温阳振衰颗粒对慢性心衰患者及其对慢性心衰模型兔心肌细胞外信号调节激酶1/2的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.文献研究
     本研究参考国内外文献,熟悉中西医对慢性心衰的认识,分别从病名、病机、辨证和治疗方面掌握了中医学对慢性心衰的研究进展,亦从致病机制和多种诊疗方案角度分析了西医学对慢性心衰的研究概况,为临床试验和动物实验研究打下坚实的理论基础。
     2.临床研究
     2.1目的
     客观评价温阳振衰颗粒治疗慢性心衰的安全性和临床疗效,并初步探讨其可能的作用机制,为新药开发提供理论依据。
     2.2方法
     通过与目前公认的西医基础治疗方案为对照,开展前瞻性的随机对照临床研究。将纳入病例随机分为治疗组和对照组,治疗组给予西医基础治疗加温阳振衰颗粒,每天冲服2次,每次半包,连续4周。对照组给予西医基础治疗。观察治疗前后两组患者的中医证候、心力衰竭和生活质量评分变化,以及超声心动图和血清细胞炎性因子的改变。
     2.3结果
     (1)两组心功能、中医证候和心力衰竭疗效相比,差异有统计学意义(P<0.05)。
     (2)两组中医证候和心力衰竭积分在治疗后均显著降低,较治疗前差异有统计学意义(P<0.05),两组积分差值相比有统计学意义(P<0.05)。
     (3)两组明尼苏达生活质量评分与治疗前比均有统计学意义(P<0.05),治疗组分值变化大于对照组,其差异有统计学意义(P<0.05)。
     (4)两组超声心动图指标与治疗前比差别均有统计学意义(P<0.05),治疗组超声心动图指标变化大于对照组,其差异有统计学意义(P<0.05)。
     (5)两组血清NT-proBNP. TNF-a、IL-1和IL-6与治疗前比差别均有统计学意义(P<0.05),治疗组上述指标变化大于对照组,其差异有统计学意义(P<0.05)。
     2.4结论
     (1)温阳振衰颗粒可以在西医基础治疗的基础上进一步改善慢性心衰患者的中医证候和心力衰竭积分;
     (2)温阳振衰颗粒可以在西医基础治疗的基础上进一步提高慢性心衰患者的
     生活质量;
     (3)温阳振衰颗粒可以在西医基础治疗的基础上进一步改善慢性心衰患者的心功能和降低血清NT-proBNP水平;
     (4)温阳振衰颗粒可以在西医基础治疗的基础上进一步下调慢性心衰患者的血清细胞致炎因子水平;
     (5)温阳振衰颗粒具有良好的安全性。
     3.实验研究
     3.1目的
     观察温阳振衰颗粒对慢性心衰模型兔心脏结构和功能的改善作用,同时探讨其对血清NT-proBNP及细胞炎性因子和细胞外信号调节激酶1/2相关蛋白及基因的影响,评价温阳振衰颗粒在延缓心室重构和抑制心肌细胞凋亡方面的疗效。
     3.2方法
     建立阿霉素诱导的慢性心衰兔模型,将实验动物分为正常对照组、模型对照组、温阳振衰颗粒低剂量组、温阳振衰颗粒中剂量组、温阳振衰颗粒高剂量组和阳性对照组。于第5周开始给予药物干预,连续4周。分别于第4周末和第8周末各组抽取5只实验兔,观察温阳振衰颗粒对各组实验兔超声心动图、血清NT-proBNP、血清细胞炎性因子、心肌ERK1/2、心肌P-ERK1/2、心肌ERK1/2mRNA、心肌细胞凋亡指数及心肌组织光镜和电镜的影响。
     3.3结果
     (1)造模第4周末时模型对照组及药物干预各组较正常对照组在LVEF、LVFE和E/A方面差别均有统计学意义(P<0.05)。至8周末时,各组实验兔的LVEF、 LVFS及E/A指标进一步降低,较正常对照组差异均有统计学意义(P<0.05)。
     药物干预各组与模型对照组比较,差异具有统计学意义(P<0.05)
     (2)造模第4周末时各组血清NT-proBNP、TNF-a、IL-1(?)口工L-6均高于正常对照组(P<0.05)。至8周末时,各组血清指标浓度进一步升高,其中以温阳中、高剂量组浓度升高较为缓慢(P<0.05)。
     (3)造模第4、8周末各组心肌ERK1/2和ERK1/2mRNA水平与正常对照组相比差异无显著性意义(P>0.05)。造模4周后,各组心肌P-ERK1/2水平均高于正常对照组(P<0.05)。随着造模时间的延长,模型对照组P-ERK1/2表达呈递增趋势。至8周末时,药物干预各组心肌P-ERK1/2水平较前仍有所上升,但均低于同时间模型对照组(P<0.05),其中温阳高剂量组和阳性对照组心肌P-ERK1/2水平升高趋势较温阳低、中剂量组更为缓慢(P<0.05)。
     (4)造模第4周末时各组心肌细胞凋亡指数均高于正常对照组(P<0.05)。至8周末时,各组心肌细胞凋亡指数进一步升高,其中以温阳中、高剂量组心肌细胞凋亡指数升高较为缓慢,与温阳低剂量和阳性对照组相比有统计学意义(P<0.05)。
     (5)造模第4周末时模型对照组及药物干预各组较正常对照组在LVDd和LVDs方面差别均无统计学意义(P>0.05),而在IVS和LVPW方面差别均有统计学意义(P<0.05)。至8周末时,药物干预各组心脏扩大趋势较模型对照组为缓(P<0.05),其中以温阳高剂量组心脏扩大最为缓慢(P<0.05)。
     (6)光镜结果显示模型对照组及药物干预各组均有不同程度的心肌细胞大小、形态不规则,心肌纤维排列紊乱,可见肌纤维断裂,伴心肌细胞水肿,可见炎性细胞浸润。其中以温阳高剂量组心肌组织病理改变相对略轻。电镜结果显示模型对照组及药物干预各组均可见肌纤维坏死或萎缩,部分线粒体水肿、空泡化,肌丝结构不清,可见炎性细胞浸润。温阳高剂量组和中剂量组电镜下改变相对于模型对照组为轻,阳性对照组和温阳低剂量组次之。
     3.4结论
     (1)温阳振衰颗粒可以有效提高慢性心衰模型兔的心功能和降低血清NT-proBNP水平;
     (2)温阳振衰颗粒可以下调慢性心衰模型兔的血清致炎因子水平;
     (3)温阳振衰颗粒可以下调慢性心衰模型兔的心肌细胞外信号调节激酶ERKl/2磷酸化的表达,但对ERKl/2总蛋白和ERK1/2mRNA的表达无明显调控作用;
     (4)温阳振衰颗粒可以减少慢性心衰模型兔的心肌细胞凋亡指数;
     (5)温阳振衰颗粒可以延缓慢性心衰模型兔的心脏结构变化,改善心肌组织的超微结构,具有部分抑制心室重构的作用。
(?)
