimization of Systems with the Combinationof Ground-Source Heat Pump and Solar Collectors in Dwellings [J]. Energy,2010,35(6):2667-2673.
    [43] Dejanovic I, Matija evic L, Glasnovic Z. Ground Source Heat Pump TechnologyUse for Heating and Air-Conditioning of a Commercial/Residential Building [J].Chemical Engineering Transactions,2010,21:115-120.
    [44] Bakirci K, Ozyurt O, Comakli K, Comakli O. Energy analysis of a solar-groundsource heat pump system with vertical closed-loop for heating applications [J].Energy,2011,36(5):3224-3232.
    [45] Phetteplace G, Sullivan W. Performance of a Hybrid Ground-Coupled Heat PumpSystem [J]. ASHRAE Transactions,1998,104(1B):763-770.
    [46] Ramamoorthy M, Jin H, Chiasson A D, Spitler J D. Optimal Sizing of HybridGround-Source Heat Pump Systems that Use a Cooling Pond as a SupplementalHeat Rejecter-A System Simulation Approach [J]. ASHRAE Transactions,2001,107(1):26-38.
    [47] Pertzborn A, Nellis G, Klein S. Impact of Weather Variation on Ground-SourceHeat Pump Design [J]. HVAC and R Research,2011,17(2):174-185.
    [48] Sayyadi H, Nejatolahi M. Thermodynamic and Thermoeconomic Optimization of aCooling Tower-Assisted Ground Source Heat Pump [J]. Geothermics,2011,40(3):221-232.
    [49]高祖锟,高佛佑,田长青,等.土壤热源热泵用于供暖的研究[J].天津商学院学报,1991,11(1):1-9.
    [50]高祖锟,高佛佑,田长青,等.土壤热源热泵的研究(二)——地下温度场的计算机模拟[J].天津商学院学报,1991,11(2):1-7.
    [51]高祖锟,刘鹏建.关于土壤热源用于制冷中风冷(或水冷)冷凝的研究[J].天津商学院学报,1993,13(2):3-10.
    [52]高祖锟.用于供暖的土壤—水热泵系统[J].暖通空调,1995,25(4):9-12.
    [53]卫志道.热泵用地下埋管换热的实验研究与数值模拟[D].武汉:华中理工大学硕士学位论文,1992.
    [54]张昆峰,马芳梅,金六一,等.土壤热源与热泵联接运行冬季工况的试验研究[J].华中理工大学学报,1996,24(1):23-26.
    [55]刘宪英,王勇,胡鸣明,等.地源热泵地下垂直埋管换热器的试验研究[J].重庆建筑大学学报,1999,21(5):21-26.
    [56]魏唐棣,胡鸣明,丁勇,等.地源热泵冬季供暖测试及传热模型.暖通空调,2000,30(1):12-14.
    [57]刘宪英,丁勇,胡鸣明.浅埋竖管换热器地热源热泵夏季供冷试验研究[J].暖通空调,2000,30(4):1-4.
    [58]李元旦,魏先勋.水平埋地管换热器夏季瞬态工况的实验与数值模拟[J].湖南大学学报(自然科学版),1999,(2):58-63.
    [59]魏先勋,李元旦,林玉鹏,等土壤源热泵的研究[J].湖南大学学报(自然科学版),2000,27(2):62-65.
    [60]张旭.太阳能-土壤热源热泵及相关基础理论研究[D].上海:同济大学博士后研究报告,1999.
    [61]李元旦,张旭,周亚素,等.土壤源热泵冬季工况启动特性的实验研究[J].暖通空调,2001,31(1):17-20.
    [62]李新国,赵军,朱强,等.垂直螺旋盘管地源热泵供暖制冷实验研究[J].太阳能学报,2002,23(6):684-686.
    [63]李新国,汪洪军,赵军,等.不同回填材料对U型垂直埋管换热性能的影响[J].太阳能学报,2003,24(6):810-813.
    [64]赵军.竖直埋管型地源热泵地下传热及热力性能的研究[D].天津:天津大学博士学位论文,2002.
    [65]余乐渊,赵军,李新国,等.竖埋螺旋管地热换热器理论模型及实验研究[J].太阳能学报,2004,25(5):690-694
    [66]侯立泉,杨宪魁,王景刚,等.土壤源热泵实验装置的数据采集及控制系统[J].河北建筑科技学院学报,2003,20(1):15-18.
