面向任务的MIMO雷达波形设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着雷达理论特别是信号处理算法和技术的日趋完善,通过改进接收端信号处理算法来提升雷达性能变得越来越困难,而通过雷达发射端特别是发射波形的设计和优化来提升雷达探测性能得到越来越多的重视。雷达根据环境变化自适应地调整自身发射波形,不仅可改善雷达检测、跟踪等方面的性能,同时使敌方的电子侦察及干扰更加困难。多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达现已成为雷达技术领域的一个研究热点,它的发射天线和接收天线根据系统要求可以进行灵活布置并且每个辐射单元可以发射不同的信号波形,从而在抗截获、检测小雷达截面积(Radar Cross Section, RCS)目标、抑制杂波和提高目标参数估计精度等方面带来更好的性能。波形设计和优化是实现MIMO雷达波形分集优点的重要手段。目前,虽然很多学者对MIMO雷达波形设计方法进行了深入细致的研究,也取得了一些突破和成果,然而针对不同应用场合情况,以提高MIMO雷达探测性能为目的的波形设计与优化方法仍然有很多问题没有得到完全解决。
     本文在前人工作的基础上,结合承担的科研项目,研究了针对不同应用场合下基于单站MIMO雷达的波形设计与优化方法,包括正交编码波形设计,方向图及其时域信号合成,面向检测与跟踪的MIMO雷达自适应波形设计等方面。具体工作概括如下:
     首先,研究了雷达波形设计的基本方法。研究了论文中涉及到的几种信号形式的模糊函数,分析了它们的距离和多普勒分辨性能,并研究了频率分集MIMO雷达的空时频模糊函数。分析了在最大信杂噪比准则下频域波形与检测性能之间的关系;给出了在总能量约束下最优波形的能量谱密度;在此基础上,提出了在已知频域最优波形的情况下,一种时域调频信号的快速设计方法。
     针对MIMO雷达正交波形设计与相关信号处理问题,提出了一种MIMO雷达正交多相码快速设计方法及相应的自适应脉压滤波方法。针对MIMO雷达正交码设计中信号自相关旁瓣和互相关最小化的多目标优化问题,采用一种基于分解的多目标进化算法进行解决。该方法将多目标问题转化为多个子问题并行求解,每个子问题的优化通过与近邻子问题之间的进化操作来完成,弥补了遗传算法计算量大、收敛速度慢、多样性不足等缺点。在接收处理端,考虑到由于设计出的波形无法做到完全正交,导致脉压后的回波中除了自相关旁瓣之外,MIMO雷达不同通道之间的回波还存在互相关干扰。针对以上问题,以最大化系统输出信号与干扰噪声比为准则,提出了一种基于迭代思想的MIMO雷达自适应脉冲压缩方法,该方法利用对目标不同距离单元回波信息进行多次估计,进而自适应地对距离旁瓣和互相关干扰进行抑制,在一定程度上弥补了发射波形不完全正交造成的缺陷。
     针对MIMO雷达中发射能量空间分配问题,研究了MIMO雷达的方向图合成以及后续相位编码波形设计方法。在Fuhrmann等人的MIMO雷达方向图合成模型基础上提出了一种基于DFT拟牛顿法的方向图合成方法,这种方法以增加变量数为代价,将功率约束转化为无约束的优化问题;搜索方法上,用当前迭代时刻的负梯度和上时刻的共轭方向的线性组合代替了最陡下降法的固定步长,并且不需计算Hesse逆矩阵。基于合成的方向图,分别研究了两种相位编码波形设计方法:基于概率分配的相位编码波形设计方法与低峰值平均功率比约束下的相位编码设计方法,在讨论相应优化函数的基础上分别研究了其优化方法。
     针对面向目标检测的MIMO雷达波形设计问题,提出了一种基于多相编码的MIMO雷达自适应波形设计方法和一种OFDM-MIMO雷达信号的子载波系数优化方法。对于多相编码设计,采用一种交替搜索与检测工作方式对目标一维距离像进行多次估计,以逐步提高目标检测性能。将最大化信杂噪比作为优化目标,并针对杂波的慢时变特性提出了次最优的优化函数,在对目标函数的波形相位域梯度进行推导的基础上提出了一种相位域恒模共轭梯度优化算法。对于频率正交信号,讨论了发射OFDM波形的MIMO雷达信号的数学模型,基于广义似然检测提出了子载波系数优化的目标函数,并通过遗传算法求解最优值,在此基础上讨论了杂波和噪声对OFDM-MIMO雷达检测性能的影响。
     针对单站MIMO雷达跟踪下的自适应波形设计问题,分析了面向目标跟踪的自适应波形设计框架,在此基础上提出了一种基于粒子滤波的MIMO雷达自适应波形设计方法。首先基于单载频高斯包络脉冲信号分析了系统的状态模型和量测模型,将参数估计均方误差作为波形设计准则,在每一次滤波结束时计算最优发射波形参数并反馈到发射端,以此来提高目标跟踪精度。对于单站MIMO雷达发射波形为OFDM信号的情况下,考虑到系统可能的非线性和非高斯性,采用粒子滤波作为跟踪滤波方法,以总发射能量为约束条件对OFDM信号的子载波系数进行优化,目的是使每次对目标跟踪PCRB矩阵的迹最小,以此来提高MIMO雷达对目标跟踪的精度。
With the development of radar theory, especially signal processing algorithm andtechnology, enhancing radar performances by updating signal processing algorithm inradar receiver become more and more difficult. The research interest turns to transmitterfor the fact that waveform design and optimization can also enhance radar detectingperformance. Via alternating waveform according to the changing environment, theperformace of detecting, tracking and inference suppression is adaptively optimized andthe effects of electronic scouting and inference from enemy are reduced. Multiple-InputMultiple-Output radar has become a hotspot in radar technology. The transmit andreceive antenna of MIMO radar are configured flexibly according to systemrequirement and each unit transmits different waveform, in this way better performancesof low probility of interception, detecting target with low RCS, clutter suppression andtracking are obtained. Waveform design and optimization is crucial means to utilize theadvantages of waveform diversity of MIMO radar. Although many scholars haveinvestigate into MIMO radar waveform design algorithms and a number ofachievements have been acquired, there are still many problems to be solved, especiallyin the fields of waveform design and optimization for different specific applications.
     Based on previous work and combined with my research jobs at present, thisdissertation focuses on the waveform design and optimization algorithms for co-locatedMIMO radar tasks, including orthogonal waveform design, beampattern andtime-domain signal synthesis, adaptive waveform design for detecting and tracking. Themain contents of this dissertation are summarized as follows:
     Firstly,basic method for radar waveform design is analyzed. The ambiguityfunctions of the waveforms menthioned in the thesis are introduced to analyse theperformances of their range and Doppler resolutions. The relation betweenfrequency-domain waveform and detection performance is studied in maximumsignal-clutter-and-noise ratio rule. Energy spectrum density of optimum waveform isdeduced under energy constraint, based on that, a quick waveform design method fortime-domain frequency modulation signal is introduced.
     Focused on orthogonal waveform design and related signal processing for MIMOradar, a novel method for orthogonal phase-coded waveform design and related adaptivepulse compression filter are introduced. To minimize the auto-correlation sidelobe andcross-correlation, a multi-objective evolutionary algorithm based on decomposition isintroduced. The algorithm decomposes muti-objective optimization problem into a number of scalar optimization subproblems and optimizes them simultaneously. Eachsubproblem is optimized by using information from several neighboring subproblems,so the disadvantages of computational complexity, slow convergence and lack ofdiversity in gene algorithm is reduced. For related signal processing, considering theinterferences from sidelobes and different channels caused by correlation of differentechos, a MIMO radar adaptive pulse compression algorithm based on iterative updatingis introduced, the algorithm utilizes the information from echos of a number of rangebins and then restrains the range sidelobe and cross-correlation interferences, in thisway it compensates the shortage caused by imperfect orthogonal waveforms.
