家蚕荧光茧色判性机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕(Bombyx mori)茧层在紫外线照射下呈现多种荧光色,通常可以分为深浅不同的黄白和蓝紫两大类;家蚕雌雄蚕茧茧丝质和力学性能存在明显差异,雄蚕茧丝纤度细,经济性状好,其缫制的生丝高于雌蚕茧1~2个等级。近年苏州大学蚕桑研究所虞晓华等发明了将不具备荧光茧色判性特性的蚕品种转育成荧光茧色判性蚕品种的方法,2006年育成荧光判性品种“雄晓”,2008年又育出孵化齐一、发育快、好养的荧光判性品种苏.雄×荧晓,雄茧为黄荧光,雌茧为紫荧光,判性准确率均可达到100%,并开始在生产上推广,雌、雄蚕茧分开缫丝,生产出了6A级高品质雄蚕丝,而雌蚕茧生丝品质也同时提高。虽然通过一定的方法可以培育出判性品种,但是判性机理目前的研究并不深入,许多方面还不清楚,因此阐明家蚕荧光茧色判性机理,对丰富家蚕生理学、遗传学理论及荧光判性育种实践都有很大意义。
     在我们的研究中,以人工饲料控制饲料中的色素种类和含量,观察茧层的荧光色素变化情况;通过荧光照射观察雌雄家蚕体内中肠,血液,丝腺等器官以及茧层中的荧光色素的积累与分布情况;通过薄层色谱分析,荧光色素的荧光光谱分析和荧光色素的紫外吸收光谱等方法,分析雌雄家蚕荧光色素的种类与组成。应用实时荧光定量PCR,分析色素结合蛋白相关基因在中肠的转录水平、色素氧化及代谢酶类基因在中肠和丝腺内的转录水平,来了解荧光茧色判性家蚕中肠色素结合蛋白对荧光色素透过的作用以及色素氧化酶及代谢酶类对荧光色素形成的作用。主要结果如下:
     1、从5龄3天开始分别用正常饲料、酒精脱色饲料和酒精脱色后加入槲皮素的饲料饲养荧光判性品种家蚕,测定蚕茧荧光,结果表明,饲以未经处理的桑叶粉配制的人工饲料所营的蚕茧在紫外线下可判别雌雄;而饲以酒精脱色饲料所营蚕茧雌雄均为均匀的紫荧光色而无法分辨雌雄;饲以酒精脱色后加入槲皮素的饲料,所营蚕茧雌性绝大部分表现为紫荧光色,雄茧均表现为黄荧光色,荧光茧色判性率达到80%以上。这表明引起雌雄蚕茧荧光色差异的荧光色素基础物质来源于桑叶醇溶性物质,槲皮素或者是槲皮素的类似物是其中重要的一类物质;也证明了荧光黄色素决定雌雄蚕茧荧光色的差异。
     2、通过对冻干的五龄家蚕血液、器官和组织的荧光显微观察发现,家蚕荧光茧品种中,雌蚕中肠后部(约1/3~2/5)积累大量黄色荧光物质,而雄蚕无此现象,正是雌蚕中肠对黄色荧光色素的差异吸收,导致家蚕荧光茧色的判性。实验发现中肠后部大量积累黄色荧光色素的部分是圆筒形细胞部分,推测可能存在荧光色素结合蛋白。
     3、对5龄家蚕的雌雄蚕血液和中肠组织的荧光色变化进行逐日观察,结果表明,五龄第4日起,雌雄蚕血液荧光色出现明显的差异,这种差异一直保持到吐丝前。在紫外光照射下,吐丝前1天的雌蚕血液荧光色较暗,而雄蚕血液发出很明亮的黄色荧光;将血液滴在纸上风干后,其斑点中央的荧光色呈明显差异,雌蚕呈深紫色荧光斑,是黄色荧光物质与紫色荧光物质的混合色;而雄蚕血在斑点中央呈很亮的黄荧光和很淡的蓝紫荧光的混合色。说明雌雄蚕血液的荧光色差异是从家蚕5龄盛食期开始。
     4、以家蚕荧光茧色判性品种为实验材料,对蚕茧层表面和茧层抽提物的荧光光谱分析表明,雌雄蚕茧都出现黄色和蓝紫色二个荧光发射峰,茧层中不存在荧光色素种类的差异。雌雄茧之间的荧光色差异主要因黄色和蓝紫色相对荧光强度不同而引起的。
     5、应用硅胶薄层色谱和荧光光谱分析显示,蓝紫荧光色物质至少由5种蓝紫荧光色素成分组成,而黄色荧光物质至少由3种黄色荧光色素成分组成;从雄蚕茧层中提取到的黄色荧光色素与雌蚕后部中肠积累的色素完全相同。
     6、紫外光谱分析和AlCl3显色反应表明,3种黄色荧光色素属于黄酮类或黄酮苷类化合物,其中一种黄色荧光色素(Rf=0.82)为主要成分,其荧光发射光谱最大发射峰为533nm,激发光谱峰值为377nm。
     7、通过测定正常饲料、酒精脱色饲料和酒精脱色后加入槲皮素的饲料饲养的家蚕中肠的30Kc19、BmLP-C21、BmLP-C23、类胡萝卜素结合蛋白(CBP)基因的转录水平,表明类胡萝卜素结合蛋白(CBP)是参与荧光色素雌家蚕中肠内的特异性积累的主要基因,30Kc19也是家蚕中肠色素特异积累过程中的重要基因。
     8、通过测定正常饲料、酒精脱色饲料和酒精脱色后加入槲皮素的饲料饲养的家蚕BmUGTs、P450s、BmGSTs基因在家蚕中肠和丝腺中的转录水平,结果表明, BmUGT29参与荧光茧色判性家蚕雌性中肠内色素的形成与代谢,BmUGT30参与荧光茧色判性家蚕中肠对槲皮素的代谢。BmUGT59主要参与槲皮素在雌性丝腺内的形成与代谢。BmGSTe1和BmGSTe5参与了荧光茧色判性家蚕雄性丝腺的色素代谢。CYP6au1,CYP6ae8参与家蚕中肠内槲皮素的形成与代谢。
     综上所述,引起荧光茧色判性家蚕雌雄蚕茧荧光色差异的荧光色素的基础物质来源于桑叶醇溶性物质,雌雄蚕荧光色差异是从家蚕5龄盛食期开始;家蚕荧光茧色判性主要是由于雌蚕中肠存在荧光色素的结合蛋白对黄色荧光色素产生特异性积累,导致雌雄茧之间的黄色和蓝紫色相对荧光强度不同,最终反映为茧色的不同。
Silkworm (Bombyx mori) cocoon layer showed various fluorescent color under uv irradiation.It ofen can be divided into two kinds of different shades of yellow and blue purple. Quality and mechanical properties male and female silkworm cocoon are obvious different, the cocoon silk fineness and economic characters of male silkworm are excellent, its raw silk reeling silk are higher than female silkworm cocoon 1 ~ 2 levels. In recent years, suzhou university institute YuXiaoHua sericultural inventions the method of cultivating silkworm breed that cannot be convicted sex by cocoon fluorescent color into being convicted sex by cocoon fluorescent color, he had bred cultivars of sex identification by the fluorescent cocoon color of silkworm Bombyx mori the "male dawn" in 2006, " and nurtured the hatch out together, fast development and good raised sex identification by the fluorescent cocoon color of silkworm Bombyx mori varieties Sue. the male×Ying xiao in 2008, Which male cocoon is yellow fluorescent and female cocoon is purple fluorescence, and the accuracy of sex identification by the fluorescent cocoon color may achieve 100%, and started to popularize in the production, male and female silkworm cocoon are filature respectively, produced 6 level of high quality male silk, and the quality of female silkworm cocoon silk are also improved. Although we had produced the variety of sex identification by the fluorescent cocoon color, but the mechanism to sex identification is not clear.Clarifing the mechanism of sex identification by cocoon color fluorescent is great significance for riching silkworm physiology, genetics theory and fluorescence convicted sex breeding practice.
