深水半潜式钻井平台钻机系统选型与布局优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家高技术研究发展(863)计划海洋技术领域重大项目“深水半潜式钻井船设计与建造关键技术(课题编号:2006AA09A104)”,在大量运用和处理国外深水半潜式平台和海洋钻机各种数据基础上,运用复杂系统设计理论、数值分析和计算机仿真等技术,以提高深水钻井效率为主要目标,系统开展了平台钻机系统选型和布局优化设计等方面的研究。主要取得了如下研究成果:
     1.深水钻井作业工艺关键路径优化研究
     提高钻井作业效率是第六代半潜式钻井平台最重要设计目标,应用双井架钻机是提高(超)深水钻井作业效率的有效技术。本文采用并行工程理论和甘特图探讨双井架钻机并行作业和协作作业机理,突破钻井工艺顺序作业限制,将同一工序(过程)的部分辅助工作离线作业,优化了钻井作业关键路径;并进一步优化了配置双井架钻机钻井平台的单井和多井钻井作业工艺流程,显著缩短深水建井周期。在此基础上,初步建立了采用双井架钻机系统的钻井平台所需基本设备配置。
     2.钻机系统选型优化研究
     钻机系统决定平台钻井作业的效率,选择、配置深水半潜平台钻机系统是设计第六代半潜式钻井平台的关键。本文采用复杂大系统优化分解—协调理论,将深水钻机系统分解成钻机、材料输送系统、动力系统、控制系统和后勤服务系统等5个子系统,建立优化模型,重点对钻机和材料输送系统进行优化选型研究。研究了钻机结构配置与离线作业能力及作业效率关系,离线钻机配置越完整全面,作业效率提升越大,双井架钻机最大化发挥了并行与协作作业能力。双井架钻机相对离线钻机显著提高作业效率,但增加可变载荷和建造成本,受专利影响增加作业成本,采用投资回收模型和净现值模型综合分析表明:双井架钻机总体优于离线钻机。钻井材料的不同物化状态决定输送系统输送方式和配置,分别对钻井管具、专用设备和钻井液三类材料进行了输送方式和装备配置优化。从占用甲板面积、重心、总体布局和作业效率等因素对隔水管存储形式比分析可知,存储模式对总体布局影响大,立放模式有利于总体布局设计。分析影响隔水管作业的因素,提出了提高作业效率措施,尤其隔水管接头形式的选型应引起重视。
     3.钻机系统布局优化研究
     针对钻井系统布局兼有生产布局和复杂三维大系统布局特点,本文提出基于作业流程层次分解布局法,建立了布局理论、算法和布局流程。该方法以作业流程为基础,按材料输送系统输送模式划分子空间,子空间内进一步模块化,以模块为布局基本单位,对不同空间采用相应优化算法,完成布局初步方案。然后根据重心对平台布局进行调整,以提高稳性,最后进行安全规划,完成布局详细设计。该方案综合考虑作业效率、安全性、稳性和人因工程学多方面因素,具有工程操作可行性和优化性,在具有性能约束大系统三维布局设计方面具有独创性。以在建某863项目平台钻井系统为实例,设计布局方案,完成布局设计。采用三维软件对平台及钻井系统进行三维建模、装配仿真和作业流程动态仿真,进一步验证布局合理性。
     4.钻台自动化装备优化布局和基于人因工程学钻井控制室设计研究
     针对钻台自动化作业程度高的特点,基于三类不同管具作业流程和设备设施作业衔接关系,完成钻台自动化装备布局设计,有效协调各类管具的输送、暂存、交换和处理等自动化作业活动。综合运用数值计算和CAE仿真方法对双钻井中心在平台定位进行优化,确定了主辅钻井中心定位布局优化方案。
     本文运用人因工程学原理和标准对目标平台钻机控制室进行设计,实现信息通信协调机制,信息过载处理和作业群体之间相互协调。设计中具体设计采用三级控制、显示方式,实现基于流程自动控制和手动控制有机结合的控制方式,改变控制室设计基于设备集成的理念,提高了作业功效。
The dissertation focuses on deepwater rigs system design for ultra-deepwater semi-submersible platforms/unites (SSDP/SSDU), which is a part of the“863”High Technology Research and Development Program of China (No.2006AA09A104)—the key technique research on SSDPs’design and construction. Aiming at improving the operation efficiency of deepwater drilling, the paper synthetically adopts theoretical research, numerical calculation and computer simulation and perfects well drilling technology, drilling system mode option and layout optimization based on application and processing external marine drilling rig and SSDP. The main achievements are summarized as follows:
     1. Research on critical path optimization of deepwater drilling process
     Not only does dual derrick rigs lead to profound revolution of well drilling technology, but also cause significant change on drilling rigs configuration. The theory of concurrent engineering and Gantt chart are applied to analyze mechanism of dual derrick rigs process flow which lies in two factors—concurrent operation and cooperative operation. Concurrent operation breaks through sequence operation and cooperative operation completes work by main and auxiliary rigs together. Drilling craft of exploration well and development well are made out and optimized by Gantt chart. The well drilling process shorten well construction period and improves benefit. At last, prime equipments supported dual derrick rigs are established which are base for subsequent work.
