转化生长因子-β1基因T869C多态性与缺血性脑卒中相关性的Meta分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     缺血性脑卒中(Ischemic stroke, IS)是指突然发生的脑局部血液循环障碍导致脑组织缺血缺氧引起的局灶性神经功能缺损综合征。IS是世界范围内三大死亡疾病之一,也是成年人首位致残原因。由于目前IS的病因及发病机制尚未完全阐明,且临床上理想的治疗手段有限,使得其不仅发病率很高,致死率、致残率及复发率也较高,给个人和社会造成了巨大的负担。
     IS是一种由遗传和环境因素共同作用的复杂性疾病,遗传易感性与IS的发生发展密切相关。随着人类基因组计划的完成和分子遗传学的发展,能够反映个体间基因差异、决定疾病易感性和药物反应差异性的单核苷酸多态性(single neucleotide polymorphism, SNP)受到广泛重视,寻找致病易感候选基因成为当前研究的热点。近年来,越来越多研究认为,炎症在IS的病理生理过程中起重要作用。炎症因子作为候选易感基因之一,其基因多态性与IS发病风险的关系也倍受关注。
     转化生长因子-p1(transforming growth factor-β1, TGF-β1)是具有潜在抗炎特性的多功能细胞因子,目前发现其可通过多种途径参与脑缺血后损伤与修复的病理生理过程。TGF-β1在机体中的表达水平受其基因多态性的调控。TGF-β1基因位于人类染色体19q13.1-13.3,目前在该基因上至少已经发现了10个常见的基因多态性位点。其中,T869C(rs1982073; Leu10/Pro10; T29C; codon10)位点位于第一外显子信号肽序列,有研究称其可通过增加TGF-β1mRNA表达而提高TGF-β1在血浆中的水平,进而在疾病的发生发展中发挥其生物学功能。
     迄今为止,国内外已有多个流行病学研究调查了TGF-β1基因T869C多态性与IS发病风险的相关性。然而,这些研究的结果不完全一致,有的研究结果甚至还相互矛盾。考虑到单个研究由于样本量小且统计学和临床异质性差异大,缺乏有效的统计学效能,因此,我们运用Meta分析的方法,系统而全面地收集所有已发表的国内外相关文献,用定量合成的方法进行统计学处理,以期得到更加肯定和客观、可靠的结论。
     目的
     应用Meta分析的方法综合评估TGF-β1基因T869C多态性与缺血性脑卒中发病风险的关系。
     方法
     计算机检索PubMed、Cochrane图书馆、Science Direct、BIOSIS Previews、 CBM、CNKI、万方、维普等中英文数据库,辅以手工检索进行文献追溯,全面收集2013年3月以前发表的有关TGF-β1基因T869C多态性与缺血性脑卒中发病风险的国内外流行病学文献,严格制定纳入/排除标准,由两名研究者独立进行资料提取,采用Newcastle-Ottawa Scale (NOS)标准进行质量评估后、再以RevMan5.1和Stata12.0软件对符合质量要求的文献进行Meta分析。用比值比(odds ratio, OR)和95%可信区间(confidence interval, CI)作为评价标准,分别计算不同遗传模型下T869C基因多态性与缺血性脑卒中发病风险的关联程度,包括:等位基因模型(Cvs.T),共显性遗传模型(纯合子模型CC vs. TT;杂合子模型CT vs.TT)、显性遗传模型(CC+CT vs.TT)和隐性遗传模型(CC vs. CT+TT)。使用Q检验和12统计量进行异质性检验,根据异质性情况选择适当的效应模型进行数据合并。若各研究结果间无异质性,采用Mantel-Haenszel固定效应模型;否则采用DerSimoninan-Laird随机效应模型进行合并分析。根据人种、对照组来源以及研究类型进行亚组分析来探索异质性来源。用敏感性分析来评估结果的稳定性。通过绘制漏斗图定性观察联合Egger线性回归法定量检验来综合评估发表性偏倚。
     结果
     共纳入6个研究,其中4个为病例对照研究,2个为队列研究,包括1701例患者和10334例对照。异质性检验结果提示在所有遗传模型下各个研究间均存在显著异质性,因此采用DerSimoninan-Laird随机效应模型进行数据合并。6个研究合并分析的结果显示:TGF-β1基因T869C多态性与缺血性脑卒中风险的相关性无统计学意义[其中:等位基因模型C vs.T:OR=1.08,95%CI(0.88,1.32);共显性遗传模型(纯合子模型CC vs.TT:OR=1.17,95%CI(0.79,1.72);杂合子模型CT vs.TT:OR=0.91,95%CI(0.68,1.22));显性遗传模型CC+CT vs.TT:OR=0.99,95%CI(0.73,1.35);隐性遗传模型CC vs.CT+TT:OR=1.23,95%CI(0.95,1.59)]。基于人种及对照组来源的亚组分析结果同样显示,两者相关性无统计学意义;而基于研究类型的亚组分析结果显示,研究类型为队列研究的亚组中TGF-β1基因T869C多态性是缺血性脑卒中的危险因素[其中:等位基因模型Cvs.T:OR=1.18,95%CI(1.05,1.32);共显性遗传模型(纯合子模型CC vs.TT:OR=1.40,95%CI(1.10,1.77);杂合子模型CT vs.TT:OR=1.23,95%CI(1.02,1.49));显性遗传模型CC+CT vs.TT:OR=1.27,95%CI(1.03,1.57)];研究类型为病例对照研究的亚组分析结果则显示,携带CT基因型的人群发生缺血性脑卒中的风险减低[CT vs.CC:OR=0.72,95%CI(0.57,0.92)]。对各遗传模型进行敏感性分析所得合并效应量及异质性情况无明显改变,漏斗图和Egger检验结果均提示无发表性偏倚,表明Meta分析结果稳定可靠。
     结论
     1、根据Meta分析的结果,我们认为TGF-β1基因T869C多态性与缺血性脑卒中发病风险具有相关性的证据不足。
     2、由于纳入研究的样本量仍偏少,加之存在各研究间存在显著异质性,且未考虑到“基因-基因”以及“基因-环境”等协同作用的局限性,本Meta分析得出的结论尚待开展更多设计良好的大样本,以进一步进行相关的前瞻性分析。
Background
     Ischemice stroke(IS) is manifested by the abrupt onset of focal neurologic deficits, which were caused by a suddent reduction or completely blockage of blood supply to local brain tissues. IS is a leading cause of death and adult long-term disability worldwide, and remains as an enormous burden for personality and society due to lack of illustrated etiology and effective treatments.
