有限元轮轨滚动接触理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前世界铁路正朝着高速和重载方向发展,随之而来的列车牵引和制动对轮轨的黏着的控制与利用的要求也越来越高,而且轮轨磨耗、滚动接触疲劳、脱轨和噪声等问题越来越严重,其解决与否直接影响铁路的快速发展。这些问题的研究涉及到许多学科,但都必须以轮轨滚动接触理论研究为基础。
     轮轨滚动接触理论是研究列车运动时,轮轨相对运动状态和接触斑上作用力的关系。本文第2章详细讨论了目前常用于车辆动力学研究中的几个经典基于Hertz理论的轮轨滚动接触模型,以及Kalker于20世纪90年代初完成的三维弹性体非Hertz滚动接触理论。Kalker的三维弹性体非Hertz滚动接触理论至今未突破弹性半空间假设限制,无法对复杂的轮轨作用问题作进一步的研究。大量的工程应用已经充分证明有限元法是解决轮轨滚动接触问题的先进的、行之有效的方法。
     本文应用基于Lagrangian网格的有限元接触理论和基于ALE的稳态滚动接触有限元理论分别建立了三维轮轨瞬态滚动接触有限元模型和三维接触稳态滚动接触有限元模型。在基于ALE三维接触稳态滚动接触有限元模型中,通过Lagrange乘子法处理切向接触约束,可以精确地计算接触斑的黏着特性。在三维瞬态轮轨滚动接触分析中,首次联合使用有限元隐式和显式求解方法模拟轮轨瞬态滚动接触过程,使轮轨滚动瞬态计算在很短的时间内就能得到稳定解。这些模型不但可以考虑材料、几何和接触非线性问题,还可以考虑车轮滚动速度、轮轨的实际几何形态,以及惯性力的影响。这些模型突破了经典轮轨滚动接触理论Hertz接触条件和弹性半空间假设的局限性,使轮轨滚动接触问题真正的变成一个动力问题。
     本文用基于ALE的稳态轮轨滚动接触的三维有限元模型对单轮对在轨道上稳态滚动时的接触状态进行了分析;应用Kalker三维弹性体非Hertz滚动接触理论也对单轮对在轨道上滚动接触蠕滑力进行了分析;并对两种轮轨滚动接触模型的计算结果进行对比分析。
     本文在基于ALE的稳态轮轨滚动接触有限元模型中,分别采用Lagrange乘子法和罚函数法处理切向接触约束,通过这些模型分析轮轨接触表面在干燥条件下的轮轨黏滑特性曲线。在基于罚函数法处理切向接触约束的ALE的稳态轮轨滚动接触有限元模型中通过引入粗糙度平顺摩擦响应,讨论不同的滑动容差对轮轨黏滑特性曲线的影响。
     本文提出基于三维瞬态有限元模型的轮轨形面磨耗的数值预测方法,在轮轨磨耗数值模拟得以实现的重要技术环节上,推导了适用于有限元模型的基于微面积的Archard磨损模型的积分形式,实现了用Laplace网格光滑技术对车轮踏面和轨头内部网格的光滑化处理技术,用该方法数值模拟日本铁道综合技术研究所(RTRI)的双轮盘式轮轨磨耗试验台的轮轨磨耗试验过程,对预测结果和试验结果进行了对比分析。提出基于ALE稳态轮轨滚动接触的三维有限元模型建立轮轨形面磨耗的数值预测方法,在该方法中应用车辆系统动力学与有限元的联合求解,可以得到相对准确的载荷工况,应用该方法对重载车辆通过小曲线时的车轮磨损进行预测。
The development tendency of the railway construction in the world today is serving high speed trains and carrying heavy load. With the development some problems of the wheel/rail performance arises, and the requirement of the train traction for the adhesion of wheel/rail will become more and more strict, and wheel/rail wear, rolling contact fatigue, derailment and noise will become more and more serious. The solution to the problems will have direct effects on the railway development. Although the investigations in the problem are concerned with many disciplines, they are based on the theory of wheel/rail rolling contact.