     2. Research on rigs system mode option and configuration optimization
     As driliing operation efficiency is determined by the drilling rigs system, selection and configuration of deepwater rigs system is key of the construction of 6th generation domestic SSDP. Based on theory of decomposition-coordination for complex large-scale system, deepwater drilling rigs system is divied into 5 sub-systems, including of rigs, material transportation system, power system, logistics service system and control system. Function relation of sub-systems and optimization model is set up and two sub-systems—rigs and drilling material transportation system are studied especially. The relation between offline operation ability and rigs configuration is studied that the the more offline equipments, the more work efficient. Two kinds of rigs—offline rigs and dual derrick rigs are compared by payback period and net present value (NPV) from viewpoint of efficiency, variable derrick load, patent and cost of construction. And result shows that the dual derrick rigs is more excellent as a whole. Transportation modes are determined by shape and quality of material modality, and they are divided into three modes—drilling pipes, large special equipment and drilling mud system, and optimized the process flow and equipment configuration. The paper analyses two risers storage models and equipment configuration, and compares to occupying deck area, center of gravity general layout and operation efficiency. The result shows that there is no evidence difference in center of gravity and system operation efficiency besides they have significant effect in general layout. Risers’operation efficiency factors are analyzed and measures to improve efficiency are put forward, of which risers’connector should be attached importance to. SSDP & drilling equipment management information system is set up for the sake of improving management and benefit of equipment option.
     3. Study on layout optimization of rigs system
     Rigs system layout integrates the characteristic of production system and complex three-dimensional (3-D) system layout. The dissertation firstly brings forward compound /integrated hierarchical division based on process flow and constitutes layout theory, arithmetic and layout process on the basis of complex large-scale composition- coordination. The method is based on operational flow and different transportation modes are marked out according to the shape and quality to material modality. Two hierarchy decompose—sub-space and modules,which are basic layout units,are brought into operation. We applied different layout arithmetic to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck’s calculations were based on the best-fit scope. Finally the center of gravity was taken into consideration and the general layout was adjusted according to result in an optimal center of gravity. The project strongpoint doesn’t only lies in taking into account efficiency, safety, stability and human factors engineer, but also engineer practicality and optimization, especially in 3-D layout with behavioral constraints. According to the layout programming, we take the 863 project in the scantling design as an example, implementing the layout of rigs system in details. In order to validate layout for further, 3-D modeling of SSDP and rigs system are constructed to carry into execution simulation of assembly and process flow moving.
     4. Research on drill fllor layout optimization and driller cabin design based on human factors engineer.
     Drill floor of semi-submersible drilling platform is the work center of drilling. And there are three different operation flows handled with drill pipes, large-diameter casings and risers. The driller layout principle and program are made certain based on process, linking up and manipulation relation and human factors engineer. All automated equipments on drill floor are collocated with layout principle and program and assorted with tubulars’transportation, temporary storage and handling. The main and auxiliary drilling centers are adopted 1:3—proportion off-center arrangement which is according to result of numerical calculation and ABAQUS simulation.