     In our studies, by controling the pigment varieties and contents in artificial feed to observe the change of fluorescent pigments in the cocoon layer. Through the fluorescence illuminate to observe the conditions of fluorescent pigments accumulation and distribution in organs such as midgut, blood, silk gland and cocoon layer between male and female silkworm (bombyx mori). Appling real-time fluorescence quantitative polymerase chain reaction (PCR), to analyse the level of transcription of the gene of pigment binding protein in midgut, the level of transcription of the gene of pigment oxidation and metabolic enzymes in midgut and silk gland, to understand the role of the gene of pigment binding protein in permeance and the gene of pigment oxidation and metabolic enzymes in forming of the fluorescent pigments in silkworm (bombyx mori). The main results as follows.
     1、From 3rd day of fifth star the convicted sex by cocoon color fluorescent silkworm were fed with normal atificial diet,alcohol bleaching atificial diet and adding quercetin after alcohol bleaching atificial diet. Then measured cocoon fluorescence.T?he results show that the cocon of silkworm fed with untreated artificial diet can be distinguished male and female by cocoon color fluorescent under ultraviolet light; however, the cocon of male and female silkworm fed with alcohol decolorization artificial diet both showed purple fluorescent color, we were unable to distinguish male and female by cocoon fluorescent color; the cocon of female silkworm fed with feed adding quercetin after ethanol bleaching, showed purple fluorescent, and male showed yellow fluorescent color. The rate of sex-identified fluorescent cocoon color was more than 80 percent. This shows the material of fluorescent pigment-based in male and female cocoon was alcohol-soluble substances derived from mulberry leaves. One important is quercetin or similar things of quercetin. Also prove the fluorescence yellow element decided to the differences of cocoon fluorescent color between the male and female silkworm.
     2、By the fluorescent microscope observation of freeze-dried fifth instar silkworm’s blood, organs and tissues , we discovered that all or part of the yellow fluorescent substance were accumulated at the back of the female silkworm midgut(about 1 / 3 to 2 / 5) in the fluorescent silkworm cocoon species, and the males silkworm no this phenomenon. It is the difference of absorption of the fluorescent pigment in female silkworm’s midgut, resulting in sex-identified fluorescent cocoon color. This study found that a large number of yellow fluorescent pigment accumulated at the posterior portion of midgut is part of these cylindrical cells. It is speculated that there may be fluorescent pigment-binding protein.
     3、Observing changes in the fluorescent color in male and female blood and intestinal tissue of 5 year-old silkworm on a daily basis, the result show that blood fluorescent colors between male and female silkworm appear a significant difference in the 4th day. This difference was maintained until silking without any change. Under uv irradiation, 1 day before spinning fluorescent colors in blood of female silkworm was darker, but the blood of male silkworm showed bright yellow fluorescence. If we drops the blood on paper and dried it, we can find obvious difference in the middle of a fluorescent color spots, in central blood spots of female silkworm present deep fluorescent purple, that is the yellow fluorescent substance and purple fluorescent material mixed color, and the central blood spots of males silkworm present very bright yellow fluorescence, that is the yellow fluorescent substance and the pale blue purple fluorescent mixture color. Whitch show that fluorescent color difference of male and female silkworm’s blood is beginning at feed high stage of 5th star bombx mori.
     4、Using sex-identified fluorescent cocoon color silkworm as experimental material, we analyzed the fluorescence spectra of cocoon shell and cocoon shell extracts. The result showed that there are yellow and blue-violet emission peak in male and female cocoons. This shows that there was no difference of fluorescent pigments types in male and female cocoon.T?he difference in fluorescent color of male and female cocoon was caused by differences of yellow and blue-violet fluorescence intensity.
     5、Silica gel thin layer chromatography and fluorescence spectroscopy showed that blue-violet fluorescent material was composed of five kinds of blue-violet fluorescent pigment composition at least, and yellow fluorescent substance was composed of at least three kinds of yellow fluorescent pigment composition.Y?ellow fluorescent pigment extracted from male cocoons layer was identical to the pigment accumulated in the back of the female silkworm midgut.
     6、UV spectra and AlCl3 color reaction showed that three kinds of yellow fluorescent pigments are flavonoids or flavonoid glycosides, one of the yellow fluorescent pigment (Rf =0.82) was the main composition. The maximum emission peak of fluorescence emission spectra was 533nm, the excitation spectrum peak was 377nm.
     7、By measuring the transcription level of midgut 30Kc19, BmLP-C21, BmLP-C23, carotenoid-binding protein (CBP) in silkworm feed by Normal, alcohol extraction and adding quercetin diet after alcohol extraction artificial feed respectively. The results show that carotenoid-binding protein (CBP) was involved in the specific-accumulation of fluorescent pigment in the female silkworm midgut. And 30Kc19 is a specific important gene in the course of accumulating pigment in the silkworm midgut.
     8、By measuring the transcription level of BmUGTs P450s and BmGSTs gene in normal feed, feed alcohol extraction and adding quercetin after alcohol extraction artificial feed silkworm’s midgut and silk gland, BmUGT29 participate in the formation and metabolism of the pigment in the female midgut of sex identification by the fluorescent cocoon color of silkworm, BmUGT30 mainly involved in quercetin metabolism in the sex-identified fluorescent cocoon color silkworm midgut, BmUGT59 mainly involved in the form and metabolism of quercetin in the silkgland of the female silkworm. BmGSTe1 and BmGSTe5 mainly involved in the metabolism of quercetin in the silkgland of the male silkworm. CYP6au1 and CYP6ae8 involved in the quercetin formation and metabolites in midgut of silkworm.
     These results suggest that the base material that cause different fluorescent color of silkworm cocoon to male and female silkworm cocoon comes from mulberry leaf alcohol-soluble material. The difference of male and female silkworm fluorescent color began in feed high stage of 5th star bombx mori. Sex identification by cocoon color fluorescent is mainly due to the female silkworm bowel exist in fluorescent pigments protein to combinate specific yellow fluorescent pigments and accumulated it in midgut of silkworm, which lead to relative fluorescence intensity of the yellow and blue purple fluorescent color between male and female cocoon, eventually reflect different for the cocoon color.
引文
[1]Xia QY, Zhou ZY, Lu C et al. A draft sequence for the genome of the domesticated silkworm(Bombyx mori) [J]. Science, 2004,306:1937-1940
    [2]Kazuei Mita, Masahiro Kasahara,Shin Sasaki et al. The Genome Sequence of Silkworm,Bombyx mori. DNA Research,2004,11:27-35
    [3]The Intenational Silkworm Genome sequencing consortium, 2008. silkworm genome sequence reveals biology underling silk Produetion, phytophagy and metamorphosis.submitted.
    [4]Goldsmith MR, Shimada T,Abe H: The genetics and genomics of the silkworm[J], Bombyx mori. Annu Rev Entomol 2005, 50: 71-100.
