炭石墨非线性渗流规律研究及浸渍锑实验分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
炭石墨具有良好的自润滑性、耐高温、耐腐蚀、不需要油(脂)类润滑剂等优点,成为机械密封行业的热门材料。但炭石墨存在孔隙,气密性差,机械强度差,必须经过浸渍金属填充孔隙的强化处理。我国浸渍金属炭石墨材料相比国外水平差距很大,存在出口低端、进口高端产品的现象,其原因主要在于浸渍金属工艺落后和基础研究薄弱。本文研究流体在石墨多孔介质中的流动规律,属于炭石墨浸渍强化工艺的基础理论研究。
     论文以7组不同孔隙率的炭石墨材料为研究对象,水的单相饱和渗流实验表明,水的流动偏离达西定律,渗流曲线呈现非线性,流体在渗流过程中存在启动压力梯度,而且渗透率随着压力梯度的变化而变化。论文拟合了水的高精度非线性渗流方程,并从边界层的力学特性角度阐述了非线性项系数的物理意义。对水的非线性渗流规律通过雷诺数判据与FLUENT模拟两种方法进行了验证,结果与实验现象比较吻合。
     论文进行了炭石墨材料浸锑实验,根据雷诺数计算结果判断锑流动处于非线性状态。通过锑与水在流动过程中的雷诺数区间、受力分析的比较,判断锑在炭石墨多孔介质中的流动规律与水相同,因此可用水的非线性渗流方程形式描述。分析了浸锑炭石墨材料试样表观状态,针对浸渍工艺中存在的崩角、浸渍剂粘附以及浸不透现象,提出了改进浸渍的措施,并指出提高浸渍压力比延长保压时间更能有效改善浸渍材料的质量。
     本文将分形理论引入炭石墨(浸锑)材料孔隙结构分析中。压汞实验结果表明:炭石墨材料的主要孔隙直径约在1 ~3μm之间,呈正态分布;锑浸渍能够充填绝大部分孔隙,未被充填的小孔隙体积要大于大孔隙。炭石墨多孔介质具有双重分形特征,分形拐点约在φ= 1μm处,双重分形的原因在于大孔隙(φ> 1μm)和小孔隙(φ< 1μm)形成的机理不同。浸渍主要发生在大孔隙区间,因此大孔隙的特性是影响浸渍材料质量的重要因素。原料配方是影响大孔隙的主要因素,也是提高浸渍产品质量首要保证。
     建立了炭石墨材料孔隙率、渗透率与分形维数及孔隙结构关系模型并进行了实验验证。浸锑材料的摩擦磨损性能实验表明,锑颗粒分形维数越小,摩擦学性能越好,并从分形维数本质上给出解释,认为提高炭石墨材料孔隙的均匀性是改善浸锑材料质量的重要手段。
     根据锑的流动规律、浸渍材料尺寸制定合适的浸渍工艺参数,可改变生产过程中的盲浸现状,提高炭石墨浸金属产品的质量。
Carbon-graphite possesses the advantages of good-lubricity, high-temperature tolerance, corrosion resistance and the elimination of oil lubricant, and thus has become the popular material for mechanical seal. However, there also exist voids in carbon-graphite, which lead to its poor air tightness and mechanical strength, so it is necessary to have the process of infiltration strengthening for carbon-graphite. There is a huge gap between China and foreign countries in carbon-graphite impregnation metals, therefore, our country exports low-end raw materials, whereas import high-end impregnation products. The reasons for this problems lie in our laggard technology in the impregnating metals and the scant fundamental research. This dissertation is designed to study the law of fluids flow within the porous medium of graphite, and is a basic theoretical study on the technology of infiltration strengthening of carbon-graphite.
     The objects of the study are 7 groups of carbon-graphite with different porosities. The results of the experiment of the seepage flow of single-phase water in the saturated carbon-graphite indicate that the flow of water deviates from Darcy’s law, the flow curve is nonlinear, the fluid has starting pressure gradient in the osmotic process and that the permeability changes with the change of the pressure gradient. The high-precision nonlinear seepage equations are fitted and the physical meaning of the coefficient of the nonlinear term is discussed from the aspect of the mechanical properties of the boundary layer. Besides, the nonlinear seepage law of water is verified through Reynolds number criterion and FLUEN simulation, and it agrees well with the experimental phenomena.
