基于ATT7022C的三相智能电表的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近些年国家电网公司电网智能化建设的规划,电子式电能表技术迅速发展,针对用电信息采集,双向互动,防窃电,远程抄表等技术研究的进步,现阶段发展趋势是宽量程高可靠性,由于电能表过载倍数越高,电能表准确计量的负荷范围就越宽,因此选择宽量程高可靠行的多功能智能电能表可以减小用户负荷增长后更换电能表的工作量。
     目前国内仪器制造设计的电能表主要有远程监测仪表,手持式仪表,便携式多功能分析仪表。远程检测仪表是被定点安装在现场,产生的数据以通讯的方式把数据集中上传至上位机进行统一分析处理,不是实时在线双向互动的。手持式仪表由技术人员随身携带,测量分析功能比较简单。便携式多功能分析仪表数据处理功能强大,但主要用于现场专项测试,价格较高。而在技术解决方案中,传统的单片机不能满足多功能而且精度低,不适用于信息交互高速实时处理场合。基于DSP高速计算芯片需要的扩展外设比较多,系统比较复杂,开发成本比较高,不具备实用价值。选择计量芯片ATT7022C加ARM处理器,可将人机交互和数据通信等的功能都集中于ARM子系统中,使整个系统体积小、功耗低、量程宽,可靠性高,具备实用价值。
     本文从实际应用角度出发设计并制作了一种在技术指标、功能要求、电气性能、适应环境、抗干扰及可靠性等都符合国家电网公司对智能电能表技术标准要求的三相智能电能表。整个硬件系统包括电源模块、信号采集计量模块、数据存储模块、MCU模块、RS485通信模块、外置型电力线载波通信模块、按键和显示模块、时钟和报警模块,并在此基础上,详细介绍了整个系统各部分的软硬件开发过程。实验结果表明,经过系统的软硬件调试,设计的三相智能电能表的性能稳定,各项指标基本符合国家电网公司对智能电能表技术标准的要求。
With the recent construction of the State Grid Corporation of intelligent network planning, electronic energy meter of rapid technological development, information collection for electricity, two-way interaction, anti-tamper, remote meter reading and other technology advances, current development trend is Wide range of high reliability, due to the higher multiple of power meter overload, power meter more accurate measurement of the wide load range, so choose the wide range of highly reliable line of multi-functional smart meter can reduce customer load growth in the work of replacement of energy meter volume.
     Design of domestic equipment manufacturers are remote meter monitoring instruments, handheld instruments, portable and multifunctional analytical instruments. Point the remote instrumentation is installed in the field, the resulting data to the means of communication to first-bit data set upload a unified analysis and processing machines, not real-time online two-way interaction. Hand-held portable instruments by the technical staff, measurement analysis is relatively simple. Portable data processing function of a powerful instrument, but mainly for the special test site, the price is higher. In the technical solution, the traditional single chip can not meet the multi-functional and low precision, high-speed information exchange does not apply to real-time processing applications. DSP-based high-speed peripheral expansion of computer chips need more, more complex systems, development costs are higher, do not have practical value. Select measurement chip ARM processor plus ATT7022C can be human-computer interaction and data communications features are focused on the ARM subsystem, so that the whole system, small size, low power consumption, wide range, high reliability, have practical value.
     From the practical point of view the design and production of a technical index, functional requirements, electrical performance, adapt to the environment, anti-jamming and reliability are all consistent with the State Grid Corporation of smart meter technology requirements of the standard three-phase intelligent power meter. The entire hardware system, including power modules, data acquisition measurement modules, data storage module, MCU module, RS485 communication module, an external power line carrier communication module, keypad and display module, clock and alarm modules, and on this basis, the details of the whole various parts of the system software and hardware development process. The results show that, after the system hardware and software debugging, design phase intelligent power meter, stable performance, the indicators consistent with the State Grid Corporation of basic smart meter technology standards.
引文
[1]姚冉忠,潘宏侠.基于TMS320F2812的设备状态监测与分析仪的实现.仪表技术与传感器.2007;9-12
    [2]候文清,基于DSP的电能质量检测与无功补偿综合测控装置.仪器仪表学报2007第一期
    [3]赵春宇,柴保明.在线电能质量监测系统:[硕士学位论文].上海交通大学2008
    [4]陆东生.基于DSP的多功能电能质量监测仪的研制.电测与仪表2006年第2期
    [5]银翔,王玉平.基于DSP的电能质量数据采集系统的研究[J].微计算机信息,2007,23(12):187-188
    [6]王宇,原建平。基于模块化结构的通用DSP数据采集处理系统设计[J].微计算机信息,2007,28(11):5-7
    [7]赵太飞.DSP在便携式多功能电能质量监测仪中的应用研究.仪表技术与传感器,2002.9
    [8]徐科军.TMS320X281xDSP原理与应用。北京:北京航空航天大学出版社,2006
    [9]刘伟明,陈建元.嵌入式电能质量监测装置的设计与实现[J]。电子测量技术,2008(11):164-167
    [10]中华人民共和国国家质量监督检验检疫局,中国国家标准化管理委员会。GB/T15543-2008电能质量三相电压允许不平衡[S]。北京:中国标准出版社,2008。
    [11]俞胜荣,胡龙湘.对电子式电能表几项功能的讨论[J]电测与仪表,2006。
    [12]李会容。基于DSP的智能电表的研究[D]。中国期刊网优秀硕士论文,2007。
    [13]炬力集成电路设计有限公司。ATT7022用户手册。珠海:炬力集成电路设计有限公司,2005。
    [14]张晓东,屈百达。基于ADE7758的复费率三相电能表设计。电子技术[M]2008,45。
    [15]陈涛,张春杰,张文旭。基于ATT7022电能计量芯片的电力监控终端设计[J]。信息技术,2006。
    [16]李大鹏,王祁。三相复费率网络化智能电能表研制[J]。仪器仪表学报,2006。
    [17]IEC61000-2-2EMC Enviroment.Compatibility levels for low-frequency conducted disturbances and signaling in public low-voltage power supply systems[S].