     IS is a multifactorial disease involving complex interactions between genetic and environmental factors, in which the genetic susceptibility has been considered playing an important role in the development of IS. With the accomplishment of the human genome project and the development of molecular genetics, the study on the single neucleotide polymorphism(SNP), which can reflect the variance among individuals and decide the susceptibility of diseases and response to drugs, is highly regarded as one of the most important post-genomic projects. Identification of the candidate gene susceptibility to IS has also become one of the most popular scientific focuses. Recently, emerging evidences have demonstrated that inflammation play an important role in the pathogenesis of IS. As one of the candidate susceptible gene of IS, the functional polymorphisms of inflammatory factors arouse close attentions.
     TGF-β1is a pleiotropic cytokine with potent anti-inflammation property, and has been considered as an essential risk factor in the inflammatory process of IS. The TGF-β1gene is located on chromosome19(q13.1-13.3) with several common known SNPs in this gene. Among them, T869C (rs1982073; Leu10/Pro10; T29C; codon10) polymorphism, located in the signal peptide sequence, has been indicated that it can increase the expression of TGF-β1mRNA, resulting in the elevated serum TGF-β1level.
     To date, several studies have been performed to investigate the association between T869C polymorphism of TGF-β1gene and risk of IS. However, the results remain controversial. Considering a single study may lack the power to provide reliable conclusion due to small amount of subjects, masses of statistical and clinical heterogeneities, we performed this meta-analysis combining eligible published literatures based on quantitative synthesis to derive a more convincing estimation for the association between T869C polymorphism and risk of IS.
     Objective
     To explore the association between TGF-β1T869C polymorphism and risk of ischemic stroke by performing a meta-analysis based on published articles.
     Methods
     Systematic electronic searches of PubMed, Cochrane Library, Science Direct, BIOSIS Previews, Chinese Biomedical Database, Chinese National Knowledge Infrastructure, and WANGFANG Database until March2013were performed to idetify the published epidemiological studies on TGF-β1T869C polymorphism and risk of ischemic stroke. Strict inclusion and exclusion criteria were determined before data analyses. Data were reviewed and extracted by2independent investigators. Quality of the included studies was evaluated independently using Newcastle-Ottawa Scale (NOS). The strength of association between TGF-β1T869C polymorphism and IS risk was assessed by crude ORs with corresponding95%CIs under the following five genetic models:the allele comparison(C vs. T), the homozygote comparison (CC vs. TT), the heterozygote comparison (CT vs. TT), the dominant model (CC+CT vs. TT), and the recessive model (CC vs. CT+TT). The degree of heterogeneity between studies was detected by the Q-test and I2-statistics. The pooled estimate was combined by a random-effect model(DerSimonian-Laird method) or a fixed-effect model (Mantel-Haenszel method) according to whether the heterogeneity existed or not. Subgroup analysis based on ethnicity, source of controls, and study design were further conducted respectively to explore the potential sources of heterogeneity. Sensitivity analysis was performed to elucidate the stability of the outcomes. Publication bias was evaluated by funnel plot and Egger's test. All analyses were conducted using RevMan5.1and Stata12.0software.