     As driller cabin is the core control component of rigs system, and the target platforms equipments is so automatic that driller cabin traditional design can not meet with the trend. The human factors engineer is used to design the driller cabin. The paper applies ergonomic principles to design driller cabin and achieve mechanism of communication harmony and information overload and colony harmony. Third class control pattern are used in the course of collectivity design, that is: LCD—type of show, touch screen—type of main control, multifunctional chair—traditional type of manual control, which can carry out unify between process-based control to manual operation to change past equipment function-based integration. The new idea and technique presented in the paper can improve the design of the driller cabin.
引文
[1]李平正.世界深水石油勘探开发概况及初步认识[J].中国海洋平台.2007,22(4):1-6
    [2]郑言.我国海洋深水油气勘探开发须在探索中前行[EB/OL].http://www.lrn.cn/zjtg /societyDiscussion/200811/t20081124_300341.htm,2008-11-24
    [3]殷志明.新型深水双梯度钻井系统原理、方法及应用研究[D].东营:中国石油大学(华东),2007
    [4]廖谟圣,曹丽平.我国海洋石油工业的进展及与国外差距和建议[J].石油矿藏机械,2005,34(2):13-18
    [5]自动化在线网.全球深海钻井装备概况[EB/OL]. http://www.autooo.net/autooo/jx/ International /2007-10-23/36093.html,2007-10-23/2008-12-31
    [6]中国海洋石油工程公司.国家高技术研究发展计划(863计划)课题实施方案——深水半潜式钻井平台关键技术开题报告[R].北京:中国海洋工程公司,2006(内部文件)
    [7]严锦林,窦钧,高真所等.BinGO 9000半潜式钻井平台主体结构建造工艺问题研究[J].中国海洋平台,2001,16(2):21-24
    [8] World fleet of US-Flag offshore service vessel [DB/OL]. http://www.shipbuidinghistory/ today/shippingdirectory/osvs.htm, 2008-09-01/2008-09-23
    [9] Rigzone网. Semi Submersible drilling/production rig [DB/OL]. http://www.rigzone.com/ market/Results.aspx?CategoryID=1, 2008-09-01/2008-09-23
    [10] Ryan Isherwood, Oliver Wyman and Chris Reinsvold. Deepwater drilling rig shortages: Will they continue? [J]. Word Oil. 2009,1: 53-55
    [11]廖谟圣.2000-2005年国外深水和超深水钻井采油平台简况与思考中国海洋平台[J].2006,21(3):1-8
    [12] E.F.H.Lim, B.F.Ronalds. Evolution of the Production Semisubmersible [C]. SPE 63036, 2000
    [13] Subrata, K Chakrabarti. Handbook of offshore engineer [M]. NEW YORK: Elsevier,2005
    [14]刘志刚.GM-Lift半潜式平台立柱的结构设计与强度分析[D].上海:上海交通大学,2007
    [15]顾宗平.我国海洋石油钻井史的光辉篇章[J].中国海洋平台,1999,14(6):1-7
    [16]付军强.海上可移动钻井装置发展综述与展望[J].中国海洋平台,2003,18(5): 5-9
    [17]奚立康.深水半潜式钻井平台设计、建造关键技术探讨[J].船艇.2006,2:30-33
    [18]中村雅洋,郭安魁.深水半潜式钻井平台发展概述[J].国外钻井技术. 1998,3: 24-27
    [19]孟昭英,任贵永.半潜式平台工作原理和结构特点分析[J].中国海洋平台,1995,10(1):35-38
    [20]何炎平,谭家华.“南海2号”半潜式钻井平台深水改造方案运动响应和波浪荷载分析[J].中国海上油气,2003.15(6):9-13
    [21]吴四川,徐戎.“南海二号"半潜式钻井平台的修理[J].中国修船.2006,19(3): 26-28
    [22]刘刚,关伟姝.BIGO9000半潜式钻井平台疲劳强度分析[J].船舶力学. 2002(2): 55-64
    [23]马延德.大型半潜式钻井平台结构设计关键技术研究[J].中国海洋平台,2002,17(1):11-15
    [24]陈新权,谭家华.基于遗传算法的超深水半潜式平台优化[J].2006,21(6):23-26