     The antimony impregnation experiment of carbon-graphite is conducted, and it is found that the antimony flow is nonlinear in accordance with the Reynolds number. By comparison of the Reynolds number intervals and force analysis between the antonym flow and water flow, it can be concluded that the flow law of antonym in carbon-graphite is the same as that of water, and thus can be expressed as the nonlinear seepage equation of water. In addition, based on the analysis of the sample manifestation of carbon-graphite materials, some measures are put forward to solve the problems of corner-chipping, the adhesion of impregnate and the phenomenon of non-full impregnation, and it is pointed out that raising the impregnation pressure works better in improving the quality of impregnation materials than lengthening dwell time.
     The analysis of pressured-mercury test indicates that the major pore diameters of carbon-graphite is in the range of 1 ~3μmand displays normal distribution, impregnated antimony can fill most of the pores, and the volumes of those small pores which are not filled are larger than those of the bigger ones. In accordance with the statistics of the pressured-mercury test, the fractal dimensions are calculated, and it reveals the character of dual fractal of the carbon-graphite porous media, and the fractal inflection point is at the pointφ= 1μm. The reason of dual fractal is that the formation mechanisms of the big (φ> 1μm)and small (φ< 1μm)pores are different. The impregnation mainly takes place in the big pore interval (φ= 1~3μm), thus the properties of the big pore are the key factors affecting the quality of impregnation materials.
     The model of the relation between the porosity, permeability, fractal dimension and pore structure is established and verified by experiment. The friction and wear experiment on antimony impregnated graphite indicates that the lower the fractal dimension of antimony particle, the better the tribological properties are. Moreover, this dissertation gives the explanation on the nature of fractal dimension and concludes that the improvement of the homogeneity of the pores of impregnation materials is central to the enhancement of the quality of antimony impregnated graphite materials.
     Based on the flow law of antimony and in combination with the guidance of the size of impregnation materials and the betterment of the impregnation technique, the quality of antimony impregnated graphite metals can be improved by changing the blind impregnating in the production process.
引文
[1]雷广山.密封材料的性能对密封件寿命的影响[J].机械工程及自动化,2006,8:165-168.
    [2]胡亚非,王启立,刘颀等.石墨密封材料润滑膜形成规律及摩擦磨损研究[J].中国矿业大学学报,2010,3:223-226;
    [3]宋永忠,史景利,朗冬生,等.炭-炭复合材料浸渍-炭化工艺的研究[J].炭素技术, 2000(3):18-21.
    [4]钱湛芬.炭素工艺学[M].北京:冶金工业出版社,1996:6-8.
    [5]许斌,王金铎.炭材料生产技术600问[M].北京:冶金工业出版社,2006.
    [6]董综玉,陈匡民,王伟等.密封材料RC合金的摩擦磨损特性[J].流体机械,1999,27(3):3-5.
    [7]尤小勇.石墨浸渍呋喃树脂的研究[J].炭素技术.1996:2:10-11.
    [8]翁建新,吴大军,陈国华.环氧树脂/石墨微片复合导电材料的导电性[J].华侨大学学报(自然科学版).2004,10:379-382.
    [9]李晔,黄启忠,王林山.树脂浸渍法对炭/炭复合材料力学性能的影响[J].新型炭材料.2003,6:117-122.
    [10]唐铁滨,张爱民,陆学东.合成树脂浸渍含量对炭素机械密封材料性能的影响[J].炭素.2001(2):40-45.
    [11]龚季勤.树脂一石墨系材料性能的研究[J].炭素.1998(4):25-30.
    [12]夏立博,陈建,李春林,等.高强高密石墨材料的制备研究现状[J].炭素技术.2008(6):24-27.
    [13]阴强,李爱菊,孙康宁,等.酚醛树脂/石墨双极板复合材料的实验研究[J].人工晶体学报.2007(8):807-811.