    [67]侯立泉. U型垂直埋管式土壤源热泵运行特性的实验研究[D].太原:太原理工大学硕士学位论文,2003.
    [68]毕月虹,陈林根.太阳能-土壤热源热泵的性能研究[J].太阳能学报,2000,21(2):214-219.
    [69] Bi Y H, Guo T W, Zhang L. Solar and Ground Source Heat-Pump System [J].Applied Energy,2004,78(2):231-245.
    [70]杨卫波,董华,周恩泽,等.太阳能-土壤源热泵系统联合运行模式的研究[J].流体机械.2004,32(2):41-49.
    [71]杨卫波,施明恒,董华.太阳能-土壤源热泵系统联合供暖运行模式的探讨[J].暖通空调.2005,35(8):25-31.
    [72]杨卫波,施明恒.基于遗传算法的太阳能-地热复合源热泵系统的优化[J].暖通空调.2007,37(2):12-17.
    [73]杨卫波,施明恒,陈振乾.土壤源热泵供冷供热运行特性的实验研究[J].东南大学学报(自然科学版).2009,39(2):276-281.
    [74] Yang W B, Chen Z Q, Shi M H. Alternate Operation Characteristics of a Solar-Ground Source Heat Pump System [J]. Journal of Southeast University(EnglishEdition).2010,26(2):327-331.
    [75]余延顺,廉乐明.寒区太阳能-土壤源热泵系统太阳能保证率的确定[J].热能动力工程,2002,17(7):393-395.
    [76]余延顺,廉乐明.寒冷地区太阳能-土壤源热泵系统运行方式的探讨[J].太阳能学报,2003,24(1):111-115.
    [77]余延顺,马最良,姚杨.土壤蓄冷与土壤耦合热泵集成系统中土壤蓄冷与释冷过程的特性研究[J].暖通空调,2004,34(5):1-6.
    [78]余延顺,马最良,姚杨.土壤蓄冷与土壤耦合热泵集成系统的模拟研究[J].暖通空调,2005,35(6):1-5.
    [79]余延顺,马最良,姚杨,等.土壤蓄冷和释冷的能量分析[J].太阳能学报,2007,28(12):1407-1412.
    [80]范蕊,马最良,姚杨,等.地下水流动对地下埋管换热器影响的实验研究[J].太阳能学报,2007,28(8):874-880.
    [81] Fan R, Jiang Y Q, Yao Y, et al. Theoretical Study on the Performance of anIntegrated Ground-Source Heat Pump System in a Whole Year. Energy.2008,33(11):1671-1679.
    [82]王冬梅.土壤源热泵系统的实验研究与动态模拟[D].哈尔滨:哈尔滨工业大学硕士学位论文,2002.
    [83] Zheng M Y, Zhi Y S, Lin Y. Study of heating and cooling system with solar heatsoil storage in severe cold area[C]//Proceedings of the20034th InternationalSymposium on Heating, Ventilating and Air Conditioning. Beijing China: TsinghuaUniversity.2003:1123-1128.
    [84]叶琪.太阳能-土壤源热泵系统优化[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008.
    [85]王芳.太阳能土壤蓄热供暖(冷)系统埋地换热器性能研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [86] Wang X, Zheng M Y, Zhang W Y, et al. Experimental Study of a Solar-AssistedGround-Coupled Heat Pump System with Solar Seasonal Thermal Storage inSevere Cold Area [J].Energy and Buildings,2010,42(1):2104-2110.
    [87]韩靖,郑茂余,杨萌.太阳能-地下坑槽季节土壤蓄热热泵供热系统[J].2011,31(8):A1-A6.
    [88] Lu C, Zheng M Y, Leong W H. Verification and analysis of a TRNSYS model of ademonstration house equipped with a solar assisted ground coupled heat pumpsystem [C]//Proceedings of2011International Conference on ConsumerElectronics, Communications and Networks (CECNet2011). Xianning: IEEE,2011:1887-1891.
    [89]韩宗伟,郑茂余,刘威,等.严寒地区太阳能—土壤源热泵相变蓄热供暖系统[J].太阳能学报,2006,27(12):1214-1218.