     The theory of wheel/rail rolling contact is used to study the statement of wheel/rail relative motion and contact force on contact patch as a train running. Chapter 2 gives detailed derivation of a few typical theoretical models of rolling contact with Hertzian form, which are widely used in the dynamical analysis of railway vehicle at present. And the chapter gives Kalker’s theory of three-dimensional elastic bodies in rolling contact with non-Hertzian form, which was completed by the 1990s. But Kalker’s theory has not broken the limit of elastic half space assumption, which can not be used to make further investigation in the problem of complicated wheel/rail reaction.
     Lots of engineering applications demonstrate that the finite element method (FEM) is an advanced and efficient method in solving wheel/rail rolling contact problems. In this paper, a wheel/rail rolling contact finite element model based on Arbitrary Lagrangian Eulerian(ALE) is established and applied to the wheel/rail steady state rolling contact analysis. The adhesion condition of no shear slip velocity is applied by Lagrange multiplier method in the ALE contact weak form, by which method the adhesive character on contact patch is accurately calculated. A three-dimensional wheel/rail transient rolling contact FEM model based on Lagrangian FEM is established and used in the simulation of wheel/rail dynamic rolling contact process. The implicit and explicit FEM have been coupled to simulate wheel/rail rolling contact process. By these methods, stabile results are obtained in short time for the wheel/rail rolling contact. The nonlinear material constitutive model, nonlinear contact shape, rolling velocity of the wheel and inertia force are considered in the models. These methods have broken the limit of Hertz contact conditions and elastic half space assumption, and the methods make the wheel/rail rolling contact problems really become into a dynamic problem.
     In this paper, the wheel/rail rolling contact FEM model based on ALE FEM is applied to analyse a wheelset steady state rolling contact on a rail. The contact stress、friction shear stress and relate slip velocity in the contact patch are analyzed by the method. Kalker’s theory of three-dimensional elastic bodies in rolling contact with non-Hertzian form is applied to analyse a wheelset rolling contact on a rail. The numerical results of the two methods are compared.
     In this paper, the adhesion condition of no shear slip velocity is applied by Lagrange multiplier method in the ALE steady state rolling contact FEM model. The model is used to analyse the creep force characteristic curve in dry friction condition. The adhesion condition of no shear slip velocity is applied by penalty method in the ALE steady state rolling contact FEM model. In this model, penalty method may be thought of as a regularization of the contact interface condition, and the regularization can smooth Coulomb fiction by importing coarseness. Effect of slip tolerate on the creep force characteristic curve is discussed.
     A wheel/rail profile wear prediction methodology based on three-dimensional transient wheel/rail rolling contact is presented. The wear model and adaptive mesh adjustment technique are important techniques for numerical method of wheel/rail wear. The integral form of Archard wear model is obtained, which is based on tiny area and is suited to FEM. Laplacian smoothing with area weights is used to smooth the meshes of wheel and rail. The wear method is applied to the wheel/rail disc test about the wear of flange and gauge. The simulation results are compared with measurements of Laboratory wear test and verify the effectiveness of wear prediction methodology. Based on the wheel/rail steady state rolling contact analysis, a wheel profile wear prediction methodology is developed and applied to the wheel wear when the heavy haul train passes in curved track with the small radius. In the loop of the prediction methodology, the vehicle dynamics model is built by the ADAMS software and the forces of the bearing boxes from the vehicle system dynamics model are loaded on the model of three-dimensional nonlinear finite element steady state analysis for wheelset rolling contact process.