    [14]冯勇祥.国外浸金属碳-石墨材料的发展概况[J].新型碳材料.1989(01):4-13.
    [15]邓祖柱.碳石墨材料浸渍巴氏合金及其在水介质中的应用[J].摩擦学学报.1987(3):168-170.
    [16]巴力学,徐成发,周序科等.浸银碳石墨材料的热物理及物理及力学性能[J].炭素.1998(02):16-21.
    [17]高积强,曹宝宏.显微结构对浸银石墨材料性能的影响[J].兵器材料科学与工程,1993,16(3):27-31.
    [18]周序科,徐红军,巴力学.浸银炭石墨复合材料的密封摩擦特性[J].新型炭材料,2001,16(1):33-39.
    [19]刘竞秀.炭素浸渍铝合金复合材料[J].润滑与密封.1983(2):40-42.
    [20]邓范君,陈文良,温建民.浸铝合金炭石墨制品变形原因探讨[J].炭素,1997(2):38-41.
    [21] Ellis D E, Mundim K C, Fuks D, et al. Interstitial carbon in copper: electronic and mechanical properties [J]. Philosophical Magazine B: Physics of Condensed Matter-Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79(10): 1615-1630.
    [22] Yeoh A, Persad C, Eliezer Z. Tribological characteristics of various copper carbon powder composites for use as sliding electrical contacts [C]. Proceedings of the ASM 1993 Materials Congress, Pittsburgh, Pennsylvania, 103-113.
    [23] Zweben C, Metal matrix composites for electronic packaging applications [J]. JOM, 1998, 50(6): 4.
    [24] Ronald L J, High thermal conductivity metal matrix composites [J]. SAE Paper, 1999(1): 1358.
    [25] Datta S K, Tewari S N. Copper alloy-impregnated carbon-carbon hybrid composites for electronic packaging applications [J]. Metal Mater Trans A Phys Metal Mater Sci, 1999, 30(1): 175-181.
    [26] Sandra M, Reaction layer formation at the gr/copper-cr alloy interface [J]. Metal Transactions A, 1993(24): 53-60.
    [27] Dorfman S, Fuks D, Suery M. Diffusivity of carbon in copper and silver-based composites [J]. JMaterSci, 1999(34): 77-81.
    [28]胡锐,李金山,毕晓勤等.石墨/铜基复合材料真空液相浸渗过程动力学研究[J].西北工业大学学报,2004,22(3):296-300.
    [29]邓祖柱.浸锑石墨的推广应用及发展前景[J].电碳,1994,(1):4-7.
    [30]Yudanov, N F Moukhin, V V Rozhkov. New family of graphite fluoroxides - dources for the generation of highly porous thermally expanded graphites for Li cells [J]. Journal of New Materials for Electrochemical Systems, 2003, 6(2): 103-118.
    [31]张新铭,彭鹏,王金灿.基于分形理论的石墨泡沫新材料导热系数[J].重庆大学学报,2004,(9):109-111.
    [32]于雪梅,卢泽生,饶河清.基于分形理论多孔质石墨渗透率的研究[J].机械工程学报,2006,(5):74-77.