     Focused on the spatial distribution of transmitted energy for MIMO radar, amethod for beampattern synthesis and follow-up phase-coded signal design for coherentMIMO radar are studied. Under the beampattern synthesis scheme for MIMO radardeveloped by Fuhrman, a beampattern synthesis method based on DFT newton-likealgorithm is studied which transfoms power restraint problem into a problem withoutrestraints at the cost of increased the number of variables. It substitutes alterablesearching steps for fixed steps of steepest descent method without calculating Hessematrix. Based on the results of baeampattern synthesis, two phase-coded waveformdesign methods are studied: The first is phase-coded waveform based on probabilityoptimization, in which the correlation matrix is denoted with code set and probability,and code is obtained by gambling. The second is phase-coded waveform based on lowpeak average ratio, the related optimization function is introduced and optimized bycyclic optimization algotithm.
     Focused on the waveform design of target detection for MIMO radar, a method ofadaptive waveform design for MIMO radar based on phase-coded signal and asub-carrier coefficients optimization method for spatial-diversed OFDM waveform arestudied. For the design of phase-coded waveform, a pattern of alternative searching anddetecting is introduced: Firstly an initial waveform is transmitted to get a primaryestimation of target range profile, then waveform is optimized to increase signal-clutterand noise ratio and a preciser estimation is obtained. This process is repeated to enhancedetection performance. Based on the phase-domain grads of optimization function, aphase-domain conjugated grads optimization algorithm is introduced. For thefrequency-coded waveform, MIMO radar model based on OFDM waveform is studied.The optimization object function of sub-carrier coefficients based on GeneralLikelihood Ratio Test is introduced and solved by gene algotithm. The effect of clutterand noise on the detection performance of OFDM-MIMO radar is shown at the end of this chapter.
     Focused on the waveform design of adaptive tracking for colocated MIMO radar, aadaptive waveform design scheme for target tracking is analysed, on which a adaptivewaveform design algotithm for MIMO radar based on particle filtering is studied.Firstly the state model and measure model are analysed based on single-carrier gaussianpulse. Taking the mean square error of parameter estimation as waveform designstandard, the optimum transmitted waveform parameters are calculated and feed back tothe transmitter in the end of each filtering to increase the tracking precision. For thesituation of colocated MIMO radar which transmits OFDM waveform, particle filteringis taken account considering the possible nonlinear and nongaussian characteristic.Under the contraint of transmitted energy, the sub-carrier coefficients of OFDMwaveform are optimized to minimizing the trace of PCRB matrix. In this way thetracking accuracy is improved.
引文
[1]左群声,徐国良,马林.雷达系统导论(第三版)[M].北京:电子工业出版社,2006.
    [2]张直中.雷达信号的选择与处理[M].北京:国防工业出版社,1979.
    [3]张明友.数字阵列雷达和软件化雷达[M].北京:电子工业出版社,2008.
    [4]陈宝林.最优化理论与算法(第二版)[M].北京:清华大学出版社,2005.
    [5] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: CambridgeUniv. Press,2004.
    [6] Simon Haykin (著),郑宝玉(译).自适应滤波器原理(第四版)[M].北京:电子工业出版社,2010.
    [7]王永良,丁前军,李荣锋.自适应阵列处理[M].北京:清华大学出版社,2009.
    [8] Richard Klemm (著),南京电子技术研究所(译).空时自适应处理原理[M].北京:高等教育出版社,2009.
    [9]吴顺君,梅晓春.雷达信号处理和数据处理技术[M].北京:电子工业出版社,2008.
    [10] Simon Haykin. Cognition is the key to the next generation of radar systems[J].IEEE13th Digital Signal Processing Workshop and5th IEEE Signal ProcessingEducation Workshop,2009:463-467.
    [11] Woodward P M. Probability and Information Theory, with Applications to Radar
    [M]. New York: Pergamon Press,1953.
    [12] Siebert W M. A radar detection philosophy[J]. IRE Transactions on InformationTheory,1956, IT-2:835-852.
    [13] A W Rihaczek. Radar signal design for target resolution[J]. Proceedings of theIEEE,1965,53(2):116-128.
    [14] Westerfirld E C, R H Prager, and J L Stewart. Processing gains againstreverberation(clutter) using matched filters[J]. IRE Transactions on InformationTheory,1960, IT-6:342-348.
    [15] Y Bar-Shalom, T E Fortmann. Tracking and Data Association[M]. Academic Press,1988.
    [16] T H Glisson, C I Black and A P Sage. On sonar signal analysis[J]. IEEETransactions on Aerospace and Electronic Systems,1970,6(1):37-49.
    [17] R L Mitchell, A W Rihaczek. Matched filter responses of the linear FMwaveform[J]. IEEE Transactions on Aerospace and Electronic Systems,1968,4(3):417-432.
    [18] R J McAulay, J R Johnson. Optimal mismatched filter design for radar ranging,detection, and resolution[J]. IEEE Transactions on Information Theory,1971,17(6):696-701.
    [19] D W Tufts. Optimum waveforms subject to both energy and peak-valueconstraints[J]. Proceedings of the IEEE,1964,52(9):1002-1007.
    [20] F C Schweppe, D L Gray. Radar signal design subject to simultaneous peak andaverage power constraints[J]. IEEE Transactions on Information Theory,1966,12(1):13-26.
    [21] A W Rihaczek, R L Mitchell. Radar waveforms for suppression of extendedclutter[J]. IEEE Transactions on Aerospace and Electronic Systems,1967,3(3):510-517.
    [22] C P Kaiteris,W L Rubin. Radar-waveform design for detecting targets in clutter[J].Proceeding of IEE,1967,114(6):696-702.
    [23] D F Delong, E M Hofstetter. On the design of optimum radar waveforms forclutter rejection[J]. IEEE Transactions on Information Theory,1967,13(3):454-463.
    [24] D F Delong, E M Hofstetter. The design of clutter-resistant radar waveforms withlimited dynamic range[J]. IEEE Transactions on Information Theory,1969,15(3):376-385.
    [25] M R Bell. Information theory and radar waveform design[J]. IEEE Transactionson Information Theory,1993,39(5):1578-1597.
    [26] M R Bell. Information theory and radar: mutual information and the design andanalysis of radar waveforms and systems[D]. Pasadena: California Inst. Technol,1988.
    [27] A Leshem, O Naparstek and A Nehorai. Information theoretic radar waveformdesign for mutiple targets[C]. Waveform Diversity and Design Conference2007,2007:362-366.
    [28] B F LaScala, W Moran, R J Evans. Optimal adaptive waveform selection fortarget detection[C]. IEEE Radar Conference2003,2003:492-496.
    [29] K Gerlach, F F Kretschmer. General forms and properties of zero cross-correlationradar waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems,1992,28(1):98-104.
    [30] J P Costas. A study of a class of detection waveforms having nearly idealrange-doppler ambiguity propertied[J]. Proceedings of IEEE,1984,72(8):996-1009.
    [31] S W Golomb, H Tayler. Constructions and properties of Costas arrays[J].Proceedings of IEEE,1984,72(29).
    [32] O Moreno, R A Games and H Taylor. Sonar sequences from costas arrays and thebest known sonar sequences with up to100symbols[J]. IEEE Transactions onInformation Theory,1991,39(6):1985-1987.
    [33] Jiann-Ching Guey. Sequence and waveform set design for radar andcommunication systems[D]. Purdue University,1995.