    [90] Han Z W, Zheng M Y, Kong F H, et al. Numerical Simulation of Solar AssistedGround Source Heat Pump Heating System with Latent Heat Energy Storage inSeverely Cold Area[J]. Applied Thermal Engineering.2008,28(11-12):1427-1436.
    [91]白天,郑茂余,张建利,等.土壤冻结对地埋管换热器性能的影响[J].暖通空调,2009,39(12):1-12.
    [92]白天,郑茂余,孔凡红,等.地埋管换热器周围土壤冻结温度场的模拟研究[J].煤气与热力,2009,29(10):1-4.
    [93]李忠建,郑茂余,王芳,等.土壤冷源直接供冷空调系统供冷特性的实验研究[J].太阳能学报,2008,29(8):988-992.
    [94]李忠建,郑茂余,雷帮伟,等.自然冷源土壤直接供冷空调系统土壤温变特性[J].哈尔滨工业大学学报,2009,41(6):72-77.
    [95]杨涛,郑茂余,刘威.自然冷源季节性土壤蓄冷取冷工况分析[J].暖通空调.2008,35(3):21-24.
    [96] Hausz W. Seasonal Storage in District Heating [J]. District Heating.1977,63(1):5-11.
    [97] Norbaeck K, Hallenberg J. Swedish Group Solar Heating Plant with SeasonalStorage[R]. Stockholm: Swedish Council for Building Research,1980.
    [98] Wijsman A J, Th M, Havinga J. Groningen Project:96Solar Houses with SeasonalHeat Storage in the Soil [J]. Pergamon Press.1986,2:818-824.
    [99] Kannberg L D. Energy and Environmental Issues of Aquifer Thermal EnergyStorage [R]. Washington DC.: Department of Energy,1988.
    [100] Walton M. Seasonal Thermal Energy Storage (Stes)[J]. Underground Space.1985,9(1):5-15.
    [101] Leroy G. Study of an Interseasonal Heat Storage in the Ground by Drilling andEquidistributed Tubular Exchangers [R].1982.
    [102] Lund P D, Ostman M B. Numerical Model for Seasonal Storage of Solar Heat inthe Ground by Vertical Pipes [J]. Solar energy.1985,34(4-5):351-366.
    [103] Lund P D. Computational Simulation of District Solar Heating Systems withSeasonal Thermal Energy Storage [J]. Solar energy.1986,36(5):397-408.
    [104] Saitoh T S, Yamaguchi A. Efficient Borehole Energy Storage System for High-Story Buildings[C]//Proceedings of the Intersociety Energy ConversionEngineering Conference. Piscataway NJ United States: IEEE.1996,3:2109-2114.
    [105] Pahud D. Central Solar Heating Plants with Seasonal Duct Storage and Short-TermWater Storage: Design Guidelines Obtained by Dynamic System Simulations[J].Solar energy.2000,69(6):495-509.
    [106] Hellstr m G, ke Larson S. Seasonal Thermal Energy Storage-The HYDROCKConcept [J]. Bulletin of Engineering Geology and the Environment.2001,60(2):145-156.31(7):971-985.
    [107] Georgiev A, Busso A, Roth P. Shallow Borehole Heat Exchanger: Response Testand Charging-Discharging Test with Solar Collectors [J]. Renewable Energy.2006,31(7):971-985.
    [108] Olszewski P. Optimization of Working Ground Heat Storage with SeasonalRegeneration [C].//Proceedings of2006ASME International MechanicalEngineering Congress and Exposition. New York: American Society of MechanicalEngineers,2006.
    [109] Medjelled A, Benchatti A, Bouni A. Experimental Model for the Study of HeatTransfer in Unsaturateed Soil: Case of Underground Thermal Storage [J].International Journal of Heat and Technology.2008,26(1):97-104.
    [110] Udell Kent S, Kekelia B, Jankovich P. Net Zero Energy Air Conditioning UsingSmart Thermosiphon Arrays [J]. ASHRAE Transactions.2011,117(Part1):892-898.
    [111]马文麒,李申生.太阳池和池下土壤的跨季度蓄热[J].太阳能学报.1984,5(4):358-367.
    [112]林媛.太阳能土壤源热泵蓄热过程中的数值模拟[J].合肥工业大学学报(自然科学版).2005,28(6):650-654.