     Part one Literature Research
     This research based on referring to domestic and international literature and observing the current research situation of CHF, and mastered the cognition of etiology, treatment based on syndrome differentiation and the clinical experience of modern traditional Chinese physician. We also summarized'the research method and achievements of TCM and western medicine in treating CHF for the past few years and provided solid theory support for clinical and experimental study.
     Part two Clinical Research
     1. Objective
     To objectively evaluate clinical safety and effect on treatment of CHF using wenyangzhenshuai granule and to provide the theoretical basis for wenyangzhenshuai granule being approved by the State for production and sale.
     2. Method
     Taking the currently accepted treatment of CHF as a control, we carried out a prospective, randomized and controlled clinical study. Cases included in this study were randomly divided into control group and treatment group. Cases of control group received basic therapy and cases of treatment group received basic therapy plus wenyangzhenshuai granule, half of granule each time,2times a day and for4weeks.We observed the changes in ultrasound cardiogram, serum cytokines, TCM syndroms, heart failure syndromes and Minnesota Satisfaction Questionnaire Scales of patients with heart failure before and after treatment.
     3. Result
     (1) comparison of curative effect on TCM syndromes and heart failure syndromes, there was a statistically significant difference in efficacy between the two groups (P<0.05).
     (2) comparison of scores on TCM syndromes and heart failure syndromes showed that after treatment, changes of two groups had a statistically significant comparing with before treatment (P<0.05).Changes of treatment group decreased more significantly than that of control group(P<0.05).
     (3) comparison of scores of Minnesota Satisfaction Questionnaire Scale:after treatment, scores of two groups had a significantly lower, and comparing with before treatment, the difference was statistically significant(P<0.05).Scores of treatment group decreased more significantly than that of control group(P<0.05).
     (4) comparison of curative effect on ultrasound cardiogram showed that after treatment, changes of two groups had a statistically significant comparing with before treatment (P<0.05).Changes of treatment group increased more significantly than that of control group(P<0.05).
     (5) comparison of serum NT-proBNP,TNF-a,IL-1and IL-6:after treatment, changes of two groups had a significantly lower, and comparing with before treatment, the difference was statistically significant(P<0.05).Changes of treatment group decreased more significantly than that of control group(P<0.05).
     4. Conclusion
     (1) wenyangzhenshuai granule can further relieve clinical symptoms of patients with CHF based on the basic treatment of western medicine.
     (2) wenyangzhenshuai granule can improve the life quality of patients with CHF based on the basic treatment of western medicine.
     (3) wenyangzhenshuai granule can improve the heart function and reduce serum NT-proBNP of patients with CHF based on the basic treatment of western medicine.
     (4) wenyangzhenshuai granule can reduce serum cytokines of patients with CHF based on the basic treatment of western medicine.
     (5) wenyangzhenshuai granule possess good security.
     Part three Experimental Research
     1. Objective
     Observed the protective effect of wenyangzhenshuai granule for heart structure and function of rabbit model with CHF and it's influence on serum NT-proBNP, serum cytokines and extracellular signal-regulated kinase1/2, and evaluate the efficacy in delaying ventricular remodeling and inhibiting myocardial apoptosis by using wenyangzhenshuai granule.
     2. Method
     Making adriamycin-induced chronic heart failure animal model. The experimental animals were divided into control group, experimental control group, captopril group, wenyangzhenshuai low, medium and high dose groups. At5weeks after' the first injection of adriamycin, rabbits in wenyangzhenshuai low, medium and high dose groups were perused orally with wenyangzhenshuai granules.5experimental rabbits in each group were sacrificed respectively at the end of the4th and8th week to investigate the effects of wenyangzhenshuai granule on ultrasound cardiogram, serum NT-proBNP, serum cytokines, extracellular signal-regulated kinase1/2, myocardial apoptosis and myocardial ultrastructure.
     3. Result
     (1) the LVEF, LVFS and E/A of experimental groups had a statistically significant difference to the control group at the end of4th weeks(P<0.05), the level of LVEF, LVFS and E/A decreased at the end of8th weeks, which had a statistically significant difference to the control group(P<0.05), the other experimental groups decreased slower than experimental control groups (P<0.05).
     (2) comparison of serum NT-proBNP and cytokines in each groups, the experimental groups were higher than the control group at the end of4th weeks(P<0.05), the level of serum NT-proBNP and cytokines increased at the end of8th weeks, the wenyangzhenshuai granule medium and high dose groups increased slower than other groups (P<0.05).
     (3) the myocardial ERK1/2and ERK1/2mRNA levels in each group at the end of4th and8th weeks were not significantly different than those in the other groups at the same time (P>0.05). The myocardial P-ERK1/2levels in the model control group and wenyangzhenshuai three dose groups were higher than that in the normal control group at the end of4th weeks (P<0.05). With the modeling time prolonged, P-ERK1/2expression in the model control group showed an increasing trend. At the end of8th week, the myocardial P-ERK1/2expressions in the wenyangzhenshuai three dose groups at4weeks after treatment were increased to some extent compared to previous levels, but were lower than that in the experimental control group (P <0.05), of which, the myocardial P-ERK1/2level in wenyangzhenshuai high dose and captopril groups was increased at the slowest pace compare to the wenyangzhenshuai low and medium groups (P<0.05).