    [34] Chieh-Fu Chang. Waveform techniques for improved delay-doppler radarmeasurment[D]. Purdue University,2004.
    [35] D J Kershaw, R J Evans. Optimal waveform selection for tracking systems[J].IEEE Transactions on Information Theory,1994,40(5):1536-1550.
    [36] D J Kershaw, R J Evans. Adaptive waveform selection for tracking in clutter[C].Proc.1994Amer. Cont. Conf.1994.
    [37] D J Kershaw, R J Evans. Waveform selective probabilistic data association[J].IEEE Aerospace and Electronic Systems,1997,33(1):1180-1188.
    [38] R Niu, P Willett and Y Bar-Shalom. Selection of the radar waveform form trackingconsiderations[J]. Proceedings of the2001IEEE Radar Conference,2001:246-251.
    [39] S Hong, R Evans. Control of waveform and detection thresholds for optimal targettracking in clutter[C]. Proceedings of the39thIEEE Conference on Decision andControl,2000:3906-3907.
    [40] S Suvorova, S D Howard. Waveform libraries for radar tracking applications:maneuvering targets[C].40thAnnual Conference on Information Sciences andSystems,2006:1424-1428.
    [41] C Rago, P Willett and Y Bar-Shalom. Detection-tracking performance withcombined waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,40(5):1536-1550.
    [42] Wong K T. Adaptive pulse-diverse radar/sonar waveform design[C]. Proceedingsof the1998IEEE Radar Conference,1998:105-110.
    [43] Sira S P, Papandreou-Suppappola A, Morrell D, Cochran D. Waveform-agilesensing for tracking multiple targets in clutter[C]. Information Sciences andSystems200640th Annual Conference,2006:1418-1423.
    [44] Kyriakides I, Trueblood T, Morrell D, Papandreou-Suppappola A. Multiple targettracking using particle filtering and adaptive waveform design[C]. Signals,Systems and Computers200842nd Asilomar Conference,2008:1188-1192.
    [45] Ying Li, Moran W, Sira S P, Papandreou-Suppappola A, Morrell D. Adaptivewaveform design in rapidly-varying radar scenes[C].2009International WaveformDiversity and Design Conference,2009:263-267.
    [46] Hurtado M, Nehorai A. Bat-inspired adaptive design of waveform and trajectoryfor radar[C].200842nd Asilomar Conference on Signals, Systems and Computers,2008:36-40.
    [47] R Sivaswamy. Self-clutter cancellation and ambiguity properties ofsubcomplementary sequences[J]. IEEE Transactions on Aerospace and ElectronicSystems,1982,18(2):163-180.
    [48] S P Sira, D Morrell and A Papandreou-Suppappola. Waveform design andscheduling for agile sensors for target tracking[C]. Asilomar Conference onSignals, Systems and Computers,2004:820-824.
    [49] S P Sira, A Papandreou-Suppappola and D Morrell. Time-varying waveformselection and configuration for agile sensors in tracking applications[C]. IEEEInternational Conference on Acoustics, Speech, and Signal Processing,2005:881-884.
    [50] S P Sira, A Papandreou-Suppappola and D Morrell. Characterization of waveformperformance in clutter for dynamically configured sensor systems[C]. WaveformDiversity and Design Conference,2006.
    [51] S P Sira, A Papandreou-Suppappola and D Morrell. Waveform scheduling inwideband environments[C]. IEEE International Conference on Acoustics, Speech,and Signal Processing,2006.
    [52] S P Sira, A Papandreou-Suppappola and D Morrell. Dynamic configuration oftime-varying waveforms for agile sensing and tracking in clutter[J]. IEEETransactions on Signal Processing,2007,55(7):3207-3217.
    [53] S P Sira, D Cochran, A Papandreou-Suppappola, et al. Adaptive waveform designfor improved detection of low-RCS targets in heavy sea clutter[J]. IEEE Journalon Selected Topics in Signal Processing,2007:56-66.
    [54] S P Sira. Waveform-agile sensing for target tracking and detection in clutter[D].Arizona State University,2007.
    [55] Y Li, A Papandreou-Suppappola and D Morrell. Instantaneous frequencyestimation using sequential Bayesian techniques[C]. in Asilomar Conference onSignals, Systems and Computers,2006.
    [56] Y Li, D Simon, A Papandreou-Suppappola, et al. Sequential MCMC estimation ofnonlinear instataneous frequency[C]. IEEE International Conference on Acoustics,Speech, and Signal Processing,2007:1177-1180.
    [57] Y Li, S P Sira, A Papandreou-Suppappola, et al. Maximizing detectionperformance with waveform design for sensing in heavy sea clutter[C]. IEEEStatistical Signal Processing Workshop,2007:249-253.
    [58] Y Li, S P Sira, W Moran, et al. Adaptive sensing of dynamic target state in heavysea clutter[C]. International Workshop in Computational Advances inMulti-Sensor Adaptive Processing,2007:9-12.
    [59] Y Li. Dynamic wavefom design for sensor systems with novel estimation ofsensing environment characteristics[D]. Arizona State University,2010.
    [60] S Sowelam, A H Tewfik. Optimal waveform selection in range-dopplerimaging[C]. International Conference in Image Processing,1994:441-445.
    [61] S Sowelam, A H Tewfik. Adaptive waveform selection for target classification[C].European Signal Processing Conference,1996.
    [62] S Sowelam, A H Tewfik. Waveform selection in radar target classification[J].IEEE Transactions on Information Theory,2000,46(3):1014-1029.
    [63] A Leshem, O Naparstek and A Nehorai. Information theoretic adaptive radarwaveform design for multiple extended targets[J]. IEEE Journal of Selected Topicsin Signal Processing,2007,1(1):42-55.
    [64] N A Goodman, P R Venkata and M A Neifeld. Adaptive waveform design andsequential hypothesis testing for target recognition with active sensors[J]. IEEEJournal of Selected Topics in Signal Processing,2007,1(1):105-113.
    [65] J H Bae, N A Goodman. Adaptive waveforms for target class discrimination[C].Waveform Diversity and Design Conference2007,2007:395-399.
    [66]纠博,刘宏伟,李丽亚,吴顺君.一种基于互信息的波形优化设计方法[J].西安电子科技大学学报,2008,35(4):678-684.
    [67] Bo Jiu, Hongwei Liu, Liya Li, Shunjun Wu. A method of waveform design basedon mutual information[J]. Front.Electr.Electron.Eng.China.2009,4(2):134-140.
    [68]纠博,刘宏伟,李丽亚,吴顺君.雷达波形优化的特征互信息方法[J].西安电子科技大学学报.2009,36(1):139-144.
    [69]纠博,刘宏伟,李丽亚,吴顺君.基于相位调制的宽带雷达波形设计方法[J].电子与信息学报.2008,30(9):2038-2041.
    [70] J R Guerci, S U Pillai. Theory and application of optimum transmit-receiveradar[C]. Proceedings of IEEE International Radar Conference,2000:705.
    [71] J R Guerci, S U Pillai. Adaptive transmission radar: the next “wave”[C].National Aerospace and Electronics Conference2000,2000:779-786.
    [72] S U Pillai, J R Guerci and S R Pillai. Joint optimal tx-rx design for multiple targetidentification problem[C]. Sensor Array and Multichannel Signal ProcessingWorkshop Proceeding2002,2002:553-556.
    [73] D A Garren, M K Osborn, A C Odom et al. Optimal transmission pulse shape fordetection and identification with uncertain target aspect[C]. Radar Conference2001,2001:123-128.