    [5]向仲怀.蚕丝生物学.中国林业出版社,2004,10:291
    [6]封平.蚕丝蛋白的结构及食用性研究[J].食品研究与开发,2004,6(12):51-54
    [7]于同隐,蔡再生,黄伟达. SDS-PAGE研究丝索蛋白的组成[J].高等学校化学学报,1996,17(5):829-83
    [8]sasaki M, Kato N,yamada H.Consumption of silk protein sericinElevates intestinal absorption of zinc, iron,magnesium and calcium in rats[J]. Nutrition Research, 2000, 20(10): 1505-1511
    [9]Mizoguchi K,lwatsubo T,Aisaka N.Separating membrane made of cross linked thin film of sericin and Production thereof [P].JP patent:284337A, 1991. 3
    [10]Yamada H,Nomura M.Fibrous article for contact with skin[P].JP Pateni:001872A, 1998.10
    [11]Angeles P B, Juan M.AngiogenesisⅠ-converting enzyme inhibitory compounds in white and red wines[J].Food Chemistry,2007, l (100):43-47
    [12]Fraser R D B, MacRae T P.Conformation in Fibrous Proteins[J]. Aeademic,1973, 2 (4): 23-25
    [13]朱良均,姚菊明,李幼禄.蚕丝蛋白的氨基酸组成及对人体的生理功能[J].中国蚕丝,1997,I:43-44
    [14]倪芊,陶冠军,戴军,等.血管紧张素转化酶活性抑制剂-丝素肽的分离、纯化和结构鉴定[J].色谱,2001, 19 (3): 222-225
    [15]朱良均,姚菊明,李幼禄.蚕丝蛋白一丝胶和丝素凝胶特性的比较[J].科技通报,1998, 14 (l):17-19
    [16]Tsubouehi K.Occlusive dressing consisting essentially of silk fibroin and silk seriein and its production[P]. JP pateni:070160A, 1999.11
    [17]Maruyama s.Angiotensin peptide inhibitors of angiotensinⅠ- converting enzyme in the tryptic hydrolysate of casein[J]. Agriculture Biochemistry, 1982, 46 (5):1393-1394
    [18]Maruyama S,AngiotensinⅠ-converting enzyme inhibitor derived from an enzymatic hydrolysate of casein[J]. Agriculture Biochemistry , 1985, 51 (6): 1581-1585
    [19]Maruyama S AngiotensinⅠ-converting enzyme inhibitory activity of the C-terminal hexapeptide ofa-casein[J] . Agriculture Biochemistry , 1987, 51 (9): 2557-2561
    [20]Jung W K, Mendis E.AngiotensinⅠ-converting enzyme inhibitory peptide from yellow sole(Limanda aspera)frame protein and its antihypertensive effect in spontaneously hypertensive rats[J] .Food Chemistry, 2006, 94 (l): 26-32
    [21]Emiko K,Yamakoshi J.purification and identification of an AngiotensinⅠ-converting enzyme inhibitory from soy sauce[J] .Bioseience Biotechnology Biochemistry, 1993, 57(7):1107-1110
    [22]Miyairi S, Sugiura M.properties of propeties ofβ- glucosidase immobilized in sericin membrane[J]. Ferment Technology, 1978, 5 (60): 303-308
    [23]Fang Y, Shao Z,Deng J.physiological function of buckwheat prolein and sericin resistant proteins[J]. Chinese Seience Bull, 1992, 37(17): 436-438
    [24]okamoto A, Hanagate H, Matsumto E. AngiotensinⅠ-converting enzyme inhibitory activities of various fermented foods[J]. Bioseience Biotechnology Biochemistry,1995, 59 (6):1147-1149
    [25]岩岡末彦.关于蚕茧荧光色的研究[J].郡是制丝研究录报,1927, (1) : 115 -146
    [26]葛景贤,陆潜珍.用紫外线选除淡竹色茧初报[J].蚕业科学通讯,1956, (1): 41-42
    [27]虞晓华,谢立群.家蚕茧荧光色的遗传研究[J],《蚕业科学》,1997,(3)45-49
    [28]郑小坚,虞晓华,金锈珏.家蚕茧荧光色与茧丝质关系的研究[J].蚕业科学,1998, 24 (4) : 250-252
    [29]向仲怀,黄先智,夏庆友,家蚕茧层荧光色的遗传分析[J].蚕业科学, 1997,23(2): 87-91
    [30]刘爱华,陈克平,姚勤,家蚕荧光茧色分子标记初探[J].安徽农业大学学报, 2005, 32(4): 490-492
    [31]虞晓华.提供雄蚕茧的几种途径[J].江苏蚕业,2003,(2): 80-81 [32 ]小针喜三郎.利用紫外线鉴识家蚕性状的研究[J].片仓蚕业试验所报告, 1932, 1 (1) : 1 - 37
    [33]陈克平,林昌麒.家蚕荧光茧色的研究-Ⅰ.不同品种的荧光茧色[J].蚕业科学, 1988, 2: 20-25
    [34]华南农学院蚕桑系.茧荧光色判性品种东34的选育及其遗传学的研究(初报) [J].广东蚕丝学通讯,1979,(1) : 49–54
    [35]刘敬全,于振诚,崔玉梅.家蚕荧光茧色判性蚕品种荧光、春玉的育成及其一代杂交种的选配[J].蚕业科学, 1996, 22(3) : 155 - 159
    [36]山口定次郎.关于家蚕紫外荧光的研究[J].日本蚕丝学杂志,1935, 6 (12):196-206
    [37]虞晓华.具荧光茧色判性的蚕品种的培育方法[P].中国专利,专利号: ZL3152829.5,2006.1.25
    [38]虞晓华,贾仲伟,尹书倩,唐运成,葛君.家蚕新品种苏·雄×荧晓的选育[J].蚕业科学, 2008,34 (1): 140-143
    [39]封云芳,徐辉等,桑蚕(家蚕)白色茧中荧光物质的研究[J],兰州大学学报(自然科学版)1984, 20:72-78
    [40]黄先智, 1990,西南农大研究生论文摘要汇编, 80-81
    [41]林昌麒,姚琴,陈克平.家蚕血淋巴与丝腺内液状丝物质及茧层荧光性研究[J].蚕业科学, 1994, 20 (1): 43-44
    [42]于振诚,顾寅钰,张风林,石瑞常.荧光茧色判性蚕品种雌雄幼虫荧光色素差异的研究[J],蚕业科学, 2000, 26 (2): 123-124
    [43]于振诚,顾寅钰,张风林,李化秀.“荧光”蚕品种雌雄荧光色素来源及代谢差异[J],山东农业科学,2007,(1):102-104
    [44]藤本直正.蚕绢丝腺的荧光色[J].日本蚕丝学杂志,1950, 19 (4) : 323 - 328
    [45]于振诚,石瑞常.“荧光”蚕品种雌雄荧光色素的定性及相对量分析[J],蚕业科学,2002, 28 (2):151-156
    [46]徐世清,王建南,陈息林.天然有色茧丝资源及其开发利用(1) [J].丝绸,2003, 2: 43- 46.