     (4) comparison of apoptosis index in each groups, the experimental groups were higher than the control group at the end of4th weeks(P<0.05), the level increased at the end of8th weeks, the wenyangzhenshuai granule medium and high dose groups increased slower than other groups (P<0.05).
     (5) the LVDd and LVDs levels in each group at the end of4th weeks were not significantly different than those in the other groups at the same time (P>0.05). The IVS and LVPW levels of experimental groups had a statistically significant difference to the control group at the end of4th weeks(P<0.05). The trend of cardiac enlargement in the experimental groups decreased at the end of8th weeks compare to the experimental control group(P<0.05), which the wenyangzhenshuai high dose group was increased at the slowest pace(P<0.05).
     (6) results of optical microscopy:the myocardial structure of experimental control group and drug intervention groups were irregular, which had muscle fiber fracture and myocardial cell edema or inflammatory cells infiltration. The myocardial pathological changes in wenyangzhenshuai high dose group was better compare to the other groups. Results of electron microscopy:In the experimental control group and drug intervention groups, the muscle fiber were necrosis or atrophy, mitochondria edema and vacuolization, filament structure is also not clear and with inflammatory cells infiltration. The myocardial pathological changes in wenyangzhenshuai high and medium dose groups were better than the other groups.
     4. Conclusion
     (1) wenyangzhenshuai granule can effectively improve the heart function in chronic heart failure model in rabbits and decrease the serum NT-proBNP level.
     (2) wenyangzhenshuai granule can effectively reduce the serum cytokines level in chronic heart failure rabbit model.
     (3) wenyangzhenshuai granule can inhibit myocardial P-ERK1/2expressions in rabbit models of chronic heart failures, but had no significant impact on myocardial ERK1/2and ERKl/2mRNA levels.
     (4) wenyangzhenshuai granule can effectively reduce the apoptosis index level in chronic heart failure rabbit model.
     (5) wenyangzhenshuai granule can delay the cardiac structure changes in chronic heart failure rabbit model and improve the ultrastructure of myocardial tissue, it can also partly inhibit ventricular remodeling.
引文
[1]中华医学会.《临床诊疗指南·心血管分册》[M].北京:人民卫生出版社,2010:1.
    [2]中华医学会心血管病学分会,中华心血管病杂志编辑委员会.慢性心力衰竭诊断治疗指南[J].中华心血管病杂志,2007,35(12):1076-1093.
    [3]Hunt SA. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult:a report of the American College Cardiology/America Heart Association task force on practice guidelines[J]. Circulation,2005,112(12):154-235.
    [4]顾东风,黄广勇,何江.中国心力衰竭流行病学调查及其患病率[J].中华心血管病杂志,2003,31(1):3—5.
    [5]Stumpf C, Petzi S, Seybold K, et al. Atorvastatin enhances interleukin-10 levels and improves cardiac function in rats after acute myocardial function[J]. Clin Sci, 2009,116(1):45-52.
    [6]Shah AM. Ventricular remodeling in heart failure with preserved ejection fraction[J]. Curr Heart Fail Rep,2013,10(4):341-349.
    [7]杜杏坤,黎波.浅议中医药在心血管系统疾病中的应用[J].辽宁中医药大学学报,2008,10(12):18-20.
    [8]陈新宇,沈文,卢青,等.不同剂量温阳强心方治疗慢性充血性心力衰竭的临床疗效及对ANP的影响[J].湖南中医药大学学报,2010,30(5):48-51.
    [9]唐燕萍,卢青,谢海波,等.温阳强心方对慢性充血性心力衰竭家兔细胞因子的影响[J].中国中医药信息杂志,2012,19(2):35-40.
    [10]陈新宇,唐燕萍,卢青,等.温阳强心方对兔慢性充血性心力衰竭细胞凋亡及心脏结构的影响[J].湖南中医药大学学报,2012,32(1):16-19.
    [11]国家技术监任局.中医临床诊疗术语[S].国家标准,1997:10.
    [12]武蕾,何红涛.汪慰寒教授中医药治疗慢性心衰经验[J].中华实用中西医杂志,2005,18(23):1780—1781.
    [13]邹旭,潘光明,刘泽银,等.邓铁涛暖心胶囊治疗气虚血瘀型心衰疗效观察[J].辽宁中医杂志,2006,33(7):814-815.
    [14]李立志.陈可冀治疗充血性心力衰竭经验[J].中西医结合心脑血管病杂志,2006, 4(2):136—138.
    [15]孙元莹,吴深涛,姜德友,等.张琪治疗充血性心衰经验介绍[J].辽宁中医杂志,2006,33(11):1394-1395.
    [16]严夏,周文斌,杨志敏.颜德馨教授治疗心衰经验摭拾[J].实用中医内科杂志,2003,17(6):447.
    [17]王素琴.心衰的中医辨证施治[J].河北医学,2002,8(3):283—284.
    [18]郑筱萸.《中药新药临床指导原则》[M].北京:中国医药科技出版社,2002:77.
    [19]黄平东.充血性心力衰竭中医证型特征及其演变规律的临床观察[J].中西医结合心脑血管病杂志,2003,1(12):685-686.
    [20]尹克春,吴焕林.邓铁涛教授调脾护心法治疗心力衰竭经验[J].新中医,2002,34(5):11—12.
    [21]王仁平,黄瑞霞.对充血性心力衰竭中医诊疗的几点思考[J].中国中医药杂志,2006,4(4):96—97.
    [22]张智琳.浅析四逆汤类方治疗心力衰竭的特点[J].中华中医药杂志,2005,20(4):225.
    [23]马术明.慢性充血性心力衰竭的辨证论治[J].吉林中医药,2004,24(2):6-8.
    [24]郑友祥,黄平,夏建华,等.中西医结合疗法治疗慢性充血性心力衰竭84例[J].现代中西医结合杂志,2004,13(5):590—591.
    [25]邹旭,刘泽银,潘光明.暖心胶囊治疗慢性充血性心力衰竭的远期疗效观察[J].上海中医药杂志,2006,40(2):6—7.