    [74] Bo Jiu, Hongwei Liu, Shunjun Wu. A method of waveform design based onmulti-eigenvector selection[C]. IET Radar International Conference2009,2009.
    [75]纠博,刘宏伟,吴顺君.多特征子空间波形优化设计方法[J].电子与信息学报,2009,31(12):2858-2863.
    [76]纠博,刘宏伟,胡利平,吴顺君.针对目标识别的波形优化设计方法[J].电子与信息学报,2009,31(11):2585-2590.
    [77] http://www.darpa.mil/spo/programs/kassper.htm
    [78] W Baldygo, M Wicks, R Brown, et al. Artificial intelligence applications toconstant false alarm rate(CFAR) processing[C]. IEEE1993Nat. Radar Conf.2003:275-280.
    [79] G Capraro, G B Berdan, R A Liuzzi, et al. Artificial intelligence and sensorfusion[C]. Proc.2003Int. Conf. Integration Knowledge Intensive MultiagentSystems,2003:591-595.
    [80] G Capraro, G B Berdan, R A Liuzzi, et al. Autonomous intelligent radarsystem(AIRS) for multi-sensor radars[C]. Proc.1stInt. Workshop ComputationalAdvances Multisnesor Adaptive Processing,2005.
    [81] G Capraro, G B Berdan, R A Liuzzi, et al. Knowledge-based radar signal and dataprocessing.[C]. NATO RTO Lecture Series233,2003.
    [82] S Haykin. Cognitive radar: A way of the future[J]. IEEE Signal ProcessingMagazine,2006,23(1):30-40.
    [83] S Miranda, C Baker, et al. Knowledge-based resource management formultifunction radar[J]. IEEE Signal Processing Magazine,2006,23(1):66-76.
    [84] J R Guerci, E J Baranoski. Knowledge-Aided Adaptive Radar at DARPA[J], IEEESignal Processing Magazine Special Section on Knowledge-Based Systems forAdaptive Radar: Detection, Tracking and Classification,2006,23(1):41-50.
    [85] Patton L K, Rigling B D. Modulus Constraints in Adaptive Radar WaveformDesign[C]. IEEE Radar Conference2008,2008:1-6.
    [86] S Kay, J H Thanos. Optimal Transmit Signal Design for Active Sonar/radar[C]. inProc.2002Int. Conf. on Acoustics, Speech, and Signal Processing,2002.
    [87] S U Pillai, H S Oh, D C Youla, et al. Optimal Transmitreceiver Design in thePresence of Signal-dependent Interference and Channel[J]. IEEE Transactions onInformation Theory,2000,46(2):577-584.
    [88]刘千里,陈志浩.探测掩埋小目标的声纳信号波形设计研究[J].船舶电子工程,2011,30(11):155-158.
    [89]庄珊娜,张劲东,贺亚鹏,朱晓华.基于凸优化的自适应子载波调制OFDM雷达波形优化设计[J].南京理工大学学报,2010,34(6):799-802.
    [90]公绪华,孟华东,魏轶旻,王希勤.杂波环境下面向扩展目标检测的自适应波形设计方法[J].清华大学学报(自然科学版),2011,5111:1652-1656.
    [91]魏轶旻,孟华东,毛滔,王希勤.基于凸优化方法的认知雷达波形设计[J].现代雷达,2012,34(25603):18-21.
    [92]魏轶旻,孟华东,刘一民,王希勤. Radar phase-modulated waveform design forextended target detection[J]. Tsinghua Science and Technology,2011,1604:364-370.
    [93] D J Rabideau, P Parker. Ubiquitous MIMO multifunction digital array radar[J].Conference Record of the Thirty-Seventh Asilomar Conference on Signals,Systems and Computers,2003,1:1057-1064.
    [94] K J Gartz. Generation of uniform amplitude complex code sets with lowcorrelation sidelobes[J]. IEEE Transactions on Signal Processing,1992,40(2):343-351.
    [95] K W Forsythe, D W Bliss. Waveform correlation and optimization issues forMIMO radar[C].2005Conference Record of the Thirty-Ninth AsilomarConference on Signals, Systems and Computers,2005:1306–1310.
    [96] H Deng. Polyphase code design for orthogonal netted radar system[J]. IEEETransactions on Signal Processing,2004,52(11):3126-3135.
    [97] H Deng, Discrete frequency-coding waveform design for netted radar system[J].IEEE Signal Processing Letters,2004,11(2):179-182.
    [98] H A Khan, D J Edwards. Doppler problems in othogonal MIMO radars[C]. IEEEInternational Radar Conference,2006,1:24-27.
    [99] Y Yang, R S Blum. Waveform design for MIMO radar based on mutualinformation and minimum mean-square error estimation[C].40thAnnualConference on Information Sciences and Systems,2006,1:111-116.
    [100]Y Yang, R S Blum. MIMO radar waveform design based on mutual informationand minimum meansquare estimation[J]. IEEE Transactions on Aerospace andElectronic Systems,2007,43(1):330-343.
    [101]D R Fuhrmann, G S Antonio. Transmit beamforming for MIMO radar systemsusing partial signal correlation[C].2004Conference Record of the Thirty-EighthAsilomar Conference on Signals, Systems and Computers,2004:7-10.
    [102]G S Antonio, D R Fuhrmann. Beampattern synthesis for wideband MIMO radarsystems[C].,1st IEEE International Workshop on Computational Advances inMulti-Sensor Adaptive Processing,2005:105–108.
    [103]P Stoica, Jian Li and Yao Xie. On probing signal design for MIMO radar[J]. IEEETransaction on Signal Processing,2007,55(8):4151-4161.
    [104]P Stoica, Jian Li, X Zhu, et al. Waveform synthesis for diversity-based transmitbeampattern design[J]. IEEE Transactions on Signal Processing,2008,56(6):2593-2598.
    [105]K W Forsythe, D W Bliss and G S Fawcett. Multiple-Input Multiple-Output(MIMO) radar: performance issues[C]. Conference Record of the Thirty-EighthAsilomar Conference on Signals, Systems and Computers,2004:310-315.
    [106]Chun-Yang Chen, P P Vaidyanathan. Properties of the MIMO radar ambiguityfunction[C].2008IEEE International Conference on Acoustics, Speech, andSignal Processing,2008:2309-2312.
    [107]Gerhard Krieger, Nicolas Gebert and Alberto Moreira. Multidimensionalwaveform encoding: a new digital beamforming technique for synthetic apertureradar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing,46(1):31–46.
    [108] Chun-Yang Chen, P P Vaidyanathan. MIMO radar waveform optimization withprior information of the extended target and clutter[J]. IEEE Transactions onSignal Processing,2009,57(9):3533-3544.
    [109]S Kay. Waveform design for multistatic radar detection[J]. IEEE Transactions onAerospace and Electronic Systems,2009,45(3):1153-1165.
    [110]G Calabrese, L Pagli, O Krasnov, et al. Scalable multi-channel platform forwaveform-agile radar[C]. Proceedings of9thEuropean Radar Conference.2012:254:257.
    [111]刘波. MIMO雷达正交波形设计及信号处理研究[D].成都:电子科技大学博士学位论文,2008.
    [112]段军棋.正交波形MIMO雷达信号设计及处理研究[D].成都:电子科技大学博士学位论文,2009.
    [113]Tianxian Zhang, Guolong Cui, Lingjiang Kong, et al. Phase-modulated waveformevaluation and selection strategy in compound-gaussian clutter[J]. IEEETransactions on Signal Processing,2013,61(5):1143-1148.
    [114]Wen-Qin Wang. Mitigating range ambiguities in high-PHF SAR with OFDMwaveform diversity[J]. IEEE Geoscience and Remote Sensing Letters,2013,10(1):101-105.