     Results
     A total of6studies involving1701cases and10334controls were included in this meta-analysis. The overall estimates did not show any significant association between TGF-β1T869C polymorphism and risk of IS under all genetic models (allele comparison C vs. T:OR=1.08,95%CI=0.88-1.32; homozygote comparison CC vs. TT: OR=1.17,95%CI=0.79-1.72; heterozygote comparison CT vs. TT:OR=0.91,95%CI=0.68-1.22; dominant model CC+CT vs. TT:OR=0.99,95%CI=0.73-1.35; recessive model CC vs. CT+TT:OR=1.23,95%CI=0.95-1.59). Similar lacking associations were observed in subgroup analysis based on ethnicity and source of controls. When stratified by study design, a significant increased association of IS risk was found in cohort studies under genetic models except recessive model (C vs. T:OR=1.18,95%CI=1.05-1.32; CC vs. TT:OR=1.40,95%CI=1.10-1.77; CT vs. TT: OR=1.23,95%CI=1.02-1.49; CC+CT vs. TT:OR=1.27,95%CI=1.03-1.57; CC vs. CT+TT, OR=1.21,95%CI=0.99-1.47), whereas a significant decreased risk was detected under heterozygote comparison(CT vs. CC:OR=0.72,95%CI=0.57-0.92) in the case-control studies. Sensitivity analysis did not significantly alter in overall and subgroup results under all genetic models; In addition, results from funnel plot and Egger's test indicated no evidence of publication bias.
     Conclusion
     1. Upon the results of this meta-analysis, it implied that the current epidemiological studies of TGF-β1T869C polymorphism were too inconsistent to draw a conclusion on the association with IS susceptibility.
     2. Given the small sample size and the remarkable heterogeneity in it, more well-designed prospective large-scale studies with different ethnicities considering both genetic and environmental factors will be performed further in future.
引文
1. 王维治.神经病学.第一版:人民卫生出版社,2006,714-723.
    2. Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data [J]. Lancet, 2006,367(9524):1747-1757.
    3. 陈竺.全国第三次死因回顾抽样调查报告.北京:中国协和医科大学出版社,2008.
    4. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics--2010 update:a report from the American Heart Association [J]. Circulation,2010,121(7):e46-e215.
    5. Gropen TI, Gagliano PJ, Blake CA, et al. Quality improvement in acute stroke: the New York State Stroke Center Designation Project [J]. Neurology,2006, 67(1):88-93.
    6. Lyden P, Shuaib A, Ng K, et al. Clomethiazole Acute Stroke Study in ischemic stroke (CLASS-I):final results [J]. Stroke,2002,33(1):122-128.
    7. Sacco RL, DeRosa JT, Haley EC Jr, et al. Glycine antagonist in neuroprotection for patients with acute stroke:GAIN Americas:a randomized controlled trial [J]. JAMA,2001,285(13):1719-1728.
    8. Diener HC, Lees KR, Lyden P, et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials [J]. Stroke,2008,39(6): 1751-1758.
    9. Dichgans M. Genetics of ischaemic stroke [J]. Lancet Neurol,2007,6(2): 149-161.
    10. Domingues-Montanari S, Mendioroz M, Del Rio-Espinola A, et al. Genetics of stroke:a review of recent advances [J]. Expert Rev Mol Diagn,2008,8(4): 495-513.
    11. Hassan A, Markus HS. Genetics and ischaemic stroke [J]. Brain,2000,123 (Pt 9):1784-1812.
    12. Goldstein LB, Adams R, Alberts MJ, et al. Primary prevention of ischemic stroke:a guideline from the American Heart Association/American Stroke Association Stroke Council:cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group:the American Academy of Neurology affirms the value of this guideline[J]. Stroke,2006,37(6):1583-1633.
    13. Kim H, Friedlander Y, Longstreth WT Jr, et al. Family history as a risk factor for stroke in young women[J]. Am J Prev Med,2004,27(5):391-396.
    14. Liao D, Myers R, Hunt S, et al. Familial history of stroke and stroke risk. The Family Heart Study[J]. Stroke,1997,28(10):1908-1912.
    15. Mvundura M, McGruder H, Khoury MJ, et al. Family History as a Risk Factor for Early-Onset Stroke/Transient Ischemic Attack among Adults in the United States[J]. Public Health Genomics,2010,13(1):13-20.
    16. Brass LM, Isaacsohn JL, Merikangas KR, et al. A study of twins and stroke[J]. Stroke,1992,23(2):221-223.
    17. Taylor JG, Choi EH, Foster CB, et al. Using genetic variation to study human disease[J]. Trends Mol Med,2001,7(11):507-12.
    18. Cargill M, Altshuler D, Ireland J, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes[J]. Nat Genet,1999,22(3): 231-238.
    19. Van der Spuy WJ, Pretorius E. Interrelation between inflammation, thrombosis, and neuroprotection in cerebral ischemia[J]. Rev Neurosci,2012,23(3): 269-278.
    20. Muir KW, Tyrrell P, Sattar N, et al. Inflammation and ischaemic stroke[J]. Curr Opin Neurol,2007,20(3):334-342.
    21. Clausen BH, Lambertsen KL, Babcock AA, et al. Interleukin-lbeta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice[J]. J Neuroinflammation,2008,5: 46.
    22. Acalovschi D, Wiest T, Hartmann M, et al. Multiple levels of regulation of the interleukin-6 system in stroke[J]. Stroke,2003,34(8):1864-1869.
    23. Candelario-Jalil E, Gonzalez-Falcon A, Garcia-Cabrera M, et al. Post-ischaemic treatment with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain barrier disruption and leukocyte infiltration following transient focal cerebral ischaemia in rats[J]. J Neurochem,2007,100(4):1108-1120.