    [25] CAO An-xi, ZHAO Min, LIU Wei, et al. Application of Multidisciplinary Design Optimization in the Conceptual Design of a Submarine [J]. Journal of Ship Mechanics. 2007,11(3): 373-382
    [26] ZHU Sheng-chang , CHEN Qing-qiang , GAN Xi-lin et al. Strength Measurement and Analysis of the Semi -submersible Transfer Station[J]. Journal of Ship Mechanics. 2002,6(6): 70-84
    [27]张剑波,曾常科,肖熙.半潜式平台的极限强度分析研究[J].中国海洋平台,2005, 20(3): 19-22
    [28]陈新权.深海半潜式平台初步设计中的若干关键问题研究[D].上海:中国交通大学,2007
    [29]方华灿.对我国深海油田开发工程中几个问题的浅见[J].中国海洋平台,2006, 21(4):1-7
    [30]刘海霞.深海半潜式钻井平台的发展.船舶[J].2007,3:6-10
    [31]罗超,龚惠娟.国内超深井钻机技术现状与发展建议[J].石油机械.2007,35(1):45-48
    [32]廖谟圣.21世纪初的世界海洋石油钻机[J].石油矿藏机械.2000,29(1):5-9
    [33] Wood Mackzie and Sheppaed Alison. Deepwater statistical report: Global reserves discovered have decreased, while finding costs increase [J]. Word Oil, 2007, 228(12):79-87
    [34]赵建亭.深海半潜式钻井平台钻机配置浅析[J].船舶,2006.4:37-46
    [35] C.Keener, Keji-Ajayi. Development Modeling—Matching Rigs With Programs [C]. SPE/IADC 92251. Netherlands: 2005
    [36] Aker MH AS 2008.Drilling Rig Packages [EB/OL]. http://www.akersolutions.com/Internet/IndustriesAndServices/OilAndGas/Drilling+Equipment/DrillingRigPackages.htm, 2008-12-31
    [37] Transocean Offshore Deepwater Drilling Inc. Multi-activity offshore exploration and/or development drilling method and apparatus(P):USA,US6068069,2005
    [38]王进全.关于我国石油钻机技术的现状及其研发思考[J].石油机械,2006, 34(1):7-11
    [39]栾苏,于兴军.深水平台钻机技术现状与思考[J].石油机械.2008,36(9):531-535
    [40]岳吉祥,綦耀光,肖文生等.深水半潜式平台钻井材料输送系统配置与布局研究[J].船海工程.2008.4:31-36
    [41]余晓松.基于模块化技术的舰船设计与建造技术[J].船舶工程.2008,30(4): 85-87
    [42] Gene Kliewer. New design drillship pushes operations depths to meet future needs [J]. OFFSHORE. 2006,(10):29-33
    [43] National Oilwell Varco. Drilling Systems Product [EB/OL]. http://www.nov.com/ Products.aspx?Puid=gPKRiYba1se9oD&nodeId=U7YZYRIAN1IUNSS1KAB5G%2B1F8RE%3D-GPKRIYBA1SE9OD, 2008-12-31
    [44] Echo Yang.石油,开门![J/EB].福布斯. http://www.forbeschina.com/cmslive/ issuelist.jsp?issue=10381. 2008/09/30-2008/12/31
    [45]高志亮,李忠良.系统工程方法论[M],西安:西北工业大学出版社,2005
    [46] Sobieszeznaski-Sobieski J,Agte J, Snadusky J. Bi-level integrated system synthesis [R]. NASA/TM-1998-208715
    [47] Balling R J,Sobieszeznaski-Sobieski J. Optimization of coupled systems: A critical overview of approaches [J]. AIAA Journal,1996,34(1): 6-17
    [48] Braun R. Collaborative optimization: An archiecture for large-scale distributed design [D]. California: Stanford University, 1996
    [49] Nair P B,Kenae A J. A co-evolutionary architecture for distributed optimization of complex coupled systems [J]. AAIA Jounral,2002,40(7): 1434-1443
    [50] Wagner T C. A general decomposition methodology for optimal system design [D]. Michigan: University of Michigan,1993