    [115]Bo Tang, Jun Tang and Yingning Peng. Waveform optimization for MIMO radar incolored noise: further results for estimation-oriented criteria[J]. IEEE Transactionson Signal Processing,2012,60(3):1517-1522.
    [116]张劲东.自适应雷达系统中波形分集技术的研究[D].南京:南京理工大学博士学位论文,2010.
    [117]张宇. MIMO雷达波形设计及信号处理相关技术研究[D].南京:南京理工大学博士学位论文,2010.
    [118]何学辉.基于凸优化的雷达波形设计及阵列方向图综合算法研究[D].西安:西安电子科技大学博士学位论文,2010.
    [119]胡亮兵. MIMO雷达波形设计[D].西安:西安电子科技大学博士学位论文,2010.
    [120]纠博.宽带雷达波形优化方法[D].西安:西安电子科技大学博士学位论文,2009.
    [1]张直中.雷达信号的选择与处理[M].北京:国防工业出版社,1979.
    [2] P M Woodward. Probability and information theory with applications to radar[M].Pergamon press:1964.
    [3] Skolnik M I.雷达手册(第二版)[M].北京:电子工业出版社,2003.
    [4] Woodward P M. Inormation theory and the design of radar receivers[J].Proceedings of the IRE,1951,39(12):1521-1524.
    [5] Bello P. Joint estimation of delay, Doppler, and Doppler rate[J]. IRE Transactionson Information Theory,1960,6(3):330-341.
    [6] Urkowitz H, Hauer C A and Koval J F. Generalized resolution in radar systems[J].Proceedings of the IRE,1962,50(10):2093-2105.
    [7] Price R, Hofstetter E M. Bounds on the volume and height distributions of theambiguity function[J]. IEEE Transactions on Information Theory,1965,11(2):207-214.
    [8] Sinsky A I, Wang C P. Standardization of the definition of the radar ambiguityfunction[J]. IEEE Transactions on Aerospace and Electronic Systems,1974,10(4):532-533.
    [9] Sivaswamy R. Self-clutter cancellation and ambiguity properties ofsubcomplementary sequences[J]. IEEE Transactions on Aerospace and ElectronicSystems,1982,18(2):163-181.
    [10] Speiser J. Wide-band ambiguity functions[J]. IEEE Transactions on InformationTheory,1967,13(1):122-123.
    [11] Mitchell Richard L, Rihaczek August W. Matched-filter responses of the linearFM waveform[J]. IEEE Transactions on Aerospace and Electronic Systems,1968,4(3):417-432.
    [12] Soliman S S, Scholtz R A. Spread ambiguity functions[J]. IEEE Transactions onInformation Theory,1988,34(2):343-347.
    [13] Mohamed N J. Range-velocity resolution function of nonsinusoidal radar signalswith Gaussian time variations[J]. IEEE Transactions on ElectromagneticCompatibility,1991,33(1):42-50.
    [14] Mohamed N J. Target signature using nonsinusoidal radar signals[J]. IEEETransactions on Electromagnetic Compatibility,1993,35(4):457-465.
    [15] Rendas M J D, Moura J M F. Ambiguity in radar and sonar[J]. IEEE Transactionson Signal Processing,1998,46(2):294-305.
    [16] Dawood M, Narayanan R M.. Ambiguity function of an ultrawideband randomnoise radar[C]. IEEE Antennas and Propagation Society International Symposium,2000,4:2142-2145.
    [17]袁永斌,徐继麟,黄香馥.一种混沌雷达波形的模糊函数[J].电子科学学刊,1998,20(5):641-647.
    [18] S W Golomb, H Tayler. Constructions and properties of Costas arrays[J].Proceedings of IEEE,1984,72(29).
    [19] O Moreno, R A Games and H Taylor. Sonar sequences from costas arrays and thebest known sonar sequences with up to100symbols[J]. IEEE Transactions onInformation Theory,1991,39(6):1985-1987.
    [20] Jiann-Ching Guey. Sequence and waveform set design for radar andcommunication systems[D]. Purdue University,1995.
    [21] Bell M R. Information theroy and radar waveform design[J]. IEEE Transactionson Information Theory,1993,39(5):1578-1597.
    [22] Pillai S U, Oh H S and Youla D C. Optimal transmit-receriver design in thepresence of signal-dependent interference and channel noise[J]. IEEE Transactionson Signal Processing,2000,46(2):577-584.
    [23] S Kay. Modern spectral estimation: theory and application[M]. Rnglewood Cliffs,Prentice-Hall:1988.
    [24] B F LaScala, W Moran, R J Evans. Optimal adaptive waveform selection fortarget detection[C]. IEEE Radar Conference2003,2003:492-496.
    [25] Bhatt T D, Rajan E G, Somasekhar Rao. Design of frequency-coded waveform fortarget detection[J]. IET Radar, Sonar and Navigation,2008,2(5):388-394.
    [26] Thompson J S, Titlebaum E L. The design of optimal radar waveform for clutterrejection using the maximum principle[J]. IEEE Transactions on AerospaceElectronical Systems,1966,3:689-699.
    [27] Delong D F, Hofstetter E M. On the design of optimum radar waveforms forclutter rejection[J]. IEEE Transactions on Information Theory,1967,13:454-463.
    [28] Gerlach K, Steiner M, Lin F C. Detection of a spatially distributed target in whitenoise[J]. IEEE Signal Processing Letter,1997,4:198-200.
    [29] E Fishler, A Haimovich, R S Blum and et al. Spatial diversity in radars-models anddetection performance[J]. IEEE Transactions on Signal Processing,2006,54(3):823-838.
    [30] Fim H M, R S Johnson. Adaptive detection mode with threshold as a function ofspacially sampled clutter-level estimation[J]. RCA Review,1968,29(9):414-464.
    [31] Hansen V G, B A Olesn. Nonparametric radar extraction using a generalized signtest[J]. IEEE Transactions on Aerospace Electronical Systems,1971,7(5):942-950.
    [32]袁亚湘,孙文瑜.最优化理论与方法[M].北京:科学出版社,2003.
    [33] Stephen Boyd. Convex Optimization[M]. UK:Cambridge University Press,2004.
    [34] Jorge Nocedal, Stephen J. Wright. Numerical Optimization[M]. Germany:Springer,2006.
    [35] Kay S. Fundamentals of statistical signal processing: estimation theory[M]. NJ:Prentice-Hall,1993.
    [1] Liu B, He Z S, Zeng J K, et al. Polyphase orthogonal code design for MIMO radarsystems[C]. International Conference on Radar,2006:1-4.
    [2] Liu B, He Z S, He Q. Optimization of orthogonal discrete frequency-codingwaveform based on modified genetic algorithm for MIMO radar[C]. InternationalConference on Communications, Circuits and Systems.2007:966-970.
    [3] Liu B, He Z S. Mitigation of autocorrelation sidelobe peaks of orthogonal discretefrequency-coding waveform for MIMO radar[C].2008IEEE Radar Conference,2008:1-6.
    [4]王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计[J].空军雷达学院学报,2007,21(2):105-107.
    [5] Deng H. Polyphase Code Design for Orthogonal Netted Radar Systems[J]. IEEETransactions on Signal Processing,2004,52(11):3126-3135.
    [6] Deng H. Discrete frequency-coding waveform design for netted radar systems[J].IEEE Signal Processing Letters,2004,11(2):179-182.
    [7] Deng H. Synthesis of binary sequences with good auto correlation and crosscorrelation properties by simulated annealing[J]. IEEE Transactions on Aerospaceand Electronic Systems,1996,32(1):98-107.