引文
[1]沈志云.关于高速铁路及高速列车的研究[J].振动、测试与诊断, 1998, 18(1): 1-7
    [2] Hertz H.über die Berührung fester elastischer K?rper[J], Journal für die reine und angewandte. Mathematik 92, 1881,156-171
    [3] MycxeлишвилиНИ.数学弹性力学中的几个基本问题(中译本)[M].科学出版社,1958
    [4] MycxeлишвилиНИ.奇异积分方程(中译本)[M].上海科技出版社,1966
    [5] Gladwell G M L.经典弹性理论中的接触问题(中译本)[M].北京理工大学出版社,1991
    [6] Johnson K L. Contact Mechanics[M]. Cambridge:Cambridge University Press,1985
    [7] Kikuchi N,Oden J T. Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Elements[J]. Philadelphia: SIAM studies in Applied Mathematics,Philadelphia,1988
    [8] Kalker J J. Three-Dimensional Elastic Bodies in Rolling Contact[M]. Kluwer Academic Publishers, Dor-drecht,1990
    [9] Carter F W. On the Action of a Locomotve Driving Wheel [J], Proc. R. Soc. London. A, 1926 ,112:115~157
    [10] Fromm H. Berechnung des Schlupfes helm Rollen deformierbarer Scheibem [J]. Zeitschrift fur angewandte Mathe- matik und Mechanik, 1927,7: 27-58
    [11] Johnson K L. The effect of spin upon the rolling motion of an elastic sphere upon a plane[J]. Journal of Applied Mechanics, 1964, 25: 332-338
    [12] Johnson K L. The effect of a tangential contact force upon the rolling motion of an elastic sphere on a plane[J]. Journal of Applied Mechanics, 1958, 25: 339-346
    [13] Vermeulen J K, Johnson K L. Contact of non-spherical bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964,31: 338-340
    [14] Kalker J J. On the rolling contact of two elastic bodies in the presence of dry friction[D]. Delft University, The Netherlands, 1967
    [15] Kalker J J. Simplified theory of rolling contact. Delft Progress Report 1, Delft University Press, The Netherlands. 1973. 1-10
    [16] Kalker J J. A fast algorithm for the simplified theory of rolling contact[J]. VehicleSystem Dynamics, 1982, 11:1-13
    [17] Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep-force models for rail vehicles dynamic analysis. In: Hedrick J K, ed. Proc sib IAVSD Symp. Cambridge, MA, 1984. 591-605
    [18] Kalker J J. The computation of three-dimensional rolling contact with dry friction [J]. International Journal fornumerical methods in engineering, 1979, 14: 1293-1807
    [19] Kalker J J. Variation principles of contact elastostatics[J]. J Inst. Maths Applies, 1977, 20: 199-219
    [20] Jin X S, Zhang W H, Hu L J. Effect of lateral motion on the creep forces in wheel/rail rolling contact[J]. Journalof Southwest Jiaotong University. 1997, 5: 44-54
    [21]金学松.轮对/轨道滚动接触蠕滑率/力分析[J].铁道学报,1998,20:38-44
    [22] Piotroswki J, Kalker J J. The elastic cross-influence between two Qausi-Hertzian contact zones[J]. VSD, 1988, 17:337-355
    [23] Klaus Knothe,杨春雷,金学松.轮轨接触力学的最新进展[J].国外铁道车辆,2002,39(5):27-33
    [24]陈厚嫦.高速轮轨滚动接触问题的研究[D].北京:铁道科学研究学院, 1997
    [25]孙琼.高速铁路轮轨粘滑特性及其试验研究[D].北京:铁道科学研究学院, 1998
    [26]金学松.轮轨蠕滑理论及其试验研究[D].成都:西南交通大学牵引动力国家重点试验室, 1999
    [27] Li Z L. wheel-rail rolling contact and its application to wear simulation[D] ,TU Delft,2002
    [28] Telliskivi T, Olofsson U. Contact Mechanics Analysis of Measured Wheel-Rail Proiles Using the Finite Element Method[J], Journal of Rail and Rapid Transit, 2001,15(1):65-72.
    [29]钟万勰,张洪武,吴承伟.参变量变分原理及其在工程中的应用[M].北京:科学出版社,1997
    [30]张军,吴昌华.轮轨接触问题的弹塑性分析[J].铁道学报. 2000,22(3):16-21.
    [31]张军.基于有限元法的轮轨蠕滑理论研究[D]大连:大连理工大学, 2003
    [32] NACKENHORST U. Zur Berechnung schnell rollender Reifen mit der Finite Element Methode[M]. Dissertation, Institut für Mechanik, Universit?t der Bundeswehr Hamburg, 1992.
    [33] Nackenhorst U. The ALE-formulation of Bodies in Rolling Contact Theoretical Foundations and Finite Element Approach[J]. Computer Methods in Applied Mechanics Engineering,2004,193: 4299-4322.
    [34] Damme S, Nackenhorst U, Wetzel A, ect. On the Numerical Analysis of the Wheel-rail System in Rolling Contact[A].Popp K,Schiehlen W.System Dynamics and Long-term Behavior of Railway Vehicles,Track and Subgrade[C]. Berlin:Springer, 2003, 155-174.
    [35]陈扬枝,杨东亮,马冀,等.轮轨滚滑磨损试验研究[J] .大连铁道学院学报, 1995, 16 (1): 47-50.