    [33]张东辉,金峰,施明恒等.分形多孔介质中的热传导[J].应用科学学报,2003,(9):253-257;
    [34]陈永平,施明恒.基于分形理论的多孔介质导热系数研究[J].工程热物理学报,1999 (9):608-612;
    [35]陈永平,施明恒.基于分形理论的多孔介质渗透率的研究[J].清华大学学报(自然科学版),2000,Vol.40,No.12:94-97;
    [36]刘晓丽,梁冰,薛强.多孔介质渗透的分形描述[J].水科学进展,2003(11):769-773;
    [37]叶熙.聚合物溶液在多孔介质中的渗流特性研究[D].山东:中国石油大学(华东),2008。
    [38] J贝尔.多孔介质流体动力学[M].李竞生,陈崇希.北京:石油工业出版社,2001: 97,9-11;
    [39]Pascal J.P.,Pascal H..Pressure diffusion in unsteady non-Darcian flows through porous media[J].Eur.J.Mech.B/Fluids,1995,14(1):75-90;
    [40]Pascal J.P.,Pascal H..Non-Linear effects on some unsteady non-Darcian flows through porous media[J].Int.J.Non-Linearme chanics,1997,22(2):36-37;
    [41]Neale G..,Nader W..Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium[J].Chem Eng, 1974,52:475-478;
    [42]Vafai K.,Tine C.L..Boundary and Inertial Effects on Flow and Heat Transfer in Porous Media[J].Int.J.Heat Mass Transfer,1981,(24):27-34;
    [43]刘慈群,郭尚平.多重介质渗流研究进展[J].力学进展,1982,12(4):360-364;
    [44]Kaviany M..Principles of Heat Transfer in Porous Media[M].Springer-Verlag New York Inc,1991;
    [45]孔祥言,卢德唐,徐献芝,等.多孔介质中对流的研究[J].力学进展,1996,26(4):510-520;
    [46]Whitaker S..The role of the volume-averaged temperature in the analysis of non-isothermal, multiphase transport phenomena[J].Chem Eng Comm.1987,58:171-183;
    [47]李元香,康立山,陈毓屏.格子气自动机[M].北京:清华大学出版社,1994,1-40;
    [48]王克文,关继腾,范业活等.孔隙网络模型在渗流力学研究中的应用[J].力学进展,2005,8:353-360;
    [49]郭尚平.渗流力学几个方面的进展和建议[A].中国科学院渗流流体力学研究所.渗流力学进展[C].北京:石油工业出版社,1996.11-22.
    [50]张永祥,陈鸿汉多孔介质溶质运移动力学[M].北京:地震出版社,2001,11;
    [51]葛家理,宁正福,刘月田.现代油藏渗流力学原理[M].北京:石油工业出版社,2001;
    [52] Scheidegger A.E..多孔介质中的渗流物理[M].王鸿勋,张朝琛,孙书琛.北京:石油工业出版社,1982;
    [53]杨松岩,俞茂宏.多相孔隙介质的本构描述[J].力学学报,2000,32(1):12-24
    [54] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties—Second Edition [M] Cambridge: Cambridge University Press, 1997
    [55]刘培生.多孔材料孔率的测定方法[J].钛工业进展2006(12) Vol.22 No6:34~36.
    [56]刘兆福.炭素原料颗粒体积密度和孔隙率的测定[J].炭素技术1989(5):46~48.
    [57]张扬波,胡以强.摩擦材料孔隙率测量方法研究[J].非金属矿2003(5) Vol.26 No.3:48~51. [58《]炭和石墨制品生产》编写组编.炭和石墨制品生产[M]北京:冶金工业出版社,1976.6:254-255;
    [59]王红梅.压汞法测定多孔材料孔结构的误差广州化工[J] 2009 Vol37.No1:109~111;
    [60]邱海鹏,郭全贵,翟更太等.粘结剂对石墨材料的物理性能及微观结构影响的研究[J].宇航材料及工艺,2001,6:23-26;
    [61]项启贤.碳-石墨制品的添加剂[J].新型炭素材料,1992,2:30-37;
    [62]李圣华.炭和石墨制品[M].北京:冶金工业出版社,1984;
    [63]谢有赞.炭石墨材料工艺[M].长沙:湖南大学出版社,1988,8;
    [64]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社.1999.7.