    [8] Stoica P, He H, Li J. New algorithms for designing unimodular sequences withgood correlation properties[J]. IEEE Transactions on Signal Processing,2009,57(4):1415-1425.
    [9] K Miettinen. Nonlinear multiobjective optimization. Norwell [M], MA: Kluwer,1999.
    [10] K Deb. Multi-objective optimization using evolutionary algorithms[M]. New York:Wiley,2001.
    [11] S Ruzika, M Wiecek. Approximation methods in multiobjective programming[J].J. Optim. Theory Appl.,2005,126(3):473–501.
    [12] K Tan, E Khor and T Lee. Multiobjective evolutionary algorithms andapplications ser advanced information and Knowledge Processing[M]. Berlin,Germany: Springer-Verlag,2005.
    [13] C A C Coello. An updated survey of GA-based multiobjective optimizationtechniques[J]. ACM Comput. Surv.,2000,32(2):109–143.
    [14] E Zitzler, L Thiele. Multiobjective evolutionary algorithms: A comparative casestudy and the strength Pareto approach[J]. IEEE Transactions on EvolutionComputing,1999,3(4):257–271.
    [15] J D Knowles, D W Corne. The Pareto archived evolutionstrategy: A new baselinealgorithm for multiobjective optimisation[C]. Proc. Congr. Evol. Comput,1999:98–105.
    [16] K Deb, S Agrawal and A Pratap. A fast and elitist multiobjective geneticalgorithm: NSGA-II[J]. IEEE Transactions on Evolution Computing,2002,6(2):182–197.
    [17] C A C Coello, G T Pulido and M S Lechuga. Handling multipleobjectives withparticle swarm optimization[J]. IEEE Transaction on Evolution Computing,2004,8(3):256–279.
    [18] D A V Veldhuizen, G B Lamont. Multiobjective evolutionary algorithms:Analyzing the state-of-the-art[J]. Evolution Computing,2000,8(2):125–147.
    [19] P A N Bosman, D Thierens. The balance between proximity and diversity inmultiobjective evolutionary algorithms[J]. IEEE Transactions on EvolutionComputing,2003,7(2):174–188.
    [20] J D Schaffer. Multiple objective optimization with vector evaluated geneticalgorithms[C]. Proc.1st Int. Conf. Genetic Algorithms,1985:93–100.
    [21] Qingfu Zhang, Hui Li. MOEA/D: A Multiobjective Evolutionary Algorithm Basedon Decomposition[J]. IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
    [22] E J Hughes. Multiple single objective Pareto sampling[C]. Proc.Congr. Evol.Comput.,2003:2678–2684.
    [23] E Zitzler, L Thiele, M. Laumanns and et al. Performance assessment ofmultiobjective optimizers: An analysisand review[J]. IEEE Transactions onEvolutionary Computation,2003,7(2):117–132.
    [24] E Zitzler, K Deb and L Thiele. Comparison of multiobjective evolutionaryalgorithms: Empirical results[J]. Evol. Comput.,2000,8(2):173–195.
    [25] R E Steuer. Multiple Criteria Optimization: Theory, Computation and Application[M]. New York: Wiley,1986.
    [26] I C Parmee, D Cvetkovic. Preferences and their application in evolutionarymultiobjective optimization[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):42–57.
    [27] M Ehrgott. Multicriteria Optimization[M]. Berlin, Germany: Springer-Verlag,2005.
    [28] Ding DaWei, Wang Hongjin, Wang Gang. Evolutionary computation ofmulti-band antenna using multi-objective evolutionary algorithm based ondecomposition[C]. Lecture Notes in Computer Science,2011:383-390.
    [29]周攀,张冬梅,龚文引等.基于正交设计的自适应占优MOEA/D算法研究[J].计算机应用与软件,2013,30(2):58-124.
    [30]张冬梅,龚小胜,戴光明等.求解复杂多目标优化问题MOEA/D-GEP算法[J].华中科技大学学报,2012,40(4):33-36.
    [31]张敏.约束优化和多目标优化的进化算法研究[D].合肥:中国科学技术大学博士学位论文,2008.
    [32] Blunt S D, Gerlach K. Adaptive pulse compression via MMSE estimation [J].IEEE Transactions on Aerospace and Electronic System,2006,42(2):572-584.
    [33] Blunt S D. Multistatic adaptive pulse compression [J]. IEEE Transactions onAerospace and Electronic System,2006,42(3):891–902.
    [34] Blunt S D, Shackelford A K, Gerlach K. Doppler compensation&single pulseimaging using adaptive pulse compression [J]. IEEE Transactions on Aerospaceand Electronic Systems,2009,45(2):647–659.
    [35] Blunt S D, Gerlach K. A novel pulse compression scheme based on minimummean-square error reiteration [C]. Proceedings of the International2003RadarConference,2003:349-353.
    [36] Shannon D B, Karl G. Multi-static adaptive pulse compression [J]. IEEETransactions on Aerospace and Electronic Systems,2006,42(3):891-903.
    [37] Luo Mei-fang, Kong Ling-jiang, Cui Guo-long. A sidelobe suppression methodbased on adaptive pulse compression for random stepped-frequency radar[J].Proceeding of2009IET International Radar Conference,2009:1-4.
    [38] Monzingo R A, Miller T W. Introduction to Adaptive Arrays[M]. Hughes AircraftCompany Fullerton, California. New York: jogh wiley&Sons,1980.
    [1] Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systemsusing partial signal correlation[C]. Proc.38th Asilomar Conference on Signals,System and Computers.2004,1:295–299.
    [2] Tuomas Aittomaki, Visa Koivunen. Low-complexity method for transmitbeamforming in MIMO radars[C]. Proceedings of IEEE International Conferenceon Acoustics, Speech and Signal Processing,2007:305-308.
    [3] Stoica P, Li J, Xie Y. On probing signal design for MIMO radar[J]. IEEETransactions on Signal Processing,2007,55(8):4151-4161.
    [4] Antonio G S, Fuhrmann D R. Beampattem synthesis for wideband MIMO radarsystems[C].2005Proc.1st IEEE International Workshop on ComputationalAdvances in Multi-Sensor Adaptive Processing,2005:105-108.
    [5] Li J, Xu L Z, Stoica P and et al. Range compression and waveform optimizationfor MIMO radar: a cramer-rao bound study[J]. IEEE Transactions on SignalProcessing,2008,56(1):218-232.
    [6]胡亮兵,刘宏伟,刘保昌,吴顺君. MIMO雷达发射方向图匹配和波形优化方法[J].西安电子科技大学学报,2009,(06):1021-1026.
    [7]胡亮兵. MIMO雷达波形设计[D].西安:西安电子科技大学,2010.
    [8]郑志东,张剑云. MIMO雷达波束方向图及其旁瓣抑制方法[J].系统工程与电子技术,2010,(02):287-290.
    [9]张宇,王建新.零点约束的MIMO雷达最小二乘误差方向图合成[J].应用科学学报,2011,(06):571-576.
    [10]张宇. MIMO雷达波形设计及信号处理相关技术研究[D].南京:南京理工大学,2011.
    [11]王勇,刘宏伟,纠博,杨晓超.针对方向图综合的MIMO雷达双边自适应矩阵算法[J].电子与信息学报,2012,(04):898-903.
    [12]莫海生,李军,廖桂生.基于NLS的MIMO雷达方向图综合[J].雷达科学与技术,2008,(06):476-480.
    [13]赵光辉,陈伯孝,朱守平.基于SIAR体制的单基地MIMO雷达方向综合及测角性能分析[J].中国科学(E辑:技术科学),2009,(01):181-192.
    [14]郑志东,张剑云. MIMO雷达波束方向图及其旁瓣抑制方法[J].系统工程与电子技术,2010,(02):287-290.