    [36]张斌,卢观健,付秀琴,等.铁路车轮、轮箍失效分析及伤损图谱[M].北京:中国铁道出版社, 2002: 29.
    [37]马腾,朱桂兰.热处理钢轨的轨/轮匹配关系[J].研究物理测试, 1999, (5): 1-3
    [38]刘启跃,霍庶辉.我国铁道钢轨波磨情况调查[J].铁道建筑,1990,(9):21-23
    [39] Liu Q Y, Jin X S, Wang W X, Zhou Z R. An investigation of rail corrugation in China, in: Proceedings of the Fifth Contact Mechanics and Wear of Rail/wheel systems, Tokyo,Japan,2000,89-95
    [40]温泽峰.钢轨波浪形磨损研究[D].成都:西南交通大学牵引动力国家重点试验室, 2006
    [41] Hahn K. Fortschritte bei der Kraftschluβausnutjung für die Hochgeschwindigkeitu. Schwerlasttraction. ETR 1993, H.1/2
    [42] Busch M. Radschlupfregelung für Drehstro Mlokomotiven. EB 1993, Nr.5
    [43] Lang W, Roth,G. Optimale Kraftschluβausnutjung bei Hoch-Leistungsschienenfahrjeugen. ETR 1993, H.1/2
    [44] Schwarze H. Geschwindigkeitsabh?ngiger Kraftschluss hochbelasteter Rad-Schiene- Kontakte, Elektrische Bahem[J].2001(99),No.5,203-218
    [45] Polach O. Creep forces in simulations of traction vehicles running on adhesion limit[J]. Wear, 2005,258: 992-1000
    [46] OHYAMA T. Adhesion characteristics of wheel/rail system and its control at high speeds[J]. QR of RTRI, 1992, 33(1): 19- 30
    [47] ZHANG Weihua, CHEN Jianzheng, WU Xuejie, JIN Xuesong. Wheel/rail adhesion and analysis by using full scale roller rig[J]. Wear, 2002, 253:82-88.
    [48] Zhang W, Chen J, Wu X, Jin X. Wheel/rail adhesion and analysis by using full scale roller rig[J]. Wear, 2002,253:82-88.
    [49] Kragelski I V, Dobyˇcin M N, Kombalov V S. Friction and Wear:Calculation Methods [M], Pergamon Press, Oxford, 1982.
    [50] Akira Matsumoto, Yasuhiro Sato, Hiroyuki Ono. Creep force characteristics between rail and wheel on scaled model [J]. Wear, 2002,253:199-203
    [51]陈泽深.轮轨间黏着机理再认识[J].铁道机车车辆,1995,1:19-37
    [52] Lenkiewicz W. The sliding friction process-effect of external vibration[J].Wear, 1969, (13):99-108
    [53]龚积球,谭立成,俞铁峰.轮轨磨损.轮轨相互作用丛书第一分册[M].北京:铁道部科学研究院,1997.
    [54]陈颜堂,刘东雨,方鸿生,白秉哲.钢轨钢的滚动接触疲劳[J].钢铁研究学报,2000, 12( 5):50-53
    [55]郑伟生,刘会英.关于车轮擦伤剥离的若干问题与对策[J].铁道车辆. 2001, 39( 2):19-22
    [56]周清跃,刘丰收,朱梅,安涛.轮轨关系中的硬度匹配研究[J].中国铁道科学. 2006, 27( 5): 35-41
    [57] BOGDANSKI S, OLZAK M, STUPNICKI J. Numerical stress analysis of rail rolling contact fatigue cracks[J]. Wear, 1996, 191: 14-24.