    24. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease[J]. N Engl J Med,2000,342(18):1350-1358.
    25. Dobolyi A, Vincze C, Pal G, et al. The neuroprotective functions of transforming growth factor Beta proteins[J]. Int J Mol Sci,2012,13(7): 8219-8258.
    26. Dhandapani KM, Brann DW. Transforming growth factor-beta:a neuroprotective factor in cerebral ischemia[J]. Cell Biochem Biophys,2003, 39(1):13-22.
    27. Ho TW, Bristol LA, Coccia C, et al. TGFbeta trophic factors differentially modulate motor axon outgrowth and protection from excitotoxicity[J]. Exp Neurol,2000,161(2):664-675.
    28. Zhu Y, Yang GY, Ahlemeyer B, et al. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage[J]. J Neurosci,2002,22(10):3898-3909.
    29. Bae JJ, Xiang YY, Martinez-Canabal A, et al. Increased transforming growth factor-betal modulates glutamate receptor expression in the hippocampus[J]. Int J Physiol Pathophysiol Pharmacol,2011,3(1):9-20.
    30. Ferrari G, Cook BD, Terushkin V, et al. Transforming growth factor-beta 1 (TGF-betal) induces angiogenesis through vascular endothelial growth factor (VEGF)-mediated apoptosis[J]. J Cell Physiol,2009,219(2):449-458.
    31. Toyoda T, Nakamura K, Yamada K, et al. SNP analyses of growth factor genes EGF, TGFbeta-1, and HGF reveal haplotypic association of EGF with autism[J]. Biochem Biophys Res Commun,2007,360(4):715-720.
    32. Derynck R, Rhee L, Chen EY, et al. Intron-exon structure of the human transforming growth factor-beta precursor gene[J]. Nucleic Acids Res,1987, 15(7):3188-3189.
    33. Shah R, Rahaman B, Hurley CK, et al. Allelic diversity in the TGFB1 regulatory region:characterization of novel functional single nucleotide polymorphisms[J]. Hum Genet,2006,119(1-2):61-74.
    34. Cusi D, Barlassina C, Azzani T, et al. Polymorphisms of alpha-adducin and salt sensitivity in patients with essential hypertension[J]. Lancet,1997,349(9062): 1353-1357.
    35. Stoll C, Mengsteab S, Stoll D, et al. Analysis of polymorphic TGFB1 codons 10, 25, and 263 in a German patient group with non-syndromic cleft lip, alveolus, and palate compared with healthy adults[J]. BMC Med Genet,2004,5:15.
    36. Katakami N, Kaneto H, Osonoi T, et al. Transforming growth factor β1 T868C gene polymorphism is associated with cerebral infarction in Japanese patients with type 2 diabetes[J]. Diabetes Research and Clinical Practice,2011,94(3): e57-e60.
    37. Tao HM, Chen GZ, Lu XD, et al. TGF-beta1 869T/C polymorphism and ischemic stroke:sex difference in Chinese[J]. Can J Neurol Sci,2010,37(6): 803-807.
    38.梁辉,杨期东,曾凯敏.TGF-β1基因SNPs与长沙汉族人群脑卒中的相关性研究[J].激光生物学报,2011(04):523-529.
    39. Sie MP, Uitterlinden AG, Bos MJ, et al. TGF-beta 1 polymorphisms and risk of myocardial infarction and stroke:the Rotterdam Study[J]. Stroke,2006,37(11): 2667-2671.
    40. Peng Z, Zhan L, Chen S, et al. Association of transforming growth factor-betal gene C-509T and T869C polymorphisms with atherosclerotic cerebral infarction in the Chinese:a case-control study[J]. Lipids Health Dis,2011,10:100.
    41. Kim Y, Lee C. The gene encoding transforming growth factor beta 1 confers risk of ischemic stroke and vascular dementia[J]. Stroke,2006,37(11):2843-5.
    42.吴兆苏,姚崇华,赵冬.我国人群脑卒中发病率、死亡率的流行病学研究[J].中华流行病学杂志,2003,24(3):236-239.
    43. Duggirala R, Gonzalez Villalpando C, O'Leary DH, et al. Genetic basis of variation in carotid artery wall thickness[J]. Stroke,1996,27(5):833-837.
    44. Goracy I, Cyrylowski L, Kaczmarczyk M, et al. C677T polymorphism of the methylenetetrahydrofolate reductase gene and the risk of ischemic stroke in Polish subjects[J]. J Appl Genet,2009,50(1):63-67.
    45. Pera J, Slowik A, Dziedzic T, et al. ACE I/D polymorphism in different etiologies of ischemic stroke[J]. Acta Neurol Scand,2006,114(5):320-322.
    46. Kim JS, Han SR, Chung SW, et al. The apolipoprotein E epsilon4 haplotype is an important predictor for recurrence in ischemic cerebrovascular disease[J]. J Neurol Sci,2003,206(1):31-37.
    47. Hindorff LA, Schwartz SM, Siscovick DS, et al. The association of PAI-1 promoter 4G/5G insertion/deletion polymorphism with myocardial infarction and stroke in young women[J]. J Cardiovasc Risk,2002,9(2):131-137.