    [15]杨晓超,刘宏伟,王勇,纠博.最小化旁瓣的MIMO雷达发射方向图优化算法[J].电子与信息学报,2012,(12):2954-2958.
    [16] S Boyd, L Vandenberghe. Convex Optimization[M]. Cambridge, UK: CambridgeUniv. Press,2004.
    [17] Rockafellar R T. Convex analysis[M]. Princeton, N J: Princeton Univ. Press,1970.
    [18] Pardalos P M, Mauricio Resende G C. Handbook of applied optimization[M].Oxford:Oxford University Press,2001.
    [19] McCormick G P. Nonlinear programming: theory, algorithms and application[M].New York: John Wiley&Sons:1983.
    [20] Fletcher R. Practical methods of optimization: unconstrained optimization[M].New York: John Wiley&Sons,1980.
    [21] F Alizadeh, J P A Haeberly. Primal-dual interior-point methods for semidefiniteprogramming: convergence rates,stability and numerical results[J]. SIAM Journalon Optimization,1998,8(3):746-768.
    [22] F Alizadeh, Combinatorial optimization with interior-point methods andsemi-definite matrices[D]. University of Minnesota,1991.
    [23] A Bjorck. Numerical methods for least squares problems[M]. Society forIndustrial and Applied Mathematics,1996.
    [24]陈兰平,焦宝聪.一般无约束优化问题的广义拟牛顿法[J].数学进展,2007,(01):81-85.
    [25]陈兰平,焦宝聪.非凸无约束优化问题的广义拟牛顿法的全局收敛性[J].应用数学,2005,(04):573-579.
    [26]周伟军.拟牛顿法及其收敛性[D].长沙:湖南大学,2006.
    [27]施保昌.约束优化问题的几类拟牛顿法[J].应用数学学报,1991,(01):141-143.
    [1] M N Cohen. Variability of ultra-high range resolution radar profiles and someimplications for target recognition[J]. SPIE,1992,1699:256-266.
    [2] M N Cohen. An overview of high range resolution radar techniques[C].ICASSP’91,1991:107-115.
    [3] D L Jaggard and X G Sun. Scattering from fractally corrugated surfaces[J]. J. Opt.Soc.Am,1990,80(6):1131-1139.
    [4] C Stewart, V Lason and J D Halsey. Comparison of classification approaches forhigh-range resolution radar[J].1992,1700:146-155.
    [5] D R Wehner. High resolution radar[M]. Boston: Artech House,1987.
    [6] D L Mensa. High resolution radar imaging[M]. Boston: Artech House,1981.
    [7]丁鹭飞,张平.雷达系统[M].西安:西北电讯工程学院出版社,1984.
    [8]黄德双.雷达目标一维距离像识别技术的研究[D].西安:西安电子科技大学,1992.
    [9]黄德双.高分辨雷达智能信号处理技术[M].北京:机械工业出版社,2001.
    [10]张直中.雷达信号的选择与处理[M].北京:国防工业出版社,1979.
    [11] Bliss D W, Forsythe K W. Multiple Input Multiple Output (MIMO) radar andimaging: degrees of freedom and resolution[C]. Proc. of37th AsilomarConference on Signals, Systems and Computers,2003(1):54–59.
    [12] Abramovich Y I, Frazer G J. Bounds on the volume and height distributions forthe MIMO radar ambiguity function[J]. IEEE Signal Processing Letters,2008,15(1):505-508.
    [13] Jian Li, Luzhou Xu, Stoica P, et al. Range compression and waveformoptimization for MIMO radar: a cramér-Rao bound based study[J]. IEEETransactions on Signal Processing,2008,56(1):218–232.
    [14] Balzan L A, White L B. Optimal waveform precoder design for narrowbandMIMO radar systems[C]. Proc. of IEEE15th Workshop on Statistical SignalProcessing,2009:517–520.
    [15] V S Chernyak. Fundamentals of multisite radar systems[M]. Gordon and BreachScience Publishers,1998.
    [16] R Srinivasan. Designing distributed detection systems[J]. IEE Proceedings ofradar and signal processing,1993,140(3):191-197.
    [17] R Viswanathan and P K Varshney. Distributed detection with multiple sensors:partI–fundamentals[J]. Proceedings of the IEEE,1997,85(1):54-63.
    [18] R Viswanathan and P K Varshney. Distributed detection with multiple sensors:partII–advanced topics[J]. Proceedings of the IEEE,1997,85(1):64-79.
    [19] A De Maio, M Lops. Design principles of MIMO radar detectors[C]. Proceedingof Waveform Diversity and Design Conference,2006.
    [20] I Bekkerman, J Tabrikian. Target detection and localization using MIMO radarsand sonars[J]. IEEE Transactions of Signal Processing,2006,54:3873-3883.
    [21] Fishler Eran, Haimovich Alex, Blum Rick. Performance of MIMO radar systems:Advantages of angular diversity[C]. Proceedings of the Thirty-Eighth AsilomarConference on Signals, Systems and Computers,2004:305-309.
    [22] Fishler Eran, Haimovich Alexander, Blum Rick. Spatial diversity in radars-Modelsand detection performance[J]. IEEE Transactions on Signal Processing,2006,54(3):823-838.
    [23] Du C, Thompson J S and Petillot. Predicted detection performance of MIMOradar[J]. IEEE Signal Processing Letters,2008(15):83-86.
    [24] Blum R S. Limiting case of a lack of rich scattering environment for MIMO radardiversity[J]. IEEE Signal Processing Letters,2009,16(10):901-904.
    [25] Sammartino, P Baker and Griffiths H. Adaptive MIMO radar systems in clutter[C].IEEE Radar Conference2007,2007:276-281.
    [26] Chin Y C, Frederic P, Ovarlez J P and et al. MIMO radar detection in non-gaussianand heterogeneous clutter[J]. IEEE J. Selected Topics on Signal Processing,2010,4(1):115-126.
    [27]曾建奎,何子述.慢起伏目标的多输入多输出雷达检测性能分析[J].电波科学学报,2008,23(1):158-161.
    [28] Sen S, Nehorai A. Target detection in clutter using adaptive OFDM radar[J]. IEEESignal Processing Letters,2009,16(7):592-595.
    [29] Sen S, Tang G and Nehorai A. Multiobjective optimization of OFDM radarwaveform for target detection[J]. IEEE Transactions on Signal Processing,2011,59(2):639-652.
    [30] Wu X H, Kishk A A and Glisson A W. MIMO-OFDM radar for directionestimation[J]. IET Radar Sonar and Navigation,2010,4(1):28-36.
    [31] Zhang Y, Wang J X. OFDM-coded signals design for MIMO radar[C].9thInternational Conference on Signal Processing,2008:2442-2445.
    [32] Sen S, Nehorai A. OFDM MIMO radar with mutual information waveform designfor low-grazing angle tracking[J]. IEEE Transactions on Signal Processing,2010,58(6):3152-3162.
    [33] Sen S, Hurtado M, Nehorai A. Adaptive OFDM radar for detecting a movingtarget in urban scenarios[C].2009International Waveform Diversity and DesignConference,2009:268-272.
    [34] Levanon N, Mozeson E. Multicarrier radar signal–pulse train and CW[J]. IEEETransactions on Aerospace and Electronic Systems,2002,38(2):707-720.
    [35] Garren D A, Osborn M K, Odom A C. Enhanced target detection andidentification via optimized radar transmission pulse shape[J]. IEEE Proceeding ofRadar, Sonar and Navigation,2001,148(3):130-138.