    [58]沈志云,张卫华,金学松,曾京,张立民.轮轨接触力学研究的最新进展[J].中国铁道科学, 2001,22(2): 1-14
    [59] Hodgson W H. Rail metallurgy and processing [A]. Proceeding of the International conference on Rail Quality and Maintenance for Modern Railway Operation[C]. The Netherlands:June 1992,29-39
    [60] Fhilippov G, Sinelnikov V.Metallurgical processes of rail steel production and properties of railroad rails [A]. Proceeding of IHHA' 99 [C]. Moscow: Russia, 1999, 255-257
    [61] Ueda M,Uchino K, Kageyama H, et al. Development of bainitic steel rail with excellent surface damage resistance[A]. Proceeding of IHHA' 99 [C]. Moscow: Russia,1999, 259-266
    [62] Mitao S, Yokoyama H, Yamamoto S. High strength bainitic steel rails for heavy haul railways with superior damage resistance [A]. Proceeding of IHHA' 99 [C].Moscow: Russia,1999, 489-496
    [63] An T. Micro-alloying of passenger train wheel steel[A].Proceeding of the 12th International Congress on Wheelset[C]. China: Sept.21 to 25, 1998,39-43
    [64] Piotrowski J. Contact laoding of high rail in curves physical simulation method toinvestigate shelling[J].VSD, 1988,17:57-79
    [65] European Rail Research Institute. Laboratory tests concerning the rolling contact fatigue behavior of UIC 860 grade 900A rail steel and of head hardened rails (HB340 and 370)[R]. ERRI Committee D173 Rep.,Utrecht. The Netherlands, 1993
    [66] Ishida M, Abe N. Experimental study on rolling contact fatigue from the aspect of residual stress [J]. Wear,1996,191: 65-71
    [67] Smallwood R, Sinclair J C, Sawley K J. An optimization technique to minimize rail contact stress[J]. Wear,1991,144:373-384
    [68] Huimin Wu, Elkins J, Newton S. Designing wheel profiles for optimum wear performance[A]. Proceeding of the 12th International Congress on Wheelset [C].China: Sept.21 to 25, 1998,172-180
    [69] Matsumoto A, Sato Y, et al. Compatibility of curving performance and hunting stability of rail bogie [J].Vehicle System Dynamics Supplement, 1999,33: 740-748
    [70]王卫东,曾宇清.货物列车空车脱轨现象的初步分析[J].铁道机车车辆, 2000, (2): 1-6.
    [71]金学松,刘启跃.轮轨摩擦学[M].北京,铁道出版社, 2004
    [72]金学松,张雪珊,张剑,孙丽萍,王生武.轮轨关系研究中的力学问题[J].机械强度,2005,27(4):408-418
    [73] Nadal M J. Theorie de stabilit'e des locomotives, part 2, Mouvement de lacet[J]. Annales des Mines, 1896, 10: 232-255.
    [74] YOKOSE K. A theory of the derailment of wheelset. JNR Quart. Rep., 1996, 7(3): 80-84.
    [75] SWEET L M, KARMAL A. Evaluation of time-duration dependent wheel load criteria for wheel climb derailment. ASME Journal of Dynamic Systems[J], Measurement and Control, 1981, 103: 219-227.
    [76] SWEET L M. Theory and measurement of derailment quotients[C]. Proc. 8th IAVSD, Symp. Cambridge, MA. 1984, 633- 644.
    [77] KARMEL A. Analytical and experimental studies of railway vehicle. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1981.
    [78]曾宇清,王卫东,舒兴高,于卫东.车辆脱轨安全评判的动态限度[J] .中国铁道科学,1999,20(4):70-77
    [79] FRANCESCO BRAGHIN, STEFANO BRUNI and GIORGIO DIANA. Experimental and numerical investigation on the derailment of a railway wheelset with solid axle. Vehicle System Dynamics. 2006, 44( 4): 305-325
    [80]曾庆元,向俊,娄平,周智辉.列车脱轨的力学机理与防止脱轨理论[J] .铁道科学与工程学报,2004,1(1):19-31
    [81]向俊,周智辉,曾庆元.列车脱轨研究最新进展[J] .铁道科学与工程学,2005,2(5):1-8
    [82] Kalker J J, Périard F. Wheel-rail noise: impact, random, corrugation and tonal noise[J]. Wear, 1996, 191: 184-187
    [83] Gautier P E, Vincent N, Thompson D J, H?lzl G. Railway wheel optimization[]. Leuven: Proceeding of Inter Noise,1993,1455-1458