    [51] Munoz J R,Von Spakovsky M R. Decomposition energy system synthesis/design optimization for stationary and aerospace applications [J]. AIAA Journal of Aicrraft,2003,40(l): 35-42
    [52]陈树勋.工程结构大系统设计的全局协调优化[J] .固体力学学报,1996,17(1): 38-48
    [53]陈树勋.工程大系统设计的普遍型分解协调优化[J].中国机械工程,1999,10(7):799-802
    [54] Kim H M,Michelena N F,papalmabros R Y,et al.Target cascading in optimal system design [J]. ASME Joumal of Mechnaical Design,2003,125(3):474-480
    [55] Michelena N F,Kim H M, papalmabros R Y,et al. A system Partitioning and optimization approach to target cascading[C].Intemational Conference on Engineering design,Munich,August,1999
    [56]李志华.多单元制造系统布局设计研究[D] .武汉:华中科技大学,2002
    [57]理查德·缪瑟著.柳惠庆、周室屏译系统布置设计[M].北京:机械工业出版社,1998
    [58]王定益,王丽亚.一种单元制生产方式设备布局问题的研究方法[J].工业工程与管理,2006,1:10-13
    [59]锁小红.基于制造系统功能的设施布局设计研究[D].济南:山东大学,2008
    [60] Dowsland W B.Three-Dimensional packing-solution approaches and heuristic development [J]. International Journal of Production Research,1991,29(8):1673-1685
    [61] Cagan J,Shimada K,Yin S. A Survey of computational approaches to three-dimensional layout problems [J]. Computer Aided Design. 2002,34(8): 597-611
    [62] Jo J H, Gero J S. Space layout planning using an evolutionary approach. Artifieial Intelligenee in Engineering. 1998,12(3):149-162
    [63]袁苗龙,周济,张新访.三维几何布局的一类启发式求解算法[J].计算机学报, 1999,22(9): 923-926
    [64] Tsai Chai-ehun,Chen Sao-jie,FengWu-shung. An H-V alternating router [J]. IEEE Transactions on ComPuter Aided Design of Integrated Circuits and Systems,1992,11(8): 976-991
    [65]段国林,查建中,林建平等.遗传算法在钟手表机芯设计中应用[J].软件学报,1998,9(7):515-519
    [66]张勇,李为吉,唐伟等.基于多目标遗传算法的再入飞行器气动布局优化[J].空气动力学学报,2001,19(4): 477-582
    [67]袁苗龙,周济,张新访等.三维几何布局的一类启发式求解算法[J].计算机学报,1999,23(9):923-926
    [68]查建中,唐晓君,陆一平.布局及布置设计问题求解自动化的理论与方法综述[J].计算机辅助设计与图形学学报,2002,14(8):705-712
    [69] Dujmovic V,Morin P and Wood D R.Layout of graphs with bounded tree-width [J]. SIAM Journal on Computing,2005,34(3): 553-579
    [70]张旭,冯恩民.具有性能约束布局问题的优化算法及收敛性[J].大连理工大学学报,2005,45(5): 766-771
    [71] R D Braun,Mooer A A,Kroo I.M. Collaborative approach to launch vehicle design [J]. Jounral of Spacecraft and Roekets,1997,34(4): 478-486
    [72]陈琪锋.飞行器分布式协同进化多学科设计优化方法研究[D].长沙:中国人民解放军国防科技大学,2003
    [73]谷良贤.协作优化算法在飞行器设计中的应用[J].弹箭与制导学报, 2002,4: 60-62
    [74]孙治国,滕弘飞,刘占伟.航天器舱自动化布局设计的若干科学问题[J].自然科学进展.2003,13(11):1134-1141
    [75] Hit E, et al. Virtual prototyping for high density packing systems [J]. IEEE Transzctions on Advanced packing, 2001,24(3): 392-398
    [76] Szykman S,Cagan J. A simulated anaealing based approach to three—dimensional components packing [J]. ASME Joumal of Mechnanical Design,1995,117(2A) 308-314
    [77]张科施,李为吉,李响.飞机概念设计的多学科综合优化技术[J].西北工业大学学报,2005,23(1):102-106