    [26]杨培君,杨磊.充血性心力衰竭的中医治疗概要[J].陕西中医学院学报,2002,25(1):2-5.
    [27]张瑞华,焦增绵,马丽红,等.慢性充血性心力衰竭的中医辨证论治[J].中国医药学报,2002,17(17):440.
    [28]张振琪.益气活血法治疗慢性心力衰竭30例临床观察[J].中国医药学报,2003,18(11):702.
    [29]吕凯.健脾利水法治疗慢性心衰38例[J].中医研究,2002,15(2):28—29.
    [30]谭旭宏.健脾法与小剂量肝素合用在顽固性心力衰竭中的应用初探[J].贵阳中医学院学报,2004,26(1):29—30.
    [31]鲁桂芬.益气温阳利水法治疗充血性心力衰竭58例[J].河北中医,2004,26(2):99— 100.
    [32]李金红.中西医结合治疗充血性心力衰竭临床观察[J].辽宁中医杂志,2006,33(7):860-861.
    [33]朱丽华,倪国瑞.中西医结合治疗慢性心力衰竭30例疗效观察[J].新中医,2007,39(11):17-18.
    [34]陈勇.加味真武汤治疗慢性心衰50例临床观察[J].光明中医,2006,21(7):34--36.
    [35]王敏生.温阳强心汤治疗慢性心衰30例[J].实用中医内科杂志,2005,19(6):557.
    [36]单继军,杨忠奇,李思宁.开心胶囊2号治疗充血性心力衰竭46例临床观察[J].新中医,2004,36(3):22-23.
    [37]孙长春,顾月星,王一新,等.补阳还五胶囊治疗无症状性心力衰竭48例临床观察[J].江苏中医药,2003,24(12):16-17.
    [38]冯春林.黄芪注射液治疗慢性心衰66例疗效观察[J].光明中医,2008,23(1):78.
    [39]陈志强,洪涛,赖颖等.参附注射液治疗二尖瓣替换术后心功能不全的临床观察[J].中国中医急症,2003,12(6):531-561.
    [40]王燕.参附注射液治疗心功能不全疗效观察[J].中华中西医杂志,2003,4(10):1533-1534.
    [41]Hong Xiao. You Song, Ya Li, et al. Qiliqiangxin regulates the balance between tumor necrosis factor-a and interleukin-10 and improves cardiac function in rats with myocardial infarction[J]. Cellular Immunology,2009,260 (1):51-55.
    [42]XinliLi, Jian Zhang, Jun Huang, et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of Qili Qiangxin capsules in patients with chronic heart failure[J]. Journal of the American College of Cardiology,2013,62(12):1065-1072.
    [43]孟玫,苗鹏飞.芪苈强心胶囊治疗高血压心力衰竭52例[J].中西医结合心脑血管病杂志,2010,8(1):651-652.
    [44]万启南,肖政.步长脑心通胶囊治疗慢性心力衰竭临床观察[J].中国中医药信息杂志,2004,11(4):344-345.
    [45]陈海燕,吴焕林.参麦注射液治疗慢性充血性心力衰竭的疗效观察[J].现代中西医结合杂志,2004,13(1):30-31.
    [46]姜淑琴.生脉注射液治疗充血性心力衰竭的疗效观察[J].中华综合医学杂志,2004,6(3):64-65.
    [47]Xiao XG, Touma M, Wang Y. Decoding the noncoding transcripts in human heart failure[J]. Circulation,2014,129(9):958-960.
    [48]Grassi G. Leptin, the sympathetic nervous system and blood pressure:the tale is still without an end[J]. J Hypertens,2014,32(4):738-739.
    [49]Floras JS, Arcand J. Neurocirculatory responses to carbohydrates in patients with heart failure and healthy controls:more similar than different[J]. Can J Cardiol,2013,29(2):144-146.
    [50]Desai AS, Lewis EF-Li R, et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial:a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction[J]. Am Heart J,2011,162(6):966-972.
    [51]富路,葛海龙,李佳,等.慢性心力衰竭患者血钠水平与血浆肾素活性、抗利尿激素、脑利钠肽的关系[J].中华心血管病杂志,2006,34(9):781—783.
    [52]Onogawa T, Sakamoto Y, Nakamura S, et al. Effects of tolvaptan on systemic and renal hemodynamic function in dogs with congestive heart failure[J]. Cardiovasc Drugs Ther,2011,25 (1):67-76.
    [53]王永,赵红佳,曾凯,等.健心颗粒对慢性心衰患者血清MMP-9及TIMP-1的影响[J].福建中医药大学学报,2012,22(4):5—6.
    [54]闫红,陈新宇,卢青,等.温阳振衰方对慢性心衰模型大鼠心肌基质金属蛋白酶2,9的影响[J].光明中医,2013,28(7):1336—1339.
    [55]Yang CM, Lee IT, Hsu RC, et al. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-a-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells[J]. Toxicol Appl Pharmacol,2013,272(2):431-442.
    [56]Egorova EN, Kuz'mina MI, Mazur VV, et al. The activity of components of system of matrix metalloproteinase and tissue inhibitors of metalloproteinase on different stages of chronic cardiac failure[J]. Klin Lab Diagn,2012,12(12):13-14.
    [57]Siasos G, Tousoulis D, Kioufis S, et al. Inflammatory mechanisms in atherosclerosis:the impact of matrix metalloproteinases[J]. Curr Top Med Chem, 2012,12(10):1132-1148.
    [58]Li H, Zhang Y, Ma J. Effects of yiqi huoxue compound combined with exercise therapy on MMP-1 and collagen type III expressions of cardiac muscle in chronic heart failure rats[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi,2011,31(7):955-960.
    [59]徐锦雄,何雄,叶雨华.卡托普利对CHF患者MMP-9/TIMP-1水平和BNP的干预作用[J].临床医学工程,2009,16(8):4-6.
    [60]王伟,牛凡,宋洁.贝那普利及卡托普利对大鼠心肌梗死后心室重构及基质金属蛋白酶-2表达的影响[J].中西医结合心脑血管病杂志,2008,6(3):294-297.
    [61]曲静伟,洪中立.慢性心力衰竭治疗进展[J].现代实用医学,2007,19(2):86-92.