    [113]赵军,陈雁,李新国.基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J].华北电力大学学报.2007,34(2):74-77.
    [114]李新国,赵军,王一平,等.太阳能、蓄热与地源热泵组合系统的应用与实验[J].太阳能学报.2009,30(12):1658-1661.
    [115]崔俊奎,赵军,李新国,等.跨季节蓄热地源热泵地下蓄热特性的理论研究[J].2008,29(8):920-926.
    [116]杨卫波,施明恒,陈振乾.太阳能-U形埋管土壤蓄热特性数值模拟与实验验证[J].东南大学学报(自然科学版),2008,38(4):651-656.
    [117]杨卫波,陈振乾,施明恒.跨季节蓄能型地源热泵地下蓄能与释能特性[J].东南大学学报(自然科学版).2010,40(5):973-978.
    [118]底冰,马重芳,张广宇,等.太阳能跨季节蓄能热泵供暖系统的实验研究[J].工程热物理学报.2011,32(3):483-487.
    [119] Zheng M Y, Wang D M, Zhi Y S. The Study of Heating and Cooling Techniquewith Solar Energy in Severe Cold Area. Energy and the Environment-Proceedingsof the International Conference on Environment, Shanghai,2003:186-191.
    [120]吕超,郑茂余. SGCHPS土壤热平衡及系统热量利用[J].哈尔滨工业大学学报.2012,44(2):106-111.
    [121]吕超,郑茂余. SGCHPS土壤蓄热供热供冷效果分析[J].哈尔滨工业大学学报.2011,43(12):104-108.
    [122]张文雍,郑茂余,王潇,等.太阳能季节性土壤蓄热影响因素分析[J].建筑科学.2010,26(6):81-86.
    [123] Thibault D, Martin M, Torguet R. Experimental Results of Combined Heat Pump,Heat-Storage in Soil System for Heating a Gymnasium[C]//Proc of the NinthBienn Congr of the Int Sol Energy Soc. New York USA: Pergamon Press.1986,1:528-532.
    [124] Bernier H, Raghavan G S V, Paris J. Evaluation of a Soil Heat Exchanger-StorageSystem for a Greenhouse [J]. Canadian Agricultural Engineering.1991,33(1):93-98.
    [125] Niemi A, Kling T, Ettala M. Simulation of a Field Experiment for Storage of Heatin Porous Unsaturated Soil, Vierumaki, Southern Finland[C].//Natural/ForcedConvection and Combustion Simulation. Billerica MA United States:Computational Mechanics Inc.1992:405-429.
    [126]韩宗伟丁慧婷李先庭,等.季节性蓄存空气热能的地源热泵空调系统模拟[J].东北大学学报(自然科学版).2012,33(3):439-443.
    [127] Mashiko K, Okiai R, Mochizuki M, et al. Development of an Artificial PermafrostStorage Using Heat Pipes [C]//American Society of Mechanical Engineers (Paper).New York United States: ASME.1989:HT15.
    [128]郑茂余,刘威,韩宗伟,等.土壤季节性蓄存自然冷量的实验研究[J].暖通空调,2005,35(10):5-117.
    [129]杨涛,郑茂余,王潇,等.哈尔滨季节性土壤蓄冷不同蓄冷模式[J].哈尔滨工业大学学报.2010,42(10):1619-1623.
    [130]穆康.土壤源热泵冬夏取排热量不平衡的大气热补偿方法[D].哈尔滨:哈尔滨工业大学硕士学位论文,2010.
    [131] Gu Y, O’Neal D L. Modeling the Effect of Backfills on U-Tube Ground CoilPerformance [J]. ASHRAE Transactions.1998,104(2):356-365.
    [132]程俊国,张洪济,张慕瑾,等.高等传热学[M].重庆:重庆大学出版社.1991:50-55.
    [133]皮茨D R,西索姆L E.传热学(葛新石译)[M].北京:科学出版社,2002:213-221.
    [134]郑茂余.建筑节能与供暖[M].哈尔滨:黑龙江科学技术出版社,1995:174-177.
    [135]白天.严寒地区土壤源热泵系统地埋管运行特性研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2010:57.
    [136]陆耀庆.实用供热空调设计手册(第二版)[M].北京:中国建筑工业出版社,2008:303-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700