    [84] Jones C J C, Thompson D J. Rolling noise generated by wheels with visco-elastic layers[J]. Journal of Sound and Vibration,2000,231(3):779-790
    [85] Vincent N,Bouvet P,Thompson D J,Gautier P E. Theoretical optimization of track components to reduce rolling noise[J]. Journal of Sound and Vibration,1996(193):161-171
    [86]陈刚,焦可成,宗怡.提速列车轮轨噪声降噪技术的研究[J].噪声与振动控制, 2007, (1):68-73
    [87] Jones C J C. Reduction of noise and ground vibration from freight trains. Meeh.E. International Conference on Better Journey Times-Better Business, Birmingham:1996.87-97
    [88]雷晓燕,刘林芽,圣小珍.轮轨噪声预测与技制方法综述[J].城市轨道交通研究,2005,(1): 45-49
    [89]金学松,沈志云.轮轨滚动接触疲劳研究的最新进展[J].铁道学报, 2001, 23(2): 92-108
    [90]金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展, 2001, 31( 1): 33-46
    [91] Haines J, Ollerton E. Contact stress distribution on elliptical contact surfaces subjected to radial and tangential forces[J]. Proceeding of the Institution of Mechanical engineers,1963,199:95-114
    [92]王福天.车辆系统动力学[M].中国铁道出版社,北京, 1994
    [93]詹斐生.机车动力学[M].中国铁道出版社,北京, 1990
    [94] Le The Hung. Normal- und Tangentialspannungsberechnung beim rollenden Kontakt für Rotationsk?rper mit nichtelliptischen Kontaktfl?chen. Fortschrittberichte VDI, Reihe 12:Verkehrstechnik/Fahrzeugtechnik, No.87
    [95] Kalker J J. Computation Contact Mechanics of the Wheel-rail System[M]. Rail Quality and Maintenance in Moden Railway Openration. Dordrecht /Boston /London : Kluwer Academic Publisher, 1993
    [96] Kalker J J. Survey of wheel-rail rolling contact theory Vehicle System Dynamics,1979,5:317-358
    [97]陈泽深,王成国.铁道车辆动力学与控制[M].中国铁道出版社,北京,2004
    [98]王勖成.有限单元法[M] .清华大学出版社,2003年7月
    [99] Ted B, Liu Wingkam,Brian M. Nonlinear Finite Elements for Continua and Structures[M]. New York:John Wiley & Sons Ltd, 2000.
    [100] Hibbitt D,Karlsson B,Sorensen P. ABAQUS Theoretical Manual[M]. USA:Hibbitt, Karlsson & Sorensen Inc,1997.
    [101] Wrigger P. Computational Contact Mechanics[M]. England: John Wiley & Sons Ltd, 2002.
    [102] Luenberger D G. Linear and Nonlinear Programming. Addison-Wesley, Reading, Mass, Second edition, 1984
    [103] Newmark N M. A Method of Computation for Structural Dynamica[J].Journal of Engineering Mechanics Division, 1959,85: 67-94.
    [104]常崇义,王成国,马大炜,张波.2万t组合列车纵向力计算研究[J].铁道学报. 2006, 28(2): 89-94
    [105] Padovan J, Zeid I. Finite element analysis of steadily moving contact fields[J], Computers and Structures, 1984,2:111-200
    [106] Oden J T, Lin T L. On the general rolling contact problem for finite deformations of a viscoelastic cylinder[J]. Computer Methods in Applied Mechanics and Engineering, 1986(52):297-367
    [107] Tallec P L ,Rahier C. Numerical methods of steady rolling for non-linear viscoelastic structures in finite deformations[J]. International Journal for Numerical Methods in Engineering,1994,37:1159-1186
    [108] Hu G D,Wriggers P. On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations[J]. Computer Methods in Applied Mechanics and Engineering, 2002,191:1333-1348
    [109] Nackenhorst U,Zastrau B. Rolling contact of elastic bodies-Basic aspects of a finite element approach . In: Meskouris K.,Wittek U.:Aspects in Modern Computational Structural analysis,1997:385-400
    [110] Willner P. Ein statistisches Modell für den Kontakt metallischer K?rper. Dissertation, Institut für Mechanik,Universit?t der Bundeswehr Hamburg,1995
    [111] Knothe K,Theiler A. Rauhigkeitsmeβdaten betriebsbeanspruchterSchienen[M].Interner Bericht der Bericht der Arbeitsgruppe Gleis. Technische Universit?t Berlin,1997