    [78] Cagan J,Degentesh D,Yin S. A simulated annealing based algorithm using hierarchical models for general three-dimensional component layout [J]. Computer Aided Design,1998,30(10): 781-790
    [79] Webster W C, Van Dyke P. Automated Procedures for the allocation of containers on shipboard[C]. Computer Aided Ship Design Engineering Summer Conference,Ann Arbor,1970
    [80] Botter R C,Brinnati M A. Stowage container planning: a model for getting and optimal solution[C]. ICCAS’92,North Holland,1992
    [81] Arshia Ahi, Mir.B. Aryanezhad, Behzad Ashtiani et al. A novel approach to determine cell formation, intracellular machine layout and cell layout in the CMS problem based on TOPSIS method [J]. Computers & Operations Research.2008, 36 (10): 1478–1496
    [82] Michalek J, Choudhary R, Papalambros P.Y. Arhcitecture layout design optimization [J]. Engineering optimization.2002,24(5):461-484
    [83] Huberman B A,Lukose R M,Hogg T. An eeonomics approach to hard computational problems [J]. Science,1997,25(3): 51-53
    [84]冯恩民.具有拓扑结构布局优化的理论及算法[D].大连:大连理工大学,2004
    [85]黄文奇.求解空间Packing问题的拟物方法[J].应用数学学报,1986,9(4):443-453.
    [86]晏敏,张昌期,刘育骥.平面布局的一个拓扑模型:方图[J].小型微型计算机系统,1989,10(2):23-32
    [87]晏敏,张昌期,翟贤等.用于平面布局的专家系统[J].华中理工大学学报,1989,17(4)增刊: 31-38
    [88]史彦军.复杂布局的协同差异演化方法与应用研究[D].大连:大连理工大学,2005
    [89]孙治国.一类航天器布局设计问题的顺序、物理(空间)分解协调方法[D].大连:大连理工大学,2005
    [90]铁军.具有性能约束的三维布局优化的理论及算法[D].大连:大连理工大学,2007
    [91]李广强.布局方案设计的若千理论、方法及其应用[D].大连:大连理工大学博士论文,2003
    [92]曾威.卫星舱布局的双系统协同进化算法与CAD系统关键技术[D].大连:大连理工大学,2007
    [93]唐飞.宇宙及船舶总体布局优化及CAD[D].大连:大连理工大学,1999
    [94] Linda Hsieh.Looking into the future with Steve Newman,Transocean [J]. Drilling Contractor, 2007, 1:42-45
    [95] Richard D Souza,David Barton, Steve Hatton. The Next Generation Production Drilling Semi-submersible Based Deepwater Field Development System[C]. OTC 14260,2002
    [96]岳吉祥,綦耀光,肖文生等.半潜式钻井平台双井架钻机作业工艺初步研究[J].石油钻探技术. 2009,2:14-17
    [97]谢梅波,赵金洲,王永清.海上油气田开发工程[M].北京:石油工业出版社,2005
    [98] Oil & Gas Journal. Deepwater rig designs give up mobility for stability, storage [J]. OFFSHORE. 1998,57(7): 145-150
    [99]魏众.集装箱码头物流作业系统集成优化调度研究[D].北京:北京交通大学, 2007
    [100] Aker Kvaerner. Deep water drilling unit project (DDU-0006-007)-Holistic comparision between dual and offline rigs [R]. (restricted data),2008
    [101] Transocean Offshore Deepwater Drilling Inc. Drillship or semi-submersible and multi-activity drilling assembly [P]. EUROPEAN PATENT: EP 1925549A2, 28.05.2008
    [102] Lars Munch-Soegaard, Offshore Drilling Experience with Dual Derrick Operations [C]. SPE/IADC 67706, 2001
    [103] B Avigon. A Simon. Deep water drilling Perfomance [C]. SPE 77356, 2002
    [104] Hugh Mccrae. Marine Riser Systems and Subsea Blowout Preventers [D]. Tesas: University of Texas, 2003