    [47]徐世清,王建南,陈息林.天然有色茧丝资源及其开发利用(2) [J].丝绸,2003, 2: 43- 46
    [48]梁海丽.家蚕天然彩色茧色素研究[D],苏州大学硕士学位论文,2009
    [49]坂手荣.关于家蚕茧的荧光性物质[J],日本蚕丝学杂志,1952, 21 (5, 6) : 237 - 239
    [50]林屋庆三,杉本哲,藤本直正.关于茧色素的研究(Ⅲ)绿茧色素的定性[J].日本蚕丝学杂志,1959, 28 (1) : 27 - 29
    [51]申屠仁华,徐俊良、吕顺霖,等.桑蚕茧荧光色素的理化学研究[J].蚕桑通报, 1994,25 (1) : 15 - 17
    [52]奥正已.家蚕茧丝色素的化学研究(第十报)紫外线下茧的荧光色与茧丝色素的关系[J].日本农艺化学会志,1934, 10:1253 - 1257
    [53]肖崇厚.中药化学[M].上海:上海科学技术出版社,1997,265 - 299
    [54]许智宏,刘春明.植物发育的分子机理[M].北京:科学出版社,1998.107 - 119
    [55]耿敬章,冯君琪.黄酮类化合物的生理功能与应用研究[J],中国食物与营养,2007(7):19-21
    [56]胡春.黄酮类化合物的构效关系的研究[J].食品与发酵工程,1996,(3):46-53.
    [57]Rafat Husain, S., Cillard, J and Cillard, P., Hydroxyl radical scavenging activity of flavonoids.Phytochemistry, 1987 (26): 2489- 2491
    [58]Day AJ, Bao YP, Morgan MR.A, Williamson G.. Conjugation position of quercetin glucuronides and effect on biological activity[J]. Free Radic Biol Med 2000, 29(12):1234-1243
    [59]刘淑梅,时连根,李有贵.家蚕幼虫体黄酮类化合物的提取及测定方法[J].蚕业科学2005, 31 (1):74-78
    [60]金洁,刘淑梅,时连根.家蚕幼虫体中黄酮类化合物含重的变化规律[J].蚕业科学,2005, 31(2):141-144
    [61]蒲秋燕,张艳艳,黄平,王黎涛,刘存芳.桑叶中黄酮类化合物的研究现状[J].工业技术, 2010, 325- 326
    [62]Konno C,Oshima Y,Hikino H.Morusinol,isoprenoid flavone from Morus root barks[J]. Planta Med, 1977, 32 (2): 118-124
    [63]Basnet P,Kadota S,Terashima S,et al.Two new 2-arylbenzofuran derivatives from hypoglycemic activity-bearing fractions of Morus insignis[J]. Chem Pharm Bull, 1993, 41 (7): 1238- 1243
    [64]Kim S Y,Gao J J,Kang H K. Two flavonoids from the leaves of Morus alba induce differentiation of the human promyelocytic leukemia(HL-60)cell line[J]. Biol Pharm Bull, 2000, 23 (4): 451- 455
    [65]Kim S Y,Gao J J,Lee W C, et al. Antioxidative flavonoids from the leaves of Morus alba[J]. Arch Pharm Res, 1999, 22(1): 81-85
    [66]Doi K, Kojima T, Makino M, et al. Studies on the constituents of the leaves of Morus alba L[J]. Chem Pharm Bull, 2001, 49 (2): 151-153
    [67]刘利,潘一乐.桑叶次生产物代谢分析[J].蚕业科学, 2005, 31(4):413-417
    [68]Katsube T, Imawaka N, Kawano Y, et al. Antioxidant flavonol glycosides in mulberry (Morus alba L.)leaves isolated based on LDL antioxidant activity[J]. Food Chem, 2006, 97: 25-31
    [69]谭永霞,长稗桑化学成分和生物活性研究[D],博士论文,2009
    [70]杨燕,桑叶化学成分和生物活性研究[D],硕士学位论文,2010
    [71]郭小补,廖森泰,刘吉平.不同桑品种的桑叶总黄酮含量与体外抗氧化活性的相关性[J],蚕业科学,2008;34(3) 381-386
    [72]唐孟成,贾之慎,朱祥瑞.春秋桑叶中黄酮类化合物总量及提取方法比较[J],浙江农业大学学报,1996, 22 (4) : 394- 398
    [74]杨普香,黎小萍.夏秋桑叶黄酮化合物含量变化初探蚕桑通报,2005,32(3):23-24
    [75]刘利,潘一乐.白桑叶总黄酮含量分析[J],安徽农业科学, 2008,36(8):3255-3256, 3259
    [76]张军,穆莉,檀华蓉.桑叶中黄酮化合物的提取工艺及不同品种不同时期的含量变化[J],蚕业科学, 2006;32(1) 142-145
    [77]许永进,王叶元,林健荣,钟杨生,林碧敏.家蚕有色茧主要色素物质在幼虫体内的代谢变化[J],蚕业科学,2010(4):619-624
    [78]TamuraY,NakajimaK,NagayasuK,kabayashiC.Flavonoid 5-glueosides from the Cocoon shell of the silkworm, Bombyx mori[J],Phytochemisrry, 2002, 59(3): 275-278
    [79]Kurioka A, Yamazaki M.Purfication and identification of flavonoids from the yellow green cocoon shell (Sasamayu) of the silkworm, Bombyx mori[J]. Biosci Biotechnol Biochem , 2002, 66: 1396-1399
    [80] Chikara H, Hiroshi O, Yasumori T. C-prolinylquerc-etins from the yellow cocoon shell of the silkworm, Bombyx mori[J], Phytochemistry , 2006, 67:579–583
    [81]Chikara H, Hiroshi O, Yasumori T. Regioselective formation of quercetin 5-O-glucoside from orally administered quercetin in the silkworm,Bombyx mori[J].Phytochemistry, 2008, 69: 1141-1149
    [82]王福刚,曹娟,刘斌,王伟,高允生.荷叶的化学成分及其药理作用研究进展[J],时珍国医国药,2010, 21(9)2339-2340
    [83]陈丛瑾,黄克瀛,李德良.植物中黄酮类化合物的提取方法研究概况[J],生物质化学工程,2007,41(3):42-46
    [84]许钢,张虹,胡剑.竹叶中黄酮提取方法的研究[J],分析化学, 2000,(7):857-859
    [85]王兰珍,马希汉,王姝清.元宝枫叶总黄酮提取方法研究[J],西北林学院学报, 1997 , 12 (4) :64-67
    [86]田娜.荷叶黄酮类化合物的分离鉴定及药理作用研究[J],湖南农业大学硕士论文,2005
    [87]藏楠,王学英,孙佳.不同品种不同发育时期的柞蚕幼虫黄酮类化合物的提取及含量变化[J],食品研究与开发,2008, 29(5):35-39
    [88]ChattiP Prommuaka,WanchaiDe-Eknamklub,Artiwan ShotiPruka.Extrac-tion of Fiavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts[J]. Separation and Purifieation Technology, 2008, 62:444-448.
    [89]潘云海,薛忠民,苏超.家蚕幼虫体中黄酮类化合物的提取与测定[J],北方蚕业,2009, 30(4):29-31
    [90]李云雁,宋光森.超声波协助提取板栗壳色素的研究[J],广州食品工业科技,2003, 19(3):76-78
    [91]黄俊盛,任乃林,郑楚珊,桑叶中总黄酮类化合物提取工艺的研究[J],江西化工,2005 , 2 :82-84
    [92]庞红,文略,王小萍.苦瓜总黄酮的超声波提取工艺研究,微量元素与健康研究,2007,24(6):49-50
    [93]王晶,任发政.桑树皮黄酮的超声波提取及体外抗氧化作用研究[J],食品科学,工艺技术,2008, 29(4):206-209。
    [94]李洪娟,孙居锋,代现平.桑白皮总黄酮超声波提取法研究[J],安徽农业科学, 2009, 37 ( 3): 1188-1189
    [95]余炼,孙伟,徐文炘.蚕沙中类黄酮的超声波提取及纯化工艺研究[J],食品与生物广西轻工业,2010, 6:6-8
    [96]唐永良.超临界流体萃取法综述[J],杭州化工,2005, 35(1)2019-2025
    [97]Hawthorne SB.Comparison of hydrodistillation and super critical fluid extraction for the determination of essential oils in aromatic plants[J]. J Chromatogr, 1993, 634: 297-308.