    [112] Sackleton P, Iwnicki S. Comparison of wheel-rail contact codes for railway vehicle simulation: an introduction to the Menchester Contact Bechmark and initial results[J]. Vehicle System Dynamics, 2008,46(1):129-149
    [113] Garg V K, Duakkipatti R. V. Dynamics of railway vehicle systems[M]. Orland: Academic Press,1984
    [114]常崇义,王成国.基于ALE有限元的轮轨稳态滚动接触分析[J].中国铁道科学, 2009, 30(2): 86-93
    [115] Prichard C. Traction between rolling steel surfaces: a survey of railway and laboratory experiments[C]. Friction and traction, 7th Leeds-Lyon Sym. On Tribology, Leeds, 1980, P197
    [116] Lange M, Groβ-Thebing A, Knothe K,Stiebler M. Simulating the traction drive of a locomotive in the development of an adhesion controller[C], the dynamics of vehicles on road and on tracks, Proc. of the 14th IAVSD Sym., Ann Arbor, Michigan, USA, 1995
    [117] Lange M, Groβ-Thebing A, Stiebler M. Simulation model of a locomotive traction drive for the development of a non-linearity observer[C], China-Germany Sym. On high speed railway vehicle track system dynamics, p.50,ED Q.R.He & K.Knothe, Bijing, China, 1996
    [118]裴有福.高速铁路轮轨黏着机理的研究[D].北京:清华大学,1996
    [119] Ohyama T. Fundamental adhesion phenomena between wheel and rail at high speeds-some experiments with a high speed rolling test machine under water[J]. QR of RTRI, 1985, 26(4), 135-140
    [120] Ohyama T. Some basic studied on the influence of surface contamination on adhesion force between wheel and rail high speeds[J]. QR of RTRI, 1989, 30(3), 127-135
    [121] Ohyama T. Adhesion at high speeds, its characteristics, its improvement and same related problems[J]. Japanese Railway Engineering, 1989,100:19-23
    [122]张卫华.机车车辆动态模拟[M].中国铁道出版社,2006
    [123] Weihua Zhang, Jianzheng Chen, Xuejie Wu, Xuesong Jin. Wheel/rail adhesion and analysis by using full scale roller rig[J]. Wear, 2002,253:82-88
    [124]КpareЛЪСКИЙИ.Β.摩擦磨损计算原理[M].机械工业出版社,1982
    [125] Bochet B. Nouvelles Recherches Experimentales Sur le Frottement De Glissement[J]. Annales des Mines,1981,N38,P27
    [126]裴有福,金元生,温诗铸.用微观方法计算摩擦学宏观参数[J].材料保护, 1995, 28(11B): 61-62
    [127] Popov V L, Psakhie S G, Shilko E V. Dmitriev A.I.,et al. Friction coefficient in rail-wheel contacts as a function of material and loading parameters[J]. Physical Mesomechanics,2002,5 (3): 17-24
    [128] Bucher F, Dmitriev A I, Ertz M, Knothe K, Popov V L, Multiscale simulation of dry friction in wheel/rail contact[J]. Wear,2006, 261: 874-884
    [129]习年生,周清跃.大秦线车线2005铺设钢轨的损伤成因及对策研究.中国铁道科学研究院研究报告,院总编号:TY2193,2007.1
    [130] Braghin F, Bruni S, Resta F. Wear of Railway Wheel Profiles: A Comparison Between Experimental Results and A Mathematical Model[J]. Vehicle System Dynamics,2002,37 (Suppl):478-489.
    [131] Jin Yin. A Study on Wear Mechanism of High-Speed wheel/Rail[C] //China-Korea- Japan Railway Research Technical Meeting. Beijing, China:China Academy of Railway Sciences,2006,20-28
    [132] Fletcher D I, Beynon J H, Development of a machine for closely controlled rolling contact fatigue and wear testing[J], J. Test. Eval. 2000, 28 :267-275
    [133] Kalker J J. Simulation of the Development of a Railway Wheel Profile Trough Wear[J]. Wear,1991, 150(10):355-365.
    [134] Braghin F, Lewis R. Dwyer-Joyce R S, et al. A Mathematical Model to Predict Railway Wheel Profile Evolution Due to Wear[J]. Wear,2006,261(12):1253-1264.
    [135] Zobory I. Prediction of Wheel/Rail Profile Wear[J]. Vehicle System Dynamics, 1997, 28 (6):221-259.
    [136] Jendel T, Berg M. Prediction of Wheel Profile Wear[J]. Vehicle System Dynamics,2002,37 (Suppl):502-513.