    [105] API RP16Q-2001/ ISO 13624. Design and operation of marine drilling riser equipment[S]. American Petroleum Institute(API), 2001
    [106]畅元江.深水钻井隔水管设计方法及其应用研究[D].东营:中国石油大学(华东),2008
    [107]朱江.海洋钻井设备综述[J].中国海上油气(工程).2000,12(6) :44-48
    [108] P A Vatne and Pal Norheim. The RamRig concept for drilling and workover rigs[C]. IADC/SPE 35047, 1996
    [109] Chip Keener. Performance Driven Technology—Breaking the Barriers [C]. THE 2005 NO. AADE TECHNICAL FORUM—Performance Driven–Technology Applications to Reduce Downtime and Increase Efficiency:NEW ORLEANS,2005
    [110] ENSCO. Forward-Looking Statements & Non-GAAP Reconciliations[C]. UBS Energy and Utilities Conference 2007. The New York.USA: May 23, 2007
    [111] Jean_Louis Geyelin, Alberic Clergier, Ronan Bouget et al. Completetion of Aconcagua With a Dual Derrick Drilling Unite [C]. SPE/IADC 84345, 2003
    [112] Chip Keener, Lbukun Keji-Ajayi, Rod Allan. Performance Gains with 5th Generation Rigs. [C]. SPE/IADC 79833, 2003
    [113] Judy Maksoud. Dual activity drilling savings ranging up to 40% on exploration wells [J]. Offshore. 2001,61(9): 45-47
    [114] Transocean. Drillship or semi-submersible and multi-activity drilling assembly (P):EP 1 925549 A2,2008
    [115]杨雪雁,张广杰.油田开发调整项目的经济评价与决策方法[J].石油勘探与开发,2006,33(2):246-249
    [116]杨轶普,肖文生,王凌寒.深水半潜式钻井平台井架经济性分析[J].中国海洋平台,2008,23(6):46-48
    [117] Deepwater drilling equipment [DB/OL]. http://www.kingdomdrilling.co.uk/,2008-09-01
    [118] J. Guesnon1, Ch. Gaillard1 and F. Richard. Ultra deep water drilling riser design and relative technology [J]. Oil & Gas Science and Technology. 2002, 57 (1):39~57
    [119]兰洪波,张玉霖,营志军等.深水钻井隔水管的应用及发展趋势[J].石油矿场机械.2008,37(3):96~98
    [120]畅元江,陈国明,鞠少栋.国外深水钻井隔水管系统产品技术现状与进展[J].石油机械,2008,36(9):205-209
    [121]闫永宏,王定亚,邓平等.钻井隔水管接头技术现状与发展建议[J].石油机械,2008,36(9):159-162
    [122] A.S Westlake, K Uppu. Enabling solution for deepwater drilling riser management—A critical evaluation[C]. OTC 18646,2007
    [123] Kieran Kavanagh, Michel Dib, Erin Balch. New revision of drilling riser recommended practice (API RP 16Q) [C]. OTC 14263,2002
    [124] Heng Huang. Facility layout using layout modules [D]. Ohio: Ohio State University, 2003
    [125] YUE Ji-xiang, QI Yao-guang, XIAO Wen-sheng, et al. Study on the general layout of semi-submersible offshore drilling platform based on drilling operation flow [J]. Journal of Marine Science and Application, 2009, 8(2):7-12
    [126]岳吉祥,綦耀光,任旭虎.基于人机工程学的海洋平台总体布局设计研究[J].中国海洋平台.2008,23(2):7-12
    [127]桂彬旺.基于模块化的复杂产品系统创新因素与作用路径研究[D].杭州:浙江大学博士论文,2006
    [128] Vatcharapol Sukhoto. Material handing sysytem models and block layout approches for facility design [D]. Houston: University of Houston,2002