    [98]Kou-Lung Chiu etc. Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids[J]. Journal of Supercritical Fluids , 2002, 24:77-87
    [99]Rozzi NL.Supereritical fluid extraction of lycopene from tomato proeessing by produets[J]. Jounal of Agricultural and Food Chemistry, 2002(9): 2638-2643.
    [100]廖周坤,徐正,杨林.超临界流体萃取去脂沙棘果渣中总黄酮的工艺研究[J],四川化工与腐蚀控制,2003, 6(6):56-58
    [101]靳学远,安广杰.超临界流体提取金银花中总黄酮研究初报[J],食品科学, 2007, 9(23)156-158
    [102]陆九芳,李总成,包铁竹.分离过程化学[M].北京:清华大学出版社,1993:118-129
    [103]Cheez K K,Wong MK,Lee H K.Microwave-assisted solvent elution technique for the extraction of organic pollutants in water[J]. Anal.Chem Acta, 1996, 330: 217.
    [104]冯怡,傅荣杰.黄酮类组分微波萃取与传统水煎提取的比较,中成药,2005, 27(10):1138-1140
    [105]刘峙嵘,俞自由,方裕勋.微波萃取银杏叶黄酮类化合物,华东理工学院学报, 2005, 28(2):151-154
    [106]李小燕,邓光辉,罗伟强.微波萃取广山楂叶中黄酮类化合物的工艺研究[J],生物质化学工程, 2007, 41(4): 39-42
    [107]徐金瑞,张名位,张瑞芬.番石榴中总黄酮的微波萃取工艺研究[J],现代食品科技,2008, 24(7):674-677
    [108]史高峰,韩学哲,陈学福.微波辅助提取甘草渣中的总黄酮工艺研究[J].安徽农业科学, 2008, 36 ( 32): 14153-14154, 14184
    [109]王小伟,金则新,李建辉.微波萃取乌药叶中总黄酮的工艺研究[J],浙江林业科技,2009, 29(4):33-36
    [110]马翠,廖克俭,赵志添.微波萃取侧柏叶中黄酮类化合物的工艺研究[J],化学工业与工程,2011, 28(2): 45-48
    [111]杨兵,余明,吴晓蕾.微波萃取蒲公英中总黄酮工艺的优化[J],安徽农业科学, 2011, 39( 8) : 4560-4561, 4659
    [112]纵伟.酶法提取银杏叶中总黄酮的研究,基础研究,2000,1:13-15
    [113]王晓,林波,马小来.酶法提取山楂叶中总黄酮的研究,工艺技术,2002, 23(3):37-38
    [114]吴国卿,王文平,陈燕.复合酶法提取野木瓜汁的工艺研究,安徽农业科学, 2009, 37 (31) : 15421-5423
    [115]杨云龙,苏范胜,赵邦龙.洋葱中黄酮类化合物的酶解法提取研究[J].滨州学院学报,2009, 25(3):83-85
    [116]姚晓琳,朱新荣,段春红.酶解法提取甜橙皮黄酮研究[J].粮食与油脂,2009(2):43-46
    [117]殷涌光,闫琳娜,于庆宇.酶解法提高松针黄酮抗氧化性能试验[J].农业机械学报,2009(6):129-132, 178
    [118]于爱平,张丹,郭喜红.紫外分光光度法测定洋葱提取物中总黄酮的含量[J],中国药房,2005,16(19):1498-1499
    [119]吴素玲,孙晓明,张卫明,顾龚平.紫外分光光度法测定刺梨黄酮含量的研究[J],粮油食品科技,2006, 14(5):54-56
    [120]范华锋,赵士权,查河霞.紫外分光光度法测定保健食品中总黄酮的方法改进[J],中国卫生检验杂志, 2011, 21(4):827-828
    [121]文红梅,王业盈,彭国平,李伟.HPLC法测定蒲黄中总黄酮的含量[J],现代中药研究与实践,2006,20(3):41-44
    [122]许龙,姚小磊,贺晓华,曾建国,彭清华.HPLC法测定密蒙花中3种黄酮类成分的含量[J],湖南中医药大学学报,2008 ,28 (5)21-23
    [123]光琴,周亚球.HPLC测定罗布麻叶中总黄酮的含量[J],中国实验方剂学杂志,2011,17(6)103-106
    [124]上官小东,王党社.AlCl3分光光度法测定银杏黄酮的含量[J],宝鸡文理学院学报(自然科学版),2004,24(4):273-275
    [125]陈丛瑾,黄克瀛,李德良,孙崇鲁.AlCl3显色分光光度法测定香椿叶中总黄酮[J],分析试验室, 2006,25(12):91-94
    [126]裴咏萍,李维林,张涵庆.三氯化铝比色法测定中药中总黄酮含量的方法改进[J],现代中药研究与实践, 2009, 23(4):58-60
    [127]龙跃,寇娴,程素霞,王武鹏,王超,潘浩顺.三氯化铝比色法测定中草药雀儿舌头中总黄酮研究[J],郑州大学学报(工学版),2010,31(4):113-115
    [128]孙莲,孟磊,陈坚,马季,胡瑞,贾殿增.毛细管电泳法测定桑叶中的黄酮类成分-芦丁和槲皮素[J],色谱,2001,19(5):395-397
    [129]Marchart E. Quantification of the flavonoid glycosides in Passiflora incarnata by capillary electrophoresis[J], Planta Med,2003,69(5):452-456
    [130]吕元琦,李玉美,李辉信,魏正贵.毛细管电泳法研究槐角生长过程中黄酮类化合物含量变化[J],德州学院学报, 2008, 24(4):45-49
    [131]郭新华,杜林.黄酮类药物的胶束纸色谱分离研究[J],兰州医学院学报,1996, 3:21-22
    [132]佘戟,陈杰,莫丽儿,梁念慈.胶束纸色谱法分离和鉴定黄酮类化合物[J],广东医学院学报,1999,17 (2)102-104
    [133]施跃峰,桑金隆,竺莉红,夏湛恩.水提树酯吸附法提取分离柿叶黄酮[J],科技通报,2000,16(4):305-308
    [134]尉芹,王冬梅,马希汉,张康健.杜仲叶总黄酮含量测定方法研究[J],西北农林科技大学学报(自然科学版),2001, 29(5):119-123
    [135]董翠月,万华方,梁颖.甘蓝型油菜种皮黄酮类色素种类的研究[J],西南师范大学学报(自然科学版),2007, 32(1):97-101
    [136]梁淑芳,马耀光,马柏林.山楂黄酮的薄层色谱分离鉴定研究[J],林产化学与工业, 2003, 23(4):86-88
    [137]杨先国,陈四保,陈士林,杨大坚,刘塔斯.玉竹中黄酮类成分的薄层色谱指纹图谱研究[J],中国中药杂志,2005, 30(2):105-106
    [138]吴春霞,宋曼殳,阿不都拉·阿巴斯.小甘菊不同部位总黄酮含量测定及其薄层色谱的初步分析[J],食品科学,2007, 28(7):430-433
    [139]焦玉,李丹艺,刘晓秋,史超.五灵脂中两个黄酮成分的提取分离与薄层色谱鉴别,中药材,2009,32(7):1039-1041
    [140]张荣泉,张蓉.高效液相色谱法测定沙棘提取物中总黄酮含量[J],天津药学, 2001, 13(3):65-66
    [141]徐静,郭长江,韦京豫,杨继军,程霜,吴健全.蔬菜中类黄酮物质的高效液相色谱测定法[J],营养学报,2005, 27(4):276-279
    [142]郝旭亮,张素琼,王晓剑,李青山.罗布麻总黄酮高效液相色谱指纹图谱研究[J],中国中药杂志,2008, 33(16):1968-1971
    [143]梁泰刚,孟旭鹏,赵承孝,班树荣,李青山. HPLC法同时测定不同产地满山红中4种黄酮成分的含量[J],药物分析杂志,2010, 30 (2):279-281
    [144]肖建波,朱华,钟世安,周春山,黄海滨.反相高效液相色谱法用于地钱中黄酮类化合物的分离与测定[J],分析试验室,2005, 24(4):17-19
    [145]赵秀娟,赵艳,张宇秋,吴坤.高效液相色谱电化学法检测人体血浆中芹菜素和相关黄酮类化合物[J],分析化学,2007, 35(10):1517-1520
    [146]艾国民,张雁冰,王克让,刘宏民,孙建伟.高效液相色谱法测定马桑叶中总黄酮含量[J],郑州大学学报(理学版),2006, 38(1):70-73
    [147]Britton G,Liaaen-Jensen S and Pfander H. In Carotenoids.Basel Boston and Berlin:Birkhauser,1995(1A)
    [148]范晓等.海洋生物技术新进展,微藻类胡萝卜素[M].青岛:海洋出版社,1999,212-239
    [149]Stahl W,Sies H.Physical quenehing of singlet oxygen and cis-trans isomerization of carotenoids[J].Ann NY Aeda Seience, 1993, 691:10-19.