    [62]唐燕萍,卢青,陈新宇.充血性心力衰竭的中医药治疗进展[J].中医药导报,2011,17(11):74-76.
    [63]陈新宇,张帆,卢青,等.重剂温阳强心方对慢性充血性心力衰竭兔神经内分泌的影响[J].湖南中医杂志,2011,27(5):118—119.
    [64]Nikolic VN, Jevtovic-Stoimenov T, Stokanovic D, et al. An inverse correlation between TNF alpha serum levels and heart rate variability in patients with heart failure[J]. J Cardiol,2013,62(1):37-43.
    [65]Al-Amran F, Shahkolahi M. Oxytocin ameliorates the immediate myocardial injury in rat heart transplant through downregulation of neutrophil-dependent myocardial apoptosis[J]. Transplant Proc,2013,45(6):2506-2512.
    [66]高山钟,张向阳.慢性心力衰竭病理生理和药物治疗研究进展[J].心血管康复医学杂志,2009,18(3):301—304.
    [67]FooR S, Mani K, Kitsis RN. Death begets failure in the heart [J]. J Clin Invest, 2005,115(3):565-571.
    [68]Sakata Y. Clinical significance of calcium sensitizer[J]. Clin Calcium,2013, 23(4):575-582.
    [69]Landmesser U, Drexler H. Update on inotropic therapy in the management of acute heart f ai lure [J]. Curr Treat Options Cardiovasc Med,2007,9:443-449.
    [70]杨立华.充血性心力衰竭的内科治疗进展[J].海南医学,2007,18(5):153—156.
    [71]Sanganalmath SK, Bolli R. Cell therapy for heart failure:a comprehensive overview of experimental and clinical studies, current challenges, and future directions[J]. Circ Res,2013,113(6):810-834.
    [72]Patel A N, Geffner L, Vina RF, et al. Surgical treatment for congestive heart failure with autologous adult stem cell transplantation:A prospective randomized study[J].J Thorac Cardiovasc Surg,2005,130:1631-1638.
    [73]Assmus B, Honold J, Schachinger V, et al. Transcoronary transplantation of progenitor cells after myocardial infarction [J]. N Engl J Med,2006,355:1222-1232.
    [74]Fukushima S, Varela-carver A, Coppen RS, et al. Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model[J]. Circulation,2007,115:2254-2261.
    [75]Neubauer S, Redwood C. New mechanisms and concepts for cardiac-resynchroni-zation therapy [J]. N Engl J Med,2014,370(12):1164-1166.
    [76]Kawabata M, Fantoni C, Regoli F, et al, Activity monitoring in heart failure patients with cardiac resynchronization therapy [J]. Circ J,2007,71(12):1885-1892.
    [77]张子彬,Tsung 0 Cheng,张玉传.充血性心力衰竭学[M].北京:科学技术文献出版社,2002.223.
    [78]郑筱萸.中药新药临床研究指导原则[M].北京:中国医药科技出版社,2002,77-84.
    [79]张静,李庚山,李国草,等.兔阿霉素心衰模型的建立[J].心脏杂志,2004,16(5):437-439.
    [80]于厚志,杨庆,邓珏琳,等.依那普利对实验兔肥厚心室肌电重构的影响及其机理研究[J]中华心血管病杂志,2005,33(6):565-567.
    [81]彭子益.《圆运动的古中医学》[M].北京:中国中医药出版社,2007:4.
    [82]李向军.阳气在阴阳对立中的主导作用[J].右江名族医学院学报,2001,(5):825.
    [83]邢斌,黄力.《祝味菊医学五书评按》[M].北京:中国中医药出版社,2008:89.
    [84]余瀛鳌,林菁.《医学衷中参西录集要》[M].沈阳:辽宁科学技术出版社,2007:57.
    [85]招萼华.《祝味菊医案经验集》[M].上海:上海科技出版社,2007:36.
    [86]葛鸿庆,赵梁,郝李敏.邓铁涛教授从脾论治慢性充血性心力衰竭之经验[J].上海中医药,2002,36(4):9-10.
    [87]黄平东.中医古籍对心力衰竭的论述探要[J].中医药学刊,2003,21(4):392—393.
    [88]李瑞.充血性心力衰竭的中医病机探讨[J].现代中医药,2003,1:13-14.
    [89]姜文卿.附子Ⅰ号的临床研究[J].中西医结合杂志,1981,1(1):6.
    [90]邹澍.《本经疏证》[M].上海:上海科技出版社,1959:84.
    [91]侯德健,郭子光.郭子光辨治扩张型心肌病经验[J].湖北中医杂志,2008,30(3):21—22.
    [92]赵国臣.对于“扶阳气”“存阴液”的理解[J].甘肃中医,2007,20(3):46-48.
    [93]李可.李可老中医急危重症疑难病经验专辑[M].山西:山西出版集团·山西科学技术出版社,2002:3.
    [94]刘红旭,金玫,王振裕.参元丹煎剂治疗不稳定、型心绞痛(血淤证)113例临床观察[J].中医杂志,1999,40(4):219—2.
    [95]陈佳江,熊敏,周静波,等.附子配伍干姜对附子总生物碱含量的影响[J].成都中医药大学学报,2010,33(2):1—3.
    [96]王荣林.参麦注射液治疗充血性心衰伴心律失常的疗效观察[J].中国中医急症,2001,10(5):276--277.
    [97]吴建华,张丽君.药用姜研究进展[J].陕西中医学院学报,2002,25(1):61-63.
    [98]陈佳江,熊敏,周静波,等.附子配伍干姜对附子总生物碱含量的影响[J].成都中医药大学学报,2010,33(2):1—3.
    [99]张翠玲.甘草酸药理作用及临床应用[J].社区医学杂志,2008,6(20):13-14.
    [100]陈长勋,徐姗珺.甘草、干姜与附子配伍减毒的物质基础与作用环节研究进展[J].中药新药与临床药理,2006,17(6):472-476.
    [101]陈新宇,蔡虎志,余洪,等.慢性心衰心阳虚型病证动物模型的研究进展与评析[J].中医药导报,2011,17(8):108—111.