    [129] Langlois,Robertson. Networks and innovation in a modular system: lessons from the microcomputer and stereo component industries [J]. Research Policy,1992: 15,11-23
    [130]孔凡凯.大型定制产品模块化制造关键技术研究[D].哈尔滨:哈尔滨工程大学博士论文,2006
    [131]王日君,张进生,葛培琪等.模块化设计中模块划分方法的研究[J].组合机床与自动化加工技术. 2008,7:7-21
    [132]蔡临宁.物流系统规划—建模及实例研究[M].北京:中国机械工业出版社, 2003
    [133]琚科昌,王转.基于SLP的流程型制造企业物流设施布局分析方法及应用[J]物流技术. 2006,16:80-82
    [134] Frank Hartley,Scott McLeod. Drilling technology:Poseidon 29,000-ft deep well:Record depth well in 4,800 ft water depths harbinger of future for US Gulf of Mexico—PART I [J]. OFFSHORE, 2001,61(4):56-59
    [135] Michael Johnson and Michael Rowden. Riserless drilling technique saves time and money by reducing logistics and maximizing borehole stability. SPE 71752, 2001
    [136] CB-Z319-1982.运输船重量分类及重心计算—中华人民共和国国家标准—船舶标准(2008)网络版标准[S] [M/CD].北京:中国标准出版社,2008
    [137] T. Haavie, Hitec Framn?s AS, H. Stakkeland. Design of a Deepwater/Deephole Dynamically Positioned Semisubmersible Drilling Unit with a Purpose-Designed Column Configuration[C]. SPE 56911, 1999
    [138] Keppel Offshore & Marine. Harsh environment semi provides improved stability and deck space [J]. PETROMIN. 2007,33(8): 34-40
    [139] SY/T 1010041—2002.石油设施气设备安装一级一类和二类区域划分的推荐作法[S].北京:石油工业出版社,2002
    [140] Mark.D Hasen, Egill Abraharnsen. Improving Safety Performance through Rig Mechanization[C]. SPE/IADC 67705,2001.
    [141] Tommy Warren, Ronger Johnes, and Dean Zipse. Improved Casing Running Process [C]. SPE/IADC 92579,2005
    [142]侯依甫.钻井和修井井架、底座设计指南[M].中国石油工业出版社,北京:2005
    [143] IADC.2004 LTI rate flat, but recordables were up slightly [J]. Drilling Constractor. 2005,7/8: 56-57
    [144]王来忠.油田生产安全技术(第二版)[M].中国石油化工出版社,北京:2007
    [145]岳吉祥,綦耀光,肖文生半潜式钻井平台钻井制室的人因工程学设计研究[J].人类工效学,2009.15(1):31-34
    [146] Andreas Lumbe Aas. Improvement of Human Factor in Control Centre Design—Experience Using ISO 11064 in the Norwegian Petroleum Industrial and Suggestions for Improvements [C]. SPE11762, 2007
    [147] W. Dave Harbour, M/D Totco, J. Kracik, at al. Process Oriented Approach to Driller’s Consoles [C]. lADC/SPE 39330,1998
    [148]陈波,张旭伟,李冬屹,张嘉新.浅谈我国石油钻机司钻控制系统存在的问题[J].石油机械,2007,36(4):7-10
    [149]专题译文.司钻控制[ J ].石油天然气,2006,2:27-33
    [150] Oeystein K.Borgersrud, Dagfinn Ellingsen. Systematic Approach to WorkingEnvironment in Design and Construction of Major Offshore Projects [C]. SPE 46756, 1998
    [151]姜鸣,何世聪,李远程等.石油钻机司钻控制房的设计[J].石油机械,2005,33(6):29-33
    [152] Urban Kjellén. Safety in the design of offshore platforms: Integrated safety versus safety as an add-on characteristic [J]. Safety Science, 2007,45: 107–127
    [153]战翌婷,刘寅东.船体结构虚拟设计平台的实现系统仿真学报[J].2006,18(10):2761-2766
    [154]鲁桂荣.半潜式平台钻井系统优化布置关键技术研究[D].东营:中国石油大学(华东),2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700