    48. Hou L, Osei-Hyiaman D, Yu H, et al. Association of a 27-bp repeat polymorphism in ecNOS gene with ischemic stroke in Chinese patients[J]. Neurology,2001,56(4):490-496.
    49. Fatar M, Stroick M, Steffens M, et al. Single-nucleotide polymorphisms of MMP-2 gene in stroke subtypes[J]. Cerebrovasc Dis,2008,26(2):113-119.
    50. Harcos P, Laki J, Kiszel P, et al. Decreased frequency of the TNF2 allele of TNF-alpha-308 promoter polymorphism is associated with lacunar infarction[J]. Cytokine,2006,33(2):100-105.
    51. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions[J]. Bioinformatics,2003,19(3):376-382.
    52. Hsieh AR, Hsiao CL, Chang SW, et al. On the use of multifactor dimensionality reduction (MDR) and classification and regression tree (CART) to identify haplotype-haplotype interactions in genetic studies[J]. Genomics,2011,97(2): 77-85.
    53. Moore JH. Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction[J]. Adv Genet,2010,72: 101-116.
    54. Sporn MB, Roberts AB. Transforming growth factor-beta:recent progress and new challenges[J]. J Cell Biol,1992,119(5):1017-1021.
    55. Massague J, Attisano L, Wrana JL. The TGF-beta family and its composite receptors[J]. Trends Cell Biol,1994,4(5):172-178.
    56. Dobolyi A,Palkovits M. Expression of latent transforming growth factor beta binding proteins in the rat brain[J]. J Comp Neurol,2008,507(3):1393-1408.
    57. Beriou G, Bradshaw EM, Lozano E, et al. TGF-beta induces IL-9 production from human Th17 cells[J]. J Immunol,2010,185(1):46-54.
    58. Matsuzaki K. Smad phosphoisoform signaling specificity:the right place at the right time[J]. Carcinogenesis,2011,32(11):1578-1588.
    59. Ramont L, Pasco S, Hornebeck W, et al. Transforming growth factor-betal inhibits tumor growth in a mouse melanoma model by down-regulating the plasminogen activation system[J]. Exp Cell Res,2003,291(1):1-10.
    60. McCaffrey TA, Consigli S, Du B, et al. Decreased type II/type I TGF-beta receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-beta1[J]. J Clin Invest, 1995,96(6):2667-2675.
    61. Cipollone F, Fazia M, Mincione G, et al. Increased expression of transforming growth factor-betal as a stabilizing factor in human atherosclerotic plaques[J]. Stroke,2004,35(10):2253-2257.
    62. Grainger DJ. Transforming growth factor beta and atherosclerosis:so far, so good for the protective cytokine hypothesis[J]. Arterioscler Thromb Vasc Biol, 2004,24(3):399-404.
    63. Porreca E, Di Febbo C, Mincione G, et al. Increased transforming growth factor-beta production and gene expression by peripheral blood monocytes of hypertensive patients[J]. Hypertension,1997,30(1 Pt 1):134-139.
    64. Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de l'Infarctus du Myocarde (ECTIM) Study[J]. Hypertension,1996,28(5):881-887.
    65. Zacchigna L, Vecchione C, Notte A, et al. Emilinl links TGF-beta maturation to blood pressure homeostasis[J]. Cell,2006,124(5):929-942.
    66. Ramji DP, Singh NN, Foka P, et al. Transforming growth factor-beta-regulated expression of genes in macrophages implicated in the control of cholesterol homoeostasis[J]. Biochem Soc Trans,2006,34(Pt 6):1141-1144.
    67. McNeill H, Williams C, Guan J, et al. Neuronal rescue with transforming growth factor-beta 1 after hypoxic-ischaemic brain injury[J]. Neuroreport,1994, 5(8):901-904.
    68. Gross CE, Bednar MM, Howard DB, et al. Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model [J]. Stroke,1993,24(4):558-562.
    69. Komuta Y, Teng X, Yanagisawa H, et al. Expression of transforming growth factor-beta receptors in meningeal fibroblasts of the injured mouse brain[J]. Cell Mol Neurobiol,2010,30(1):101-111.
    70. Vincze C, Pal G, Wappler EA, et al. Distribution of mRNAs encoding transforming growth factors-betal,-2, and-3 in the intact rat brain and after experimentally induced focal ischemia[J]. J Comp Neurol,2010,518(18): 3752-3770.
    71. Boche D, Cunningham C, Gauldie J, et al. Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo[J]. J Cereb Blood Flow Metab,2003,23(10):1174-1182.
    72.高春芳.TGF β 1基因变异与疾病相关性研究展望[J].世界华人消化杂志,2007,15(28):2959-2965
    73. Grainger DJ, Heathcote K, Chiano M, et al. Genetic control of the circulating concentration of transforming growth factor type betal[J]. Hum Mol Genet, 1999,8(1):93-97.
    74.刘关键.四格表数据meta分析的简明统计方法[J].华西医大学报,2000, 31(2):256-268.