    [102]张明雪,常艳鹏,刘宁,等.建立冠心病阳虚血瘀证动物模型的若干问题探讨[J].亚太传统医药,2007,3(12):17—19.
    [103]卢青,蔡虎志,陈青扬,等.温阳法与扩张型心肌病的相关性研究[J].湖南中医药大学学报,2011,31(7):3—5.
    [104]蔡虎志,陈青扬,陈新宇.阿霉素对兔心脏结构及血清氨基末端脑钠尿肽前体的影响[J].心脏杂志,2013,25(6):637,653.
    [105]蔡虎志,卢青,陈新宇,等.阿霉素对兔血清细胞炎性因子表达的影响[J].西部医学,2013,25(12):1775—1779.
    [106]Groenning BA, Raymond I. Hildebrandt PR, et al. Diagnostic and prognostic evaluation of left ventricular systolic heart failure by N-terminal brain natriuretic peptide concentrations in a large sample of the general population[J]. Heart,2004,90:297-303.
    [107]于农,金欣,孙君,等.血清NT-proBNP水平与NYHA心功能分级的相关性研究[J],现代检验医学杂志,2008,23(4):113-114.
    [108]张晓莉,王保和.影响心力衰竭心室重构的细胞因子[J].中国临床康复,2006,10(24):134--136.
    [109]Hori M, Yamaguchi 0. Is tumor necrosis factor-a friend or foe for chronic heart failure?[J]. Circ Res,2013,113(5):492-494.
    [110]Parissis JT, Farmakis D, Fountoulaki K, et al. Clinical and neurohormonal correlates and prognostic value of serum prolactin levels in patients with chronic heart failure[J]. Eur J Heart Fail,2013,15(10):1122-1130.
    [111]Savic-Radojevic A, Radovanovic S, Pekmezovic T, et al. The role of serum VCAM-1 and TNF-a as predictors of mortality and morbidity in patients with chronic heart failure[J]. J Clin Lab Anal,2013,27(2):105-112.
    [112]布和,高建忠.慢性心力衰竭相关体液及细胞因子的研究进展[J].中西医结合心脑血管病杂志,2008,6(7):812—813.
    [113]司良毅,彭念寅,陈运贞.心肌缺血再灌注损伤与白细胞介素-1表达水平的相关性研究[J].中国临床康复,2004,8(18):3666-3668.
    [114]李拥军,丁文惠,高炜,等.白介素-1受体拮抗剂对缺血再灌注心肌的保护作用及其机制探讨[J].中华医学杂志,2004,84(7):548-553.
    [115]Van Tassell BW, Arena R, Biondi-Zoccai G, et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study)[J]. Am J Cardiol, 2014,113(2):321-327.
    [116]张伟英,巢毅,黄琦磊.心功能不全患者血浆TNF-a、IL-6、IL-10水平与心功能状态 的关系[J].福建医科大学学报,2007,41(6):565-567.
    [117]陈双庆,杨震TNF-a和IL-6在慢性心力衰竭中的变化及意义[J].江苏医药,2007,33(10):1032—1033.
    [118]陈新宇,蔡虎志,史微,等.温阳振衰颗粒对阿霉素诱导慢性心衰兔心肌细胞外信号调节激酶5表达的影响[J].湖南中医药大学学报,2014,34(1):14-18.
    [119]Liu YH, Wang D, Rhaleb NE, et al. Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction[J]. J Card Fail,2005,11(1):74-81.
    [120]Xiao L, Haack KK, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling[J]. Am J Physiol Cell Physiol,2013,304(11):C1073-1079.
    [121]Pan Z, Zhao W, Zhang X, et al. Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGF β1 expression and activation of p38-MAPK and ERK1/2[J].Br J Pharmacol,2011,162(3):688-700.
    [122]Das A, Xi L, Kukreja RC. Protein kinase G-dependent cardio-protective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta[J]. J Biol Chem,2008,283(43):29572-29585.
    [123]NiizekiT, Takeishi Y, Arimoto T, et al. Cardiac specific over-expression of diacylglycerol kinase zeta attenuates left ventricular remodeling and improves survival after myocardial infarction[J].Am J Physiol Heart Cire Physiol,2007 292(2):1105-1112.
    [124]Wang Q, Cui W, Zhang HL, et al. Atorvastatin suppresses aldosterone-induced neonatal rat cardiac fibroblast proliferation by inhibiting ERK1/2 in the genomic pathway[J]. J Cardiovasc Pharmacol,2013,61(6):520-527.
    [125]孙宁玲,王鸿靓,陈源源,等.ERK表达及活化在自发性高血压大鼠心肌肥厚中作用的研究[J].高血压杂志,2002,10(4):252.
    [126]Takeishi Y, Huang Q. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy [J]. Cardiovasc Res,2002:53(1) 131-137.
    [127]杨丽霞,王先梅,石燕昆,等.细胞外信号调节激酶的变化在心力衰竭患者心肌重构中的意义[J].心脏杂志,2006,18(1):62—64.
    [128]Kacimi R, Gerdes AM. Alterations in G protein and MAP kinase signaling pathways during cardiac remodeling in hypertension and heart failure [J]. Hypertension.2003, 41(4):968-977.
    [129]Cabassi A, de Champlain J, Maggiore U, et al. Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model:results from a pilot study in elderly chronic heart failure patients [J]. Int J Cardiol,2013,168(4):3334-3339.
    [130]Dhingra S, Sharma AK, Singla DK, et al. P38 and ERK1/2 MAPKs mediate the interplay of TNF-a and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis[J].Am J Physiol Heart Cric Physiol,2007,293 (6):3524-3531.
    [131]Haudek SB, Taffet GE, Schneider MD, et al. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways [J]. J Clin Invest,2007,117 (9):2692-2701.
    [1]陈灏珠,林果为.实用内科学[M].北京:人民卫生出版社,2009:1366.
    [2]英俊岐,胡大一.心力衰竭的循证治疗手册[M].北京:化学工业出版社,2007:11.