    [36] Chun-Yang C, P P Vaidyanathan. MIMO radar waveform optimization with priorinformation of the extended target and clutter[J]. IEEE Transactions on SignalProcessing,2009,57(9):3533-3544.
    [37] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge, UK: CambridgeUniv. Press,2004.
    [38] Farina A, Studer F A. Detection with high resolution radar: advanced topics andpotential applications[J]. Chinese Journal of System Engineering and Electronics,1992,3(1):21-33.
    [39] Smith S T. Optimum phase-only adaptive nulling[J]. IEEE Transactions on SignalProcessing,1999,47(7):1835-1843.
    [40]谢政,李建平,汤泽滢.非线性最优化[M].长沙:国防科技大学出版社,2003.
    [41] Grant M, Boyd S. CVX: Matlab software for disciplined convex programming.http://stanford.edu/~boyd/cvx.
    [42] Cover T A, J A Thomas. Elements of information theory[M]. New York: Wiley,1991.
    [43] Kendall, M A Stuart. The advanced theory of statistics [M]. New York: Macmillan,1979.
    [44] Kay S M. Modern spectral estimation: theory and application[M]. NJ:Prentice-Hall,1988.
    [1] S Haykin. Cognition is the key to the next generation of radar systems[C]. DigitalSignal Processing Workshop and5th IEEE Signal Processing Education Workshop,2009:463-467.
    [2] S Haykin. Cognitive radar: A way of the future[J]. IEEE Signal ProcessingMagazine,2006,23(1):30-40.
    [3] J R Guerci, E J Baranoski. Knowledge-Aided Adaptive Radar at DARPA[J], IEEESignal Processing Magazine Special Section on Knowledge-Based Systems forAdaptive Radar: Detection, Tracking and Classification,2006,23(1):41-50.
    [4] D J Kershaw, R J Evans. Optimal waveform selection for tracking systems[J].IEEE Transactions on Information Theory,1994,40(5):1536-1550.
    [5] D J Kershaw, R J Evans. Adaptive waveform selection for tracking in clutter[C].Proc.1994Amer. Cont. Conf.1994.
    [6] D J Kershaw, R J Evans. Waveform selective probabilistic data association[J].IEEE Aerospace and Electronic Systems,1997,33(1):1180-1188.
    [7] C Rago, P Willett and Y Bar-Shalom. Detection-tracking performance withcombined waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,40(5):1536-1550.
    [8] Wong K T. Adaptive pulse-diverse radar/sonar waveform design[C]. Proceedingsof the1998IEEE Radar Conference,1998:105-110.
    [9] Hurtado M, Nehorai A. Bat-inspired adaptive design of waveform and trajectoryfor radar[C].200842nd Asilomar Conference on Signals, Systems and Computers,2008:36-40.
    [10] Scala B L, Rezaeian M and Moran B. Optimal adaptive waveform selection fortarget tracking[C].8thInternational Conference on Information Fusion,2005.
    [11] Sira S P, Papandreou-Suppappola A, Morrell D, Cochran D. Waveform-agilesensing for tracking multiple targets in clutter[C]. Information Sciences andSystems200640th Annual Conference,2006:1418-1423.
    [12] S P Sira, D Morrell and A Papandreou-Suppappola. Waveform design andscheduling for agile sensors for target tracking[C]. Asilomar Conference onSignals, Systems and Computers,2004:820-824.
    [13] S P Sira, A Papandreou-Suppappola and D Morrell. Time-varying waveformselection and configuration for agile sensors in tracking applications[C]. IEEEInternational Conference on Acoustics, Speech, and Signal Processing,2005:881-884.
    [14] S P Sira, A Papandreou-Suppappola and D Morrell. Characterization of waveformperformance in clutter for dynamically configured sensor systems[C]. WaveformDiversity and Design Conference,2006.
    [15] S P Sira, A Papandreou-Suppappola and D Morrell. Dynamic configuration oftime-varying waveforms for agile sensing and tracking in clutter[J]. IEEETransactions on Signal Processing,2007,55(7):3207-3217.
    [16] Ruixin N, Rich S B and Pramod K. Target tracking in widely separatednon-coherent multiple-input multiple-output radar systems[C]. Proc. of theConference Record of the43rdAsilomar Conference on Signal, Systems andComputers,2009:1181-1185.
    [17] Hana G, Vlad M C and Alexander M H. Target tracking in MIMO radar systems:techniques and performance analysis[C]. Proc. of the IEEE Radar Conference,2010:194-199.
    [18] Sandeep G, Arye N. Monopulse MIMO radar for target tracking[J]. IEEETransactions on Aerospace and Electronic Systems,2011,47(1):755-768.
    [19] Qian He, R S Blum and H Godrich. Target velocity estimation and antennaplacement for MIMO radar with distributed antennas[J]. IEEE Journal of SelectedTopics in Signal Processing,2010,4(1):79-100.
    [20] Qian He, R S Blum and A M Haimovich. Noncoherent MIMO radar for locationand velocity estimation: more antennas means better performance[J]. IEEETransactions on Signal Processing,2010,5(7):3661-3680.
    [21] H Godrich, A M Haimovich and H V Poor. An analysis of phase synchronizationmismatch sensituvity for coherent MIMO radar systems[C]. IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing(CAMSAP),2009:153-156.
    [22] M Jabbarian, H Khaleghi. Target tracking in pulse-doppler MIMO radar byextended Kalman filter using velocity vector[C].20thIranian Conference onElectrical Engineering,2012:1373-1378.
    [23] A A Gorji, R Tharmarasa, W D Blair et al. Multiple unresolved target localizationand tracking using colocated MIMO radars[J]. IEEE Transactions on Aerospaceand Electronic Systems,2012,48(3):2498-2517.
    [24] John D Glass, Aaron D. MIMO radar target tracking using the probalilityhypothesis density filter[J].2012IEEE Aerospace Conference,2012:1-8.
    [25]王丽,冯讯.基于空间分集的MIMO雷达目标跟踪算法研究[J].现代雷达,2012,34(5):26-30.
    [26]吴越波,杨景曙,王江.双基地MIMO雷达目标跟踪性能分析[J].系统工程与电子技术,2011,33(12):2655-2661.
    [27] J M Hammersley, K W Morton. Poorman’s Monte Carlo[J]. Journal of the RoyalStatistical Society,1954,16(1):23-28.
    [28] Gordon N, Salmond D J, Smith A F. Novel approach to nonlinear andnon-gaussian bayesian state estimation[J]. IEEE Proceedings,1993,140(2):107-113.
    [29] Kotecha J, H Djuric. Gaussian particle filtering[J]. IEEE Transactions on SignalProcessing,2003,51(10):2592-2601.
    [30] Musso C, Oudjane N, Legland F. Improving regularized particle filter[M]. NewYork: Springer-Verlag,2001.
    [31] K R Koch. Gibbs sampler by sampling-improtance-resampling[J]. Geod SpringerVerlag,2007,81:581-591.
    [32] Oshman Y, Carmi A. Attitude estimation from vector observations using geneticalgorithm embedded quaternion particle filter[J]. Journal of Guidance, Control andDynamics,2006,29(4):879.
    [33]方正,修国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277.
    [34] Martin H. Optimal polarized waveforms for detecting and tracking targets inclutter[D]. Washington University,2007.
    [35] Bassem R, Atef Z. MATLAB simulations for radar systems design[M]. USA:Chapman&Hall/CRC,2004.
    [36] H L vanTrees. Estimation and modulation theory[M]. New York: Wiley,1968.
    [37] P Tichavsky, C H Muravchik and A Nehorai. Posterior Cramer-Rao bounds fordiscrete-time nonlinear filtering[J]. IEEE Transactions on Signal Processing,1998,46(5):1386-1396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700