    [150]Bhosale P.Environmental and culturalstimulants in the production of carotenoids frommicroorganisms.AppL Microbiol Biotechnol, 2004, 63 (4):351-361.
    [151]olson J A.Biological actions of carotenoids[J] .Joumal of nutrition, 1989, 119: 94-95.
    [152]Nagaraja GM, NagarajuJ. Genome fingerpriniing of the silkworm,Bombyx mori,using random arbitrary primers[J]. Electrophotesis , 1995, 16 (9): 1633-1638
    [153]Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids[J]. Prog Lipid Res , 2004, 43 (3): 228- 265
    [154]郑阳霞,杨婉身,季静,王里.类胡萝卜素生物合成相关基因的克隆及其遗传工程的研究进展,细胞生物学杂志,2006, (28): 442- 446
    [155]Krinsky Nl. Carotenoids as antioxidants [J]. Nutrition, 2001, 17: 815- 817
    [156]赵文恩,韩雅珊,乔旭光.类胡萝卜素清除活性氧自由基的机理[J].化学通报,1999,(4):25-27
    [157]Jagannadham M V.The Structure of caretenoids[J] .Elsevier Seience, 1999, 236
    [158]Blount JD, Moller AP, Houston DC. Why egg yolk is yellow[J]. Trends Ecol Evol,2000, 15 (2): 47-49
    [159]Surai PF, Sparks NH.Comparative evaluation of the effect of two maternal diets on fatty acids, vitamin E and carotenoids in the chick embryo[J]. Br Poult Sci, 2001, 42 (2): 252- 259
    [160]Surai PF.Effect of selenium and vitamin E content of the maternal diet on the antioxidant system of the yolk and the developing chiek[J]. Br Pouir Sci, 2000, 41 (2): 235- 243
    [161]田允波.维生素A胡萝卜素与牛的繁殖机理[J].甘肃畜牧兽医,1991,(2):28-30
    [162]彭光华,李忠,张声华.薄层色谱法分离鉴定构祀子中的类胡萝卜素[J].营养学报,1998, 20 (l): 76-78
    [163]Chew B P.Uptake or orally administeredβ-carotene by blood Plasma,leukoeytes,and Lipoproteins in calves[J]. JAilim Sci, 1993, 71 (3): 730- 739.
    [164]Chew B P.β-carotene,other carotenoids push imxnunity blood and mammary lenkocyte defense[J]. Feedstuffs, 1994, 66 (18): 17-20
    [165]MS-Roth MM. Antitumor activity ofβ-carotene, canthaxantin and phytoneo[J]. Oncology, 1982, 39: 33- 37.
    [166]赵文恩,康保珊,焦凤云等.类胡萝卜素的抗癌作用与基因表达的联系,生物学杂志,2006, 23 (2): 1- 6.
    [167]Pierre Astorg. Food carotenoids and cancer prevention:An overview of current researeh[J], Trends in Food Science and Technology, 1997, 8: 40-6414.
    [168]Trosko J E.The role of stem cells and gap juctional intercellular communication in carcinogenesis[J]. Journal of Bioehemistry and Molecular Biology, 2003, 36 (1): 43-48
    [169]Gaziano JM, Manson JE, Buring JE, Hennekens CH.Dietary antioxidants andcardiovascular disease[J]. Ann NY Acad Sci, 1992, 669: 249-259.
    [170]盛爱武,陈翠云,谢应毅.万寿菊色素浸提方法及其性质的初步研究[J].仲恺农业技术学院学报,2001, 14 (4): 38-41
    [171]刘树兴,胡小军.姜黄色素的研究进展,陕西科技大学学报,2003, 21(4):37-39
    [172]张兆俊,肖丽娟.天然色素高粱红开发应用,粮食与油脂,2005,(5):40-41
    [173]王振宇,赵鑫.超声波提取大花葵色素的工艺研究,林产化学与工业, 2003, 23(2):65-67
    [174]Favati F, King J W, Friedrich J P, Eskins K. Supercritical carbon dioxide extraction of carotene and lutein protein concentrates[J]. J Food Sci, 1988, 53: 1532-1539.
    [175]Degnan AJ, Von Elbe JH, Hartel RW. Extraction of annatto seed by supercritical ?uid carbon dioxide[J], J Food Sci,1991, 56 (6): 1655–1659.
    [176]Spanos GA, Cehn H, Schwartz SJ. Supercritical CO2 Extraction ofβ-Carotene from Sweet Potatoes, J Food Sci,1993, 58 (4):817-820
    [177]Barth MM, Zhou C, Kute KM, Rosenthal GA. Determination of optimum conditions for Supercritical Fluid Extraction of carotenoids from carrot (Daucus carota L.) tissue. J. Agric. Food Chem. 1995,43:2876-2878.
    [178]Vesper H, Nitz S. Changes of SFE and hexane extracts from paprika (Capsicum annuum L.) during storage. Adv. Food Sci. (CTML), 1997, 19(5):178-183.