    [3]陈新宇,蔡虎志,史微,等.温阳振衰颗粒对阿霉素诱导慢性心衰兔心肌细胞外信号调
    节激酶5表达的影响[J].湖南中医药大学学报,2014,34(1):14—18.
    [4]Liu YH, Wang D, Rhaleb NE, et al. Inhibition of p38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction[J]. J Card Fail,2005,11(1):74-81.
    [5]Xiao L, Haack KK, Zucker IH. Angiotensin Ⅱ regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling[J]. Am J Physiol Cell Physiol,2013,304(11):C1073-1079.
    [6]Pan 1, Zhao W, Zhang X, et al. Scutellarin alleviates interstitial f ibrosis and cardiac dysfunction of infarct rats by inhibiting TGF β1 expression and activation of p38-MAPK and ERK1/2[J].Br J Pharmacol,2011,162(3):688-700.
    [7]Das A, Xi L, Kukreja RC. Protein kinase G-dependent cardio-protective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta[J]. J Biol Chem,2008,283 (43):29572-29585.
    [8]Niizeki T, Takeishi Y, Arimoto T, et al. Cardiac specific over-expression of diacylglycerol kinase zeta attenuates left ventricular remodeling and improves survival after myocardial infarction[J].Am J Physiol Heart Cire Physiol,2007 292(2):1105-1112.
    [9]Wang Q, Cui W, Zhang HL, et al. Atorvastatin suppresses aldosterone-induced neonatal rat cardiac fibroblast proliferation by inhibiting ERK1/2 in the genomic pathway [J]. J Cardiovasc Pharmacol,2013,61(6):520-527.
    [10]孙宁玲,王鸿靓,陈源源,等.ERK表达及活化在自发性高血压大鼠心肌肥厚中作用的研究[J].高血压杂志,2002,10(4):252.
    [11]Takeishi Y, Huang Q. Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy [J]. Cardiovasc Res,2002:53(1) 131-137.
    [12]杨丽霞,王先梅,石燕昆,等.细胞外信号调节激酶的变化在心力衰竭患者心肌重构中的意义[J].心脏杂志,2006,18(1):62—64.
    [13]Kacimi R, Gerdes AM. Alterations in G protein and MAP kinase signaling pathways during cardiac remodeling in hypertension and heart failure[J]. Hypertension.2003, 41(4):968-977.
    [14]Cabassi A, de Champlain J, Maggiore U, et al. Prealbumin improves death risk prediction of BNP-added Seattle Heart Failure Model:results from a pilot study in elderly chronic heart failure patients[J]. Int J Cardiol,2013,168(4):3334-3339.
    [15]Dhingra S, Sharma AK, Singla DK, et al. P38 and ERK1/2 MAPKs mediate the interplay of TNF- a and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis[J].Am J Physiol Heart Cric Physiol,2007,293 (6):3524-3531.
    [16]Haudek SB, Taff et GE, Schneider MD, et al. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways[J]. J Clin Invest,2007,117 (9):2692-2701.
    [17]Liu J, Lin A. Role of JNK activity on in apoptosis:a double-edged sword[J]. Cell Res,2005,15(1):362-364.
    [18]Tang K, Li X, Zheng MQ, et al. Role of apoptosis signal-regulating kinase-l-c-Jun NH2-terminal kinase-p38 signaling in voltage-gated K+ channel remodeling of the failing heart:regulation by thioredoxin[J]. Antioxid Redox Signal,2011,14(1):25-35.
    [19]Sehgal V, Ram PT. Network Motifs in JNK Signaling[J]. Genes Cancer,2013, 4(10):409-413.
    [20]McCloskey CA, Kameneva MV, Uryash A, et al. Tissue hypoxia activates JNK in the liver during hemorrhagic shock [J]. Shock,2004,22(4):380-386.
    [21]Liu W, Zi M, Naumann R, et al. Pakl as a novel therapeutic target for antihypertrophic treatment in the heart [J]. Circulation,2011,124(24):2702-2715.
    [22]胡安根,黄跃生c-jun反义基因转染对缺氧复合烧伤血清处理心肌细胞保护作用的分子机制研究[J].中国医师杂志,2003,12(5):1596-1598.
    [23]Ferrandi C, Ballerio R, Gaillard P, et al. Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats[J].Br J Pharmacol,2004,142 (6):953-960.
    [24]Wang Y, Su B, Sah VP, et al. Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase inventricular muscle cells[J].J Biol Chem,1998,273 (10):5423-5426.
    [25]Wang Y, HuangS, Sah VP, et al. Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the P38 mitogen-activated protein kinase family[J]. J Biol Chem,1998,273 (4):2161-2168.
    [26]Shang F, Wang J, Liu X, et al. Involvement of reactive oxygen species and JNK in increased expression of MCP-1 and infiltration of inflammatory cells in pressure-overloaded rat hearts[J].Mol Med Rep,2012, (6):1491-1496.
    [27]Chiu CZ, Wang BW, Shyu KG. Angiotensin II and the JNK pathway mediate urotensin II expression in response to hypoxia in rat cardiomyocytes[J]. J Endocrinol,2014, 220(3):233-246.
    [28]Ge Y, Pan S, Guan D, et al. MicroRNA-350 induces pathological heart hypertrophy by repressing both p38 and JNK pathways[J]. Biochim Biophys Acta,2013,1832(1):1-10.
    [29]Ketam S, John F, BrionN, et al. Inhibition of p38 mitogen-activated protein kinase increases LPS induced inhibition of apoptosis in neutrophils by activating extracellular signal regulated kinase[J]. Surgery,2001,130(2):242-247.
    [30]章必成,张巍.TNF, p38MAPK与细胞凋亡[J].国外医学·生理病理科学与临床分册,2001,21(6):464-465.
    [31]Petrich BG, Wang Y. Stress-activated MAP kinases in cardiac remodeling and heart failure; new insights from transgenic studies[J]. Trends Cardiovase Med,2004, 14(2):50-55.
    [32]Xie Z, SinghM, Singh K. ERK1/2 and JNKs, but not p38 kinase, are involved in reactive oxygen species-mediated induction of osteopontin gene expression by angio-tensinⅡ and interleukin-lbeta in adult rat cardiac f ibro-blasts[J]. J Cell Physiol, 2004,198(3):399-407.