    [18]Richard B. Lipton Marcelo E. Bigal. Migraine and Cardiovascular Disease [J].The journal of the American Medical Association.2007,26(6):356-357
    [19]Hawkins J, Howard R B, Nguyen H V. Automated real-time testing for embedded controlsystem[DB/OL].IEEE2002:647-652
    [20]IEEE recommended practice for powering and grounding electronic equipment. IEEE Std 1100-1999,USA.
    [21]AD7656/7/8 Technical Data Sheet [Z]. ANALOGDEVICES,2005
    [22]DE Quan-lun. Designing for Board Level Electromagnetic Compatibility[Z].Motorola, 2005.
    [23]TMS320x281x External Interface (XINTF) Reference Guide[Z].TEXAS INSTRUMENTS,2005
    [24]Rabinowitz M ,Power System of the Future(Part2),IEEE Power Engineering Review,2000,10-14
    [25]Ringo P K Lee, L L Lai,Norman Tse ,A web-based multi-channel power quality monitoring system for a large network ,Fifth International Conference on Power System Managent and Control (PSMC)IEE, Savoy Place, London, UK,April,2002
    [26]LIMA R, QUIROGA D,REINERI C ,et al. Hardware and Software architecture for power quality analysis[J]. Computers&Electrical Engineering,2008,34(6):520-530
    [27]刘金琨.智能控制.电子工业出版社.2005.
    [28]李圣清等。电网谐波检测方法的综述。高压电计数。2004年3月
    [29]陈隆道,陈云,祁才君电能质量的监测与分析系统电测与仪表,2003 (11 ): 5-7
    [30]张朋,谐波信号采集。电子技术。2003年12期。
    [31]梅永.交流采样的实现与谐波分析新算法.河海大学优秀硕士论文,2005.3
    [32]陈静.电能质量检测装置的研制.安徽理工大学硕士学位论文,2005.9
    [33]金雄飞,乐秀播.电网谐波测量方法综述.继电器,2003.8
    [34] Gerale T. Heydt, Kraig J. Olejniczak. The Hartley Series and Its Application to Power Quality Assessment. IEEE Trans. Ind. Appl., 2005, 29(3):522527
    [35] IEEE Recommended Practice for Powering and Grounding Sensitive Electronic Equipment, IEEE-STD 1100, 2003
    [36] Emanuel A. E et al .A survey of harmonic voltages and currents at the customer's bus. IEEE trans. On P.D.,2003, 8(1): 411421
    [37]李红,杨善水.傅立叶电力系统谐波检测方法综述.现代电力,2004.8
    [38]袁世炯,白泰.浅谈电子式电能表的特点.四川电子技术,2004年第3期
    [39]邵建昂,吴为麟.电能质量的谐波测量与分析.能源工程,2003.1
    [40]肖国春,刘进军,王兆安.电能质量及其控制技术的研究进展.电力电子技术2006(6)
    [41]廖晓钟,刘向东.自动控制系统.北京理工大学出版社.2005.6.
    [42]张利娟、赵传萍.高精度温度控制的实现.微计算机信息,2003,(11):17-18
    [43]张毅,张宝芬,曹丽等。自动检测技术及仪表控制系统[M],化学工业出版社,2006.7
    [44]曾庆钟等,基于ARM的多点测温系统设计,现代电子技术[J],2007.17
    [45]沙占友,孟志勇,王彦朋等,单片机外围电路设计[M].电子工业出版社,2006.6
    [46]赵颖娟,刘文臣,基于ARM嵌入式系统的电能表设计,工业控制技术,2007.9
    [47]汤秋芳,罗梅林等,基于ARM多用户智能电能表设计,元器件与应用,2008.8
    [48]刘志国,钟志彬,电能表数据采集器的设计与应用,数字技术与应用
    [49]刘旭东,王书青等,基于TMS320LF2407DSP电能表的研制,河北工业大学学报,2005.8
    [50]李周平,三相四线制电子式多功能电能表的设计与实现,机电工程技术2010.4
    [51]张瑞占,屈百达,基于ATT7022B三相精确计量智能电能表设计,电子测量技术,2008.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700