    75. Zondervan KT, Cardon LR. The complex interplay among factors that influence allelic association[J]. Nat Rev Genet,2004,5(2):89-100.
    76. Munafo MR, Flint J. Meta-analysis of genetic association studies[J]. Trends Genet,2004,20(9):439-444.
    77. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses:the PRISMA statement J]. PLoS Med,2009,6(7): e1000097.
    78.各类脑血管疾病诊断要点[J].中华神经科杂志,1996,29(6):379-380.
    79. Wood PH. Appreciating the consequences of disease:the international classification of impairments, disabilities, and handicaps[J]. WHO Chron,1980, 34(10):376-380.
    80. Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Ottawa Health Research Institute Available:http://www.ohri.ca/programs/cli nical_epidemiology/oxford.asp.
    81. Attia J, Thakkinstian A, D'Este C. Meta-analyses of molecular association studies:methodologic lessons for genetic epidemiology [J]. J Clin Epidemiol, 2003,56(4):297-303.
    82. Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses[J]. BMJ,2003,327(7414):557-560.
    83. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease[J]. J Natl Cancer Inst,1959,22(4):719-748.
    84. DerSimonian R. Meta-analysis in the design and monitoring of clinical trials[J]. Stat Med,1996,15(12):1237-1248; discussion 1249-1252.
    85. Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test[J]. BMJ,1997,315(7109):629-634.
    86. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis [J]. Stat Med,2002,21(11):1539-1558.
    87. Woolf B. On estimating the relation between blood group and disease [J]. Ann Hum Genet,1955,19(4):251-253.
    88. Easterbrook PJ, Berlin JA, Gopalan R, et al. Publication bias in clinical research [J]. Lancet,1991,337(8746):867-872.
    89. Light RJ, Pillemer DB. Quantitative procedures. In Summing up:The Science of Reviewing Research [M].Cambridy,MA:Harvard University Press,1984.
    90.梁辉.TGF-β1基因SNPs及单体型分子标志与长沙汉族人群脑卒中的相关性研究[D].湖南:中南大学,2010:10-45.
    91. Peila R, Yucesoy B, White LR, et al. TGF-betal polymorphism association with dementia and neuropathologies:the HAAS [J]. Neurobiol Aging,2007,28(9): 1367-1373.
    92. Peila R, Yucesoy B, Wu K, et al. Effect of TGF-beta 1 genetic variability on small vessel ischemia and vascular dementia:The Honolulu-Asia aging study [J]. Neurobiology of Aging,2004,25(Suppl.2):S539.
    93.刘央,江柳,张菊兰.血清TGF-β1水平和TGF-β1基因C-509T多态性与急性缺血性脑卒中的关系[J].中国当代医药,2010,17(15):9-10.
    94. Xie Y, Zeng K, Wang Y, et al. TGF-betal-800G>A polymorphism and cerebral infarction in Chinese Han population [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2009,34(12):1166-1170.
    95.彭忠兴.TGF-β1基因多态性及其血浆水平与动脉硬化性脑梗死的关系研究[D].广东:广州医学院,2009:10-12
    96.曾凯敏.TGF-β1基因多态性与脑卒中的相关性研究[D].湖南:中南大学,2008:9-16.
    97. Tao HM, Chen GZ, Lu XD, et al. TGF-beta 1 codon 10 polymorphism is associated with cerebral SVD [J]. Can J Neurol Sci,2011,38(6):869-873.
    1. Van der, Spuy WJ, Pretorius E. Interrelation between Inflammation, Thrombosis, and Neuroprotection in Cerebral Ischemia[J]. Rev Neurosci,2012,23(3):269-78.
    2. Dobolyi A, Vincze C, Pal G, et al. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins[J]. Int J Mol Sci,2012,13(7):8219-58.
    3. Dobolyi A, Palkovits M. Expression of Latent Transforming Growth Factor Beta Binding Proteins in the Rat Brain[J]. J Comp Neurol,2008,507(3):1393-408.
    4. Hirschhorn T, Barizilay L, Smorodinsky NI, et al. Differential Regulation of Smad3 and of the Type Ii Transforming Growth Factor-Beta Receptor in Mitosis: Implications for Signaling[J]. PloS One,2012,7(8):e43459.
    5. Matsuzaki K. Smad Phosphoisoform Signaling Specificity:The Right Place at the Right Time[J]. Carcinogenesis,2011,32(11):1578-88.
    6. Dhandapani KM, Brann DW. Transforming Growth Factor-Beta:A Neuroprotective Factor in Cerebral Ischemia[J]. Cell Biochem Biophys,2003, 39(1):13-22.
    7. Komuta Y, Teng X, Yanagisawa H, et al. Expression of Transforming Growth Factor-Beta Receptors in Meningeal Fibroblasts of the Injured Mouse Brain[J]. Cell Mol Neurobiol,2010,30(1):101-11.
    8. Dhandapani KM, Wade FM, Mahesh VB, et al. Astrocyte-Derived Transforming Growth Factor-{Beta} Mediates the Neuroprotective Effects of 17{Beta}-Estradiol:Involvement of Nonclassical Genomic Signaling Pathways[J]. Endocrinology,2005,146(6):2749-59.