    [65]薛新华,陈群,王琛.多孔介质孔隙度问题的理论探讨[J] .沈阳建筑大学学报(自然科学版),2010,3:250-254;
    [66]Alvaro Prada,Faruk Civan. Modification of Darcy’s law for the threshold pressure gradient. Journal of Petroleum Science and Engineering,1999,22(4):237-240;
    [67]Sanyal S.K,Pirnie III R.M,Chen G.O,etal. A novel liquid permeameter for measuring very low permeability.SPEJ,1972,12(3):206-210;
    [68]肖鲁川,甄力,郑岩.特低渗透储层非达西渗流特征研究[J] .大庆石油地质与开发,2010,10:27-30;
    [69] Alvaro Prada,Faruk Civan.Modification of Darcy’s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering,1999,22(4):237-240;
    [70]宋付权,刘慈群.低渗透多孔介质中新型渗流模型[J].新疆石油地质报,2001,22(1):56-59;
    [71]吴景春,袁满,张继成等.大庆东部低渗透油藏单相流体低速非达西渗流特征[J].大庆石油学院学报,1999,23(2):82-84;
    [72]D.Zaslavsky, S.Irmay.Physical. Principles of Water Percolation and Seepage, UNESCO, Paris,1968;
    [73]W.Von Englehardt. W.L.M.Tunn. The flow of fluids through sandstones. Circ.State.Geol.Surv.1955,194:1-17;
    [74]J.F.Lutz and W.D.Kemper.Intrinsic permeability of clay as affected by clay-water interaction.Soil Sci.1959,88(2):83-90;
    [75]S.Hansbo.Consolidation of clay with special reference to influence of vertical sand drains. Swedish Geotech..Inst.Proc.,1960,18:41-159;
    [76]R.J.Miller and L.W.Low.Threshold gradient for water flow in clay systems.Proc . Soil Sci. Soc.Am.,1963,27(6):605-609;
    [77]氍云芳.渗流力学[M].北京:石油工业出版社.2002;
    [78]王建忠,姚军,张凯.变渗透率模量与双重孔隙介质的压力敏感性[J].中国石油大学学报(自然科学版),2010,3:80-84;
    [79]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社.2009;
    [80]林浩,樊玉平,田又新.浸渍增重率与反渗率研究[J].炭素技术,2003,4:20-24;
    [81]周花,戴李宗,董炎明等.密封条件对压汞仪分析测试的影响[J].实验技术与管理. 2009(6), Vol.26, No.6: 42-44,45.
    [82]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社.2010,6;
    [83]葛世荣,朱华.摩擦学的分形[M].北京:机械工业出版社,2005:29-30;
    [84]朱伯铨,方斌祥,李享成.刚玉浇注料孔结构的分形特征[J].硅酸盐学报,2010,4:730-734;
    [85]唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究[J].沈阳建筑工程学院学报(自然科学版),2001,10:272-275;
    [86]徐龙君,张代均,鲜学福.煤微孔的分形结构特征及其研究方法[J].煤炭转化,1995, 18(1):31–38.
    [87]王学龙,胡锐,薛祥义等.孔径分布对多孔镍孔体积分形维数的影响[J] .材料导报(研究篇),2009,23(3):66–68;
    [88]李永鑫,陈益民,贺行洋,等.粉煤灰–水泥浆体的孔体积分形维数及其与孔结构和强度的关系[J].硅酸盐学报, 2003, 31(8):774–779;
    [89]JI X, CHAN S Y N, FENG N. Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials [J]. Cem Concr Res, 1997, 27(11):1691–1699.
    [90]韦江雄,余其俊,曾小星,等.混凝土中孔结构的分形维数研究[J].华南理工大学学报(自然科学版), 2007, 35(2): 121–124.
    [91]印友法.分形理论及其在炭素材料研究中的应用(2)-一炭素材料中的分形研究[J].炭素技术,1992.3:1-5;
    [92]彭瑞东,谢和平,鞠杨.二维数字图像分形维数的计算方法[J].中国矿业大学学报. 2004,33(1) 19-24.
    [93]杨书申,邵龙义. MATLAB环境下图象分形维数计算[J].中国矿业大学学报. 2006,33(4) 478-482.
    [94]卢泽生,于雪梅.基于分形理论多孔质石墨渗透率的研究[J].机床零部件, 2006,7:29-31;
    [95]胡亚非,王启立,隋敏等.碳素石墨磨损性能与润滑成膜特性研究[J].中国矿业大学,2008,3:216-219;
    [96]何敏,王启立,孙智.浸锑炭石墨摩擦磨损特性研究[J].润滑与密封. 2006,9(9).155-156.
    [97]刘颀,胡亚非,熊建军等.基于MATALAB的浸锑石墨密封材料的分形特征研究[J].中国矿业大学,2009,6:862-865;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700