    [179]Rozzi NL, Singh RK, Vierling RA, Watkins BA. Supercritical Fluid Extraction of Lycopene from Tomato Processing Byproducts[J], J. Agric. Food Chem, 2002, 50 (9):2638–2643
    [180]王伟华,于国萍,张立冬.番茄红素微波萃取工艺条件的研究,东北农业大学学报,2004, 35(5):564-567
    [181]Wi11s RBH,Rangga A.Enzymatic treatment to enhance carotenoid content in dehydrated marigold flower meal[J]. Plant Foods Hum Nur, 1997, 50: 163-169
    [182]颜栋美,姚艾东.金花茶多酚抗氧化性能的研究[J],河南工业大学学报(自然科学版),2009, 30(2):42-45
    [183]杜咏梅,张怀宝,王晓玲等.光度法测定烟草中总类胡萝卜素的方法研究[J],中国烟草科学,2003, (3): 28-29
    [184]惠伯棣,唐粉芳,裴凌鹏.万寿菊干花中叶黄素的实验室制备[J],食品科学,2006, 27(6): 157-160
    [185]惠伯棣,王亚静,裴凌鹏等.酸浆浆果和宿芬中的类胡萝卜素组成分析[J],中国药学杂志,2006, 41(8):583-584
    [186]胡建中,王可兴,潘思轶.高效液相色谱法测定柑橘汁中类胡萝卜素[J],食品科学,2006,27(12): 634-636
    [187]Tsuehida K,Wells MA.Digestion,absorption,transport and storage of fat during the last larval stadium of Manduca Sexta.Changes in the role of lipophorin in the delivery of dietary lipid to fatbody[J].Insect Bioeh-emistry,1988,18:263-268
    [188]陈勇,杨文清,蔡敏,杜静,韩凤梅.板蓝根药材的HPLC特征指纹图谱研究[J],中药研究,2003, 31(3):18-20
    [189]李娟,橙色大白菜类胡萝卜素和黄酮提取测定方法及其积累规律的研究[D],西北农林科技大学硕士论文, 2007
    [190]Kimura M,Rodriguez-Amaya DB.A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids[J].Food Chem, 2002, 78: 389- 398
    [191]Bako E, Deli J, Toth G. HPLC study on the carotenoid composition of Calendula products[J], J Biochem Biophys Methods, 2002, 53: 241-250.
    [192]Day AJ, Bao Y, Morgan MR, Williamson G. Conjugation position of quercetin Glucuronides and effect on biological activity[J] , Free Radic BioL Med, 2000, 29:1234-1243
    [193]阿布拉江.黄酮苷类天然产物的质谱分析方法研究,中国医学科学院,协和医科大学,博士毕业论文,2006 [194 ]Manach C, Morand C, DemignéC, Texier O, Régérat F, Rémésy C.Bioavailability of rutin and quercetin in rats[J], FEBSLett.1997;409(1):12-6.
    [195]Crepy V, Morand C , Besson C. Quercetin but not its glycolsides is absorbtion from the rat stomach [J]. J Agric Food Chem, 2002, 50 (3): 618
    [196]Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ ,Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers[J] . Am J Clin Nutrit. 1995, 62 :1276-1282
    [197]吕鹏,黄晓舞,吕秋军.黄酮类化合物吸收、分布和代谢的研究进展[J],中国中药杂志,2007, 32(19):1961-1964
    [198] Day AJ, Gee JM, DuPont MS,J ohnson IT, Williamson G. Absorption of Quercetin-3-glucoside and quercetin-4’-glucoside in the rat small intestine:the role of lactose phlorizin hydrolase and the sodium-dependent glucose transporter[J], Biochem Pharmacol.2003, 65:1199- 206.
    [199]Sesink AL, Arts IC,Faassen-Peters M,Hollman PC. Intestinal uptake of quercetin-3-glucoside in rats involves hydrolysis by lactose phlorizin hydrolase[J], J.Nutr 2003:133:773-6.
    [200]Nemeth K, Plumb GW, Berrin JG, Juge N,J acob R, Naim HY, Williamson G, Swallow DM, Kroon PA . Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans[J].Eur.J Nutr.2003:42:29-42.
    [201]Crespy V, Morand C, Besson C, Manach C, Demigne C, Remesy C.Comparison of the intestinal absorption of quereetin,phloretin and their glucosides in rats[J].J.Nutr 2001, 131:2109-2114.
    [202]Ioku K, Pongpiriyadacha Y, Konishi Y, Takei Y, Nakatani N, Terao J . Beta-Glucosidase activity in the rat small intestine toward quercetin Monoglucosides[J], Biosci.Biotechnol.Biochem.1998;62:1428-31.
    [203]Nemeth K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA.Deglucosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flaonoid glycosides in humans [J].Eur J Nutr, 2003, 42(1):2 9-42
    [204]Arts IC, Sesink AL, Faassen-Peters M, Hollman PC.The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides[J].Br J Nutr.2004;91:841-847
    [205]Nielsen SE, Breinholt V, Justesen U, Cornett C, Dragsted LO.In vitro biotransformation of flavonoids by rat liver microsomes[J]. Xenobiotiea, 1998, 28 (4): 389- 401
    [206]Breinholt VM, Offord EA, Brouer C. In vitro investigation of cytoehrome P450-mediated Metabolism of dietary flavonoids.Food Chem Toxicol, 2002, 40(5): 609-16
    [207] Otake Y, Hsieh F, Walle T. Glucuronidation versus oxidation of the flavonoidgalangin by human liver microsomes and hepatocytes. Drug Metab Dispos. 2002, 30: 576-581
    [208]Evans WE, Relling MV, Pharmacogenomics:translating functional Genomics into rational theropeutics, Science, 1999, 286 (5439): 487-91
    [209]Tang L, Singh R, qiu Liu Z, Hu M.Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones.Mol Phann, 2009. 6(5): 1466-82.
    [210]Oltunde FE.Mechhanisms for the Hepatoprotective Action of Kolaviron:Studies on Hepatic Enzymes, Microsomal Lipids and Lipid Peroxidation in Czrbontetrachoride-treated Rats[J].Pharmacol Res, 2000, 42 (1) 75
    [211]王超云,傅风华,田京伟.黄芩苷对化学性肝损伤的保护作用[ J],中草药, 2005, 36( 5): 730-732
    [212]郑洁静,续洁琨,江涛.藤茶总黄酮对拘束负荷引起小鼠肝损伤的保护作用[ J],中国药理学通报,2006, 22(10):1249-1253.
    [213]苏俊锋,郭长江,韦京豫.槲皮素对缺血再灌注损伤肝脏的保护作用[ J].营养学报,2003, 25(3):282-285
    [214]Pari L, Gnanasoundari M. Influence of naringenin on oxytetracycline mediated oxidative damage in rat liver [J], Basic Clin Pharmacol Toxicol, 2006 , 98(5): 456-461.
    [215]J.B.Harbome TJ.MABRY and HelgeMabry.THE FLAVONOIDS [M].1975
    [216]Fujimoto N, Hayashiya K,NakajimaK.Studies on the pigments of cocoon. (IV) The formation and translocation of the pigments of green cocoon in the silkworm larvae[J], J Seric Sci Jpn, 1959, 28:30-32
    [217]Onogi A, Osawa K, Yasuda H, Sakai A, Morita H, Itokawa H. Flavonol glycosides from the leaves of Morus alba L,Sho-yakugaku Zasshi, 1994, 47:423–425.
    [218]Zhishen J, Mengcheng T, Jianming W.The determination of ?avonoid contents in mulberry and their scavenging econstituents of the leaves of Morus alba L[J], Chem.Pharm. Bull, 2001, 49, 151-153.
    [220]Katsube T, Imawaka N, Kawano Y, Yamazaki Y, Shiwaku K, Yamane Y. Antioxidant ?avonol glycosides in mulberry (Morus alba L.) leaves isolated based on LDL antioxidant activity, Food Chem, 2006, 97:25– 31
    [221]Hayashiya K,Sugimoto S ,Fujimoto N. Studies on the pigments of cocoon. ( III) The qualitative test of the pigments of green cocoon[J ], J Seric Sci Jpn , 1959 , 28 : 27- 29.