    [33]Petrich BG, EloffBC, LernerDL, et al. Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects [J]. J Biol Chem,2004,279(15):15330-15338.
    [34]杨永健,张鑫,杨大春,等P38MAPK及基质金属蛋白酶在心力衰竭病人心肌重构中的意义[J].中国病理生理杂志,2007,23(8):1631-1634.
    [35]Liang Q, Elson AC, Gerdes AM. P38 MAP kinase activity is correlated with angiotensinⅡ type 1 receptor blocker-induced left ventricular reverse remodeling in spontaneously hypertensive heart failure rats[J]. J Card Fail,2006,12(6):479-486.
    [36]Clerk A, Cullingford TE, Fuller SJ, et al. Signaling pathways mediating cardiac myocyte gene expression in physiological and stress responses[J]. J Cell Physiol, 2007,212(2):311-322.
    [37]Xu Q, Dalic A, Fang L, et al. Myocardial oxidative stress contributes to transgenic β2-adrenoceptor activation-induced cardiomyopathy and heart failure[J]. Br J Pharmacol,2011,162(5):1012-1028.
    [38]Ng DC, Court NW, dos Remedios CG, et al. Activation of signal transducer and activator of transcription(STAT)pathways in failing human hearts[J]. Cardiovasc Res,2005,57(2):333-346.
    [39]Freed DH, Borowiee AM, Angelovska T, et al. Induction of protein synthesis in cardiac fibroblasts by cardiotrophin-1:integration of multiple signaling pathways [J]. Cardiovasc Res,2003,60(2):365-375.
    [40]Tkahashi K, Fukushima S, Ymahara K, et al. Modulated inflammation by injection of high-mobility group box 1 recovers post-infarction chronically failing heart [J]. J Biol Chem,2008,118(14):106-114.
    [41]Frantz S, Behr T, Hu K, et al. Role of P38MAPK inhibitors in the treatment of ischemic heart disease[J]. Pharmacol Ther,2007,116(2):192-206.
    [42]Liu YH, Wang D, Rhaleb NE, et al. Inhibition of P38 mitogen-activated protein kinase protects the heart against cardiac remodeling in mice with heart failure resulting from myocardial infarction[J]. J Card Fail,2005,11(1):74-81.
    [43]Tenhunen 0, Soini Y, I1ves M, et al. P38 kinase rescues failing myocardium after myocardial infarction:evidence for angiogenic and anti-apoptotic mechanisms [J]Faseb J,2007,20(11):1907-1909.
    [44]See F, Thomas W, Way K, et al. P38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat[J].J Am Coll Cardiol,2004,44(8):1679-1689.
    [45]Clark JE, Sarafraz N.Marber MS. Potential of P38-MAPK inhibitors in the treatment of ischaemic heart disease[J]. Pharmacol Ther,2007,116(2):192-206.
    [46]KyoiS, Otani H, Matsuhisa S, et al. Opposing effect of P38 MAP kinase and JNK inhibitors on the development of heart failure in the cardiomyopathic hamster [J]Cardiovasc Res,2007,69(4):885-895.
    [47]Wang YS, Zhou J, Liang C, et al. ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation[J]. Environ Toxicol Pharmacol,2013,36(2):724-731.
    [48]Garcia-Hoz C, Sdnchez-Ferndndez G, Garcia-Escudero R, et al. Protein kinase C (PKC) (?)-mediated G a q stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts[J]. J Biol Chem,2012,287(10):7792-7802.
    [49]Lee KS, Park JH, Lim HJ, et al. HB-EGF induces cardiomyocyte hypertrophy via an ERK5-MEF2A-COX2 signaling pathway[J]. Cell Signal,2011,23(7):1100-1119.
    [50]Bartha E, Nishida E. MAPK signal:ERK5 versus ERK1/2[J]. EMBO Rep,2006,7(8): 782-786.
    [51]Yibin Wang. Mitogen-activated protein kinases in heart development and diseases [J]. Circulation,2007,116 (12):1413-1423.
    [52]MuchirA, Shan J, Bonne G, et al. Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins[J]. Hum Mol Genet,2009,18(2):241-247.
    [53]Hayashi M, Lee JD. Role of the BMK1/ERK5 signaling pathway:lessons from knockout mice[J].J Mol Med,2004,82 (12):800-808.
    [54]Xinchun Pi, Gwenaele Garin, Liang Xie, et al.BMK1/ERK5 is a novel regulator of angiogenesis by destabilizing hypoxia inducible factor la [J].Circ Res,2005, 96 (11):1145-1151.
    [55]Masaaki Hayashi, Colleen Fearns, Brian Eliceiri, et al. Big mitogen-activated protein kinase 1/Extracellular signal-regulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis[J]. Cancer Res,2005,65(17):7699-7706.
    [56]Regan CP, Li W.Boucher DM, et al.Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects[J]. Proc Natl Acad Sci,2002,99(14): 248-253.
    [57]Hayashi M, Kim SW, Imanaka-Yoshida K, et al. Targeted deletion Of BMK1/ERK5 in adult mice Perturbs vascular integrity and leads to endothelial failure[J]. J Clin Inverst,2004,113(8):138-148.
    [58]Kimura TE, Jin J, Zi M, et al. Targeted deletion of the extracellular signal-regulated protein kinase 5 attenuates hypertrophic response and promotes pressure overload-induced apoptosis in the heart[J]. Circ Res,2010,106(5):961-970.
    [59]Zhao Z, Geng J, Ge Z, et al. Activation of ERK5 in angiotensin II induced hypertrophy of human aortic smooth muscle cells [J]. Mol Cell Biochem,2009,322(2): 171-178.
    [60]Le NT, Heo KS, Takei Y, et al. A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis [J]. Circulation,2013,127(4):486-499.
    [61]Zhao Z, Wang W, Geng J, et al. Protein kinase C epsilon-dependent extracellular signal-regulated kinase 5 phosphorylation and nuclear translocation involved in cardiomyocyte hypertrophy with angiotensin II stimulation [J]. J Cell Biochem,2010, 109 (4):653-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700