    9. Vincze C, Pal G, Wappler EA, et al. Distribution of Mrnas Encoding Transforming Growth Factors-Beta 1,-2, and-3 in the Intact Rat Brain and after Experimentally Induced Focal Ischemia[J]. J Comp Neurol,2010,518(18):3752-70.
    10. Feng Z, Ko CP. Schwann Cells Promote Synaptogenesis at the Neuromuscular Junction Via Transforming Growth Factor-Betal [J]. J Neurosci,2008,28(39): 9599-609.
    11. Bouret S, De Seranno S, Beauvillain JC, et al. Transforming Growth Factor Betal May Directly Influence Gonadotropin-Releasing Hormone Gene Expression in the Rat Hypothalamus[J]. Endocrinology,2004,145(4):1794-801.
    12.Fevre-Montange M, Dumontel C, Chevallier P, et al. Localization of Transforming Growth Factors, TGF betal and TGF beta3, in Hypothalamic Magnocellular Neurones and the Neurohypophysis[J]. J Neuroendocrinol,2004,16(7):571-6.
    13. Klempt ND, Sirimanne E, Gunn AJ, et al. Hypoxia-Ischemia Induces Transforming Growth Factor Betal mRNA in the Infant Rat Brain[J]. Molecular Brain Research,1992,13(1-2):93-101.
    14. Prehn JH, Backhauss C, and Krieglstein J. Transforming Growth Factor-Beta 1 Prevents Glutamate Neurotoxicity in Rat Neocortical Cultures and Protects Mouse Neocortex from Ischemic Injury in Vivo[J]. J Cereb Blood Flow Metab, 1993,13(3):521-5.
    15. Henrich-Noack P, Prehn JH, Krieglstein J. TGF-Beta 1 Protects Hippocampal Neurons against Degeneration Caused by Transient Global Ischemia. Dose-Response Relationship and Potential Neuroprotective Mechanisms[J]. Stroke,1996,27(9):1609-14; discussion 1615.
    16. McNeill H, Williams C, Guan J, et al. Neuronal Rescue with Transforming Growth Factor-Beta 1 after Hypoxic-Ischaemic Brain Injury[J]. Neuroreport, 1994,5(8):901-4.
    17. Zhu Y, Yang GY, Ahlemeyer B, et al. Transforming Growth Factor-Beta 1 Increases Bad Phosphorylation and Protects Neurons against Damage[J]. J Neurosci,2002,22(10):3898-909.
    18. Ma M, Ma Y, Yi X, et al. Intranasal Delivery of Transforming Growth Factor-Beta1 in Mice after Stroke Reduces Infarct Volume and Increases Neurogenesis in the Subventricular Zone[J]. BMC Neurosci,2008,9:117. 19. Ruocco A, Nicole O, Docagne F, et al. A Transforming Growth Factor-Beta
    Antagonist Unmasks the Neuroprotective Role of This Endogenous Cytokine in Excitotoxic and Ischemic Brain Injury[J]. J Cereb Blood Flow Metab,1999, 19(12):1345-53. 20. Gross CE, Bednar MM, Howard DB, et al. Transforming Growth Factor-Beta 1
    Reduces Infarct Size after Experimental Cerebral Ischemia in a Rabbit Model[J]. Stroke,1993,24(4):558-62. 21. Beriou G, Bradshaw EM, Lozano E, et al. TGF-Beta Induces 11-9 Production from
    Human Th17 Cells[J]. J Immunol,2010,185(1):46-54.
    22. Ho TW, Bristol LA, Coccia C, et al. TGFbeta Trophic Factors Differentially Modulate Motor Axon Outgrowth and Protection from Excitotoxicity[J]. Exp Neurol,2000,161(2):664-75.
    23. Boche D, Cunningham C, Gauldie J, et al. Transforming Growth Factor-Beta 1-Mediated Neuroprotection against Excitotoxic Injury in Vivo[J]. J Cereb Blood Flow Metab,2003,23(10):1174-82.
    24. Buisson A, Nicole O, Docagne F, et al. Up-Regulation of a Serine Protease Inhibitor in Astrocytes Mediates the Neuroprotective Activity of Transforming Growth Factor Betal[J]. FASEB J,1998,12(15):1683-91.
    25. Prehn JH, Bindokas VP, Marcuccilli CJ, et al. Regulation of Neuronal BCL12 Protein Expression and Calcium Homeostasis by Transforming Growth Factor Type Beta Confers Wide-Ranging Protection on Rat Hippocampal Neurons[J]. Proc Natl Acad Sci U S A,1994,91(26):12599-603.
    26. Kim ES, Kim RS, Ren RF, et al. Transforming Growth Factor-Beta Inhibits Apoptosis Induced by Beta-Amyloid Peptide Fragment 25-35 in Cultured Neuronal Cells[J]. Brain Res Mol Brain Res,1998,62(2):122-30.
    27. Bae JJ, Xiang YY, Martinez-Canabal A, et al. Increased Transforming Growth Factor-Betal Modulates Glutamate Receptor Expression in the Hippocampus[J]. Int J Physiol Pathophysiol Pharmacol,2011,3(1):9-20.