    [137] Tomas J. Prediction of Wheel Profile Wear-Comparisons with Field Measurements[J]. Wear,2002,253(1):89-99.
    [138] Pearce T G, Sherratt N D. Prediction of wheel profile wear[J], Wear, 1991,144: 343-351.
    [139] Linder C, Brauchli H. Prediction of Wheel Wear[C]. Proceedings of the Second Mini Conference on Contact Mechanics and Wear of Wheel/Rail Systems, Budapest, 1996, 215-223.
    [140] Li Z L, Kalker J J. Simulation of Severe Wheel–Rail Wear[C]. Proceedings of the Sixth International Conference on Computer Aided Design, Manufacture and Operation in the Railway and Other Advanced Mass Transit Systems, Southampton, 1998, Computational Mechanics Publications, 393-402.
    [141]温诗铸,黄平.摩擦学原理[M].清华大学出版社,第三版,2008.9
    [142]刘家浚,材料磨损原理及其耐磨性[M].清华大学出版社,1993.11
    [143] Archard J F. Contact and Rubbing of Flat Surfaces[J]. Journal of Applied Physics,1953,24 (8):918-988.
    [144] Telliskivi T,Olofsson U. Wear and Plastic Deformation of Two Rail Steels-full Scale Test and Laboratory Study[C]. 2nd World Tribology Congress, Vienna, 2001
    [145] Hienscn Martin M, Nielsen J C O, Verherjen E. Rail Corrugation in the Netherlands-measurements and Simulations[J]. Wear,2002,253(l-2):140-149
    [146] Bolton P J, Clayton P, McEwan I J. Rolling-sliding wear damage in rail and tyre steels[J]. Wear, 1987,120:145-165
    [147] Clayton P. Tribological aspects of wheel-rail contact: a review of recent experimental research[J].Wear, 1996, 191(l-2):170-183
    [148] Oden J T, Martins J A C. Models and Computational Methods for Dynamic Friction Phenomena[J]. Computer Methods in Applied Mechanics and Engineering,1985,52 (5):527-634.
    [149] Braghin F, Bruni S, Resta F. Wear of Railway Wheel Profiles: A Comparison Between Experimental Results and A Mathematical Model[J]. Vehicle System Dynamics,2002,37 (Suppl):478-489.
    [150] Kalpakjian Serope, Schmid Steven R. Manufacturing Processes for Engineering Materials[M]. New Jersey:Upper Saddle River, 2002.
    [151] Barbarino G. A Fast and Reliable Mathematical Model for the Prediction of Railway Wheel Wear[D]. Politecnico di Milano, 2004.
    [152] Chang Chongyi, Wang Chengguo,Jin Ying. Study on Numerical Method to Predict Wheel/rail Profile Evolution due to Wear[C]. the 7th China-Korea- Japan Railway Research Technical Meeting. Uiwang, Korea:Korea Railroad Research Institute,2007,75-85
    [153]常崇义,王成国,金鹰.基于三维动态有限元模型的轮轨磨耗数值分析[J].中国铁道科学, 2008, 29(4): 87-95
    [154] Chang Chongyi, Wang Chengguo,Chen Bo,Li Lan. Study on Numerical Analysis Method to Wheel/Rail Wear of Heavy Haul Train[C]. the 9th International Heavy Haul Conference. Shanghai, China:China Railway Publishing House, 2009,837-84
    [155] McEwen E. Stress in elastic cylinders in contact along a generatrix[J]. Philosophical Magazine,1949,40(454) :54-459
    [156] GB 5599-85.铁道车辆动力学性能评定和试验鉴定规范[S].中华人民共和国国家标准,1985
    [157]铁建设[2008]7号.客运专线铁路工程竣工验收动态检测指导意见[S].中华人民共和国行业标准,1985
    [158] TB/T 449-2003.机车车辆车轮轮缘踏面外形[S].中华人民共和国铁道行业标准,2003
    [159] TB/T2344-2003. 43kg/m~75kg/m热轧钢轨订货技术条件[S].中华人民共和国铁道行业标准,2003
    [160] JISE1101-1993.普通钢轨[S].日本工业标准, 1993
    [161] prEN13674-1.铁路轨道用重轨[S].欧洲标准, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700