    [222]中国农业科学院蚕业研究所,中国养蚕学(M ),上海:上海科学技术出版社,1991,118-151
    [223]Lahtinen M, Kapari L, Kentta J. Newly hatched neonate larvae can glycosylate: the fate of Betula pubescens bud flavonoids in first instar Epirrita autumnata [J]. J Chem Ecol, 2006, 32: 537-546
    [224]王猛,牛艳山,司马杨虎.家蚕不同茧色品种中尿苷二磷酸-葡萄糖基转移酶( UGT)基因的表达差异[J],蚕业科学,2010, 36(1): 0033-0039
    [225]Luque T,Okano K , O'Reilly DR.Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase [J], Eur J Biochem , 2002, 269 : 819-825.
    [226]Takaaki D, Chikara H, Masatoshi K.The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties, PNAS, 2010 , 107: 11471-11476
    [227]Bryant JD, Meeord JD, UnluLK, Erdman JW.Isolation and Partial charaeteri-zation of alpha-and beta-Carotene-containing carotenoprotein from carrot (Daucuscarota L.)rootchromoplasts[J]. J Agric Food Chem, 1992, 40(4): 545-549
    [228]Garate AM, Milicua JCG, Gomez R, Macarulla JM, Britton G. Purification and characterization of the blue carotenoprotein from the caparace of the crayfish Procambarus clarkii (Girard) [J] , Biochimica et Biophysica Acta (BBA), 1986, 881(3):446-455
    [229]Riley CT, Barbeau BK, Keim PS, Kézdy FJ, Heinrikson RL, Law JH,The covalent protein structure of insecticyanin, a blue biliprotein from the hemolymph of the tobacco hornworm, Manduca sexta L[J]. J Biological Chem, 1984, 259:3159-13165.
    [230]Hubera R,Schneidera M, Mayra I,Müllera R,Deutzmanna R, Suterb F, Zuberb H,Falkc H, Kayserd H.Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 ? resolution[J], J Mole Biology 1987,198(3) 499-513
    [231]Zeinab E,Michael A. Purification and Partial Characterization of a Lutein-binding Protein from the Midgut of the Silkworm Bombyx mori[J], The Journal of Biological Chemistry, 1996, 271:14722-14726.
    [232]Tabunoki H, Sugiyama H, Tanaka Y, Fujii H, Banno Y, Jouni ZE.Isolation, Characterization, and cDNA Sequence of a Carotenoid Binding Protein from the Silk Gland of Bombyx mori Larvae[J], The Journal of Biological Chemistry, 2002 , 277:32133- 32140
    [233]Feltwell J. The Distribution of Carotinoids in Insects[J]. Aeademic Press, NewYork, 1987: 277-307.
    [234]Kayser H.Comprehensive insect physiology and Pharmacology[J]. Pergamon Press Insect, 1985, 10: 367-415
    [235]Hayashiya K, Nishida J, Matsubara F. The production of antiviral substances, a red ?uorescent protein in the digestive juice of the silkworm larvae (Lepido-Ptera;Bombycidae) [J], Appl Ent Zool, 1969, 4:154–156.
    [236]Pervais S, Brew K. Homology and structure-function correlations between alpha 1-acidglycoprotein and serum retinol-binding protein and its relatives. FASEB J, 1987, 1:209–214
    [237]Flower DR. The lipocalin protein family: structure and function[J]. Biochem. J, 1996, 318: 1-14.
    [238]Paine K, Flower DR.The lipocalin website. Biochim Biophys Acta, 2000, 1482:351– 352.
    [239]Flower DR.Multiple molecular recognition properties of the lipocalin protein family[J], J Mol Recogn,1995, 8:185-195.
    [240]Larsson J, Allhorn M, Akerstrom B. The lipocalin a1-microglobulin binds heme in different species[J], Arch Biochem Biophys, 2004, 432:196–204
    [241]Allhorn M, Berggard T, Nordberg J, Olsson ML, Akerstrom B. Proccessing of the a1 -microglobulin by hemoglobin induces heme-binding and heme-degradationproperties[J], Blood, 2002, 99:1894– 1901
    [242]熊谷恒次,家蚕日107号蚕茧的荧光色的遗传关系,1932,(20):286
    [243]山崎寿.关于蚕茧荧光色的研究(Ⅱ荧光色的遗传) [J].日本蚕丝学杂志,1936, 7 (3) : 1–8
    [244]足立美佐男.关于茧的荧光[J].日本蚕丝学杂志,1937,8: 48–49
    [245]向仲怀,黄先智,夏庆友.家蚕茧层荧光色的遗传分析[J],蚕业科学,1997, 23 (2) : 87–91
    [246]虞晓华.家蚕荧光茧色的遗传分析[J].江苏蚕业,1997, 19(3) : 1 - 7
    [247]刘敬全,崔玉梅,于振诚.荧光茧色判性品种和后代杂交遗传表现[J],蚕业科学, 1990, 16:180-182
    [248]于振诚,段兆祥,顾寅玉,张风林,李道义.家蚕荧光茧色判性遗传学研究,北方蚕业,1999, 1(80):14-15
    [249]刘敬全,崔玉梅,于振诚.家蚕荧光茧色判性蚕品种选育的研究[J].蚕业科学, 1992, 18 (4): 258 - 259
    [250]徐辉,封云芳.?桑蚕茧的荧光色、结构和性能研究[J],蚕业科学,1990, 2:19-20
    [251]Luque T,Okano K,Oreilly DR.Charaeterization of a novel silkworm(Bombyx mori) Phenol UDP-glueosyltransferase[J], Eur J Bioehem, 2002, 269 (3):819- 825.
    [252]高希武,董向丽,郑炳宗.棉铃虫谷胱甘肽-S-转移酶(GSTs):杀虫药剂和植物次生性物质的诱导与谷胱甘肽S-转移酶对杀虫药剂的代谢,昆虫学报,1997,40(2): 122-127
    [253]金子英雄.紫外线下呈黄、紫荧光色蚕茧水溶液的理化学性质的差异[J].日本蚕丝学杂志,1931, 3 (3) : 114
    [254]味泽昭义.蚕茧解舒的理化学研究(Ⅱ)荧光色茧层丝胶溶液的表面张力[J].日本蚕丝学杂志, 1968, 37 (2) : 123 - 126
    [255]虞晓华,刘毅飞.雌雄蚕茧茧质和丝质差异性分析[J],纺织学报,2005, 26(4):36-38
    [256]Fujimoto N, Kawakami K. Studies on the pigments of cocoon (Ⅱ) Genetical relationship between green cocoon and light green cocoon(Sasamayu) in the silkworm, Bombyx mori [J]. J Seric Sci Jpn,1958,27(6):391-392
    [257]胡小龙.野蚕线粒体基因组分析及家蚕荧光茧判性机理研究[D],苏州大学硕士论文,2010
    [258]Schefe JH, Lehmann KE, Buschmann IR, et al. Quantitative real-time RT-PCR data analysis: current concep ts and the novel“geneexp ression s CT difference”formula [ J ]. J Mol Med, 2006, 84: 901– 910
    [259]黄飞飞.家蚕尿苷二磷酸-葡萄糖基转移酶基因的功能研究[D],西南大学博士论文,2009
    [260]余泉友,家蚕谷胱甘肽-S-转移酶基因的功能研究[D],西南大学博士论文,2008
    [261]王东,家蚕细胞色素P450和羧酸酯酶家族基因的鉴定和功能研究[D],苏州大学博士论文,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700