    28. Kimata M, Shichijo M, Miura T, et al. Effects of Luteolin, Quercetin and Baicalein on Immunoglobulin E-Mediated Mediator Release from Human Cultured Mast Cells[J]. Clin Exp Allergy,2000,30(4):501-8.
    1.陈竺.全国第三次死因回顾抽样调查报告[M].北京:中国协和医科大学出版社,2008.
    2. Luitse MJ, Biessels GJ, Rutten GE, et al. Diabetes, hyperglycaemia, and acute ischaemic stroke[J]. Lancet Neurol,2012,11(3):261-271.
    3. Capes SE, Hunt D, Malmberg K, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients:a systematic overview[J]. Stroke,2001, 32(10):2426-2432.
    4. Muir KW, McCormick M, Baird T, et al. Prevalence, predictors and prognosis of post-stroke hyperglycaemia in acute stroke trials:individual patient data pooled analysis from the Virtual International Stroke Trials Archive (VISTA)[J]. Cerebrovascular Diseases Extra,2011,1(1):17-27.
    5. Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease:a collaborative meta-analysis of 102 prospective studies[J]. Lancet,2010,375(9733):2215-2222.
    6. Dungan KM, Braithwaite SS, Preiser JC. Stress hyperglycaemia[J]. Lancet,2009, 373(9677):1798-1807.
    7. Kruyt ND, Biessels GJ, Devries JH, et al. Hyperglycemia in acute ischemic stroke: pathophysiology and clinical management[J]. Nat Rev Neurol,2010,6(3):145-155.
    8. Lee M, Saver JL, Hong KS, et al. Effect of pre-diabetes on future risk of stroke: meta-analysis[J]. BMJ,2012,344:e3564.
    9. Selvin E, Steffes MW, Zhu H, et al. Glycated hmoglobin, diabetes, and cardiovascular risk in nondiabetic adults[J]. N Engl J Med,2010,362(9):800-811.
    10. MacDougall NJ, Muir KW. Hyperglycaemia and infarct size in animal models of middle cerebral artery occlusion:systematic review and meta-analysis[J]. J Cereb Blood Flow Metab,2010,31(3):807-818.
    11. Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke:a review of the risk factors[J]. Cerebrovasc Dis,2007,24(1):1-10.
    12. Putaala J, Sairanen T, Meretoja, et al. Post-thrombolytic hyperglycemia and 3-month outcome in acute ischemic stroke[J]. Cerebrovasc Dis,2011,31(1):83-92.
    13. Melamed E. Reactive hyperglycaemia in patients with acute stroke[J]. J Neurol Sci,1976,29(2-4):267-275.
    14. Jia Q, Zhao X, Wang C, et al. Diabetes and poor outcomes within 6 months after acute ischemic stroke:the China National Stroke Registry[J]. Stroke,2011,42(10): 2758-2762.
    15. Bruno A, Biller J, Adams HP, et al. Acute blood glucose level and outcome from ischemic stroke. Trial of ORG 10172 in Acute Stroke Treatment (TOAST) Investigators[J]. Neurology,1999,52(2):280-284.
    16. Uyttenboogaart M, Koch MW, Stewart RE, et al. Moderate hyperglycaemia is associated with favourable outcome in acute lacunar stroke[J]. Brain,2007,130(Pt 6): 1626-1630.
    17. Dienel GA. Brain lactate metabolism:the discoveries and the controversies [J]. J Cereb Blood Flow Metab,2012,32(7):1107-1138.
    18. Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke:a vascular perspective[J]. J Cereb Blood Flow Metab,2007,27(3):435-451.
    19. Yamagishi S, Matsui T. Smooth muscle cell pathophysiology and advanced glycation end products (AGEs)[J]. Curr Drug Targets,2010,11(7):875-881.
    20. Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease [J]. Clin Biochem.2009,42(13-14):1331-1346.
    21. Lucke-Wold BP, Turner RC, Lucke-Wold AN, et al. Age and the metabolic syndrome as risk factors for ischemic stroke:improving preclinical models of ischemic stroke[J]. Yale J Biol Med,2012,85(4):523-539.
    22. Feng S, Cen J, Huang Y, et al. Matrix metalloproteinase-2 and-9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins[J]. Plos One,2011,6(8):e20599.
    23. Koistinaho J, Chan PH. Spreading depression-induced cyclooxygenase-2 expression in the cortex[J]. Neurochem Res,2000,25(5):645-651.
    24. Badan I, Dinca I, Buchhold B, et al. Accelerated accumulation of N-and C-terminal beta APP fragments and delayed recovery of microtubule-associated protein 1B expression following stroke in aged rats[J]. Eur J Neurosci,2004,19(8): 2270-2280.
    25. Dandona P, Chaudhuri A, Ghanim H, et al. Insulin as an anti-inflammatory and antiatherogenic modulator[J]. J Am Coll Cardiol,2009,53(5 Suppl):S14-20.
    26.缺血性卒中/短暂性脑缺血发作血糖管理的中国专家共识组.缺血性卒中/短暂性脑缺血发作血糖管理的中国专家共识[J].中华内科杂志,2010,49(4):361-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700