MIMO雷达波形设计与实时处理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(Multi-Input Multi-Output, MIMO)雷达是目前雷达技术领域的研究热点,其特点是每个发射天线可以独立发射不同的波形,与相控阵雷达所有阵元发射相同的波形相比,MIMO雷达的波形分集能力带来更多的发射自由度。可以通过设计发射波形灵活地设计期望发射方向图的形状。同时,MIMO雷达的波形分集能力是提高雷达资源利用率、实现雷达资源自适应分配调度的重要手段。本论文结合具体科研任务,主要围绕窄/宽带MIMO雷达的波形设计、稳健自适应波束形成方法和新型雷达实时信号处理系统等问题展开研究。
     论文的内容可概括为如下四个部分:
     第一部分研究了窄带MIMO雷达发射波形设计方法。针对窄带MIMO雷达在给定的期望发射波束方向图情况下,如何在线快速设计具有良好的自相关和互相关性能的发射波形问题,提出了基于协方差矩阵空时构造的MIMO雷达发射波形设计方法。首先将发射波形矩阵分解为空域方向矩阵和时域信号矩阵。然后通过一组发射导向矢量构造空域方向矩阵,通过利用MUSIC方法获得这组发射导向矢量的指向角度,而时域信号矩阵是由(0,1)矩阵和离线设计的正交波形集构造获得。实验结果表明该方法避免了复杂的迭代和优化过程,与已有方法相比,所提方法具有相近的发射方向图综合性能,但其计算复杂度明显降低。
     第二部分研究了宽带MIMO雷达发射波形设计方法。首先针对一维均匀线阵宽带MIMO雷达,提出了一种一维宽带MIMO雷达频率不变发射方向图快速综合方法,该方法首先利用均匀线阵的发射方向图与发射波形的频谱具有一维傅立叶变换的关系,去除了发射方向图与发射波形频率的相关性;然后建立了具有恒模约束条件的时域波形最优匹配频率响应的代价函数;最后采用交替优化的思想求解出恒模发射波形。为了匹配二维宽带MIMO雷达系统给定的期望发射方向图,将一维均匀线阵情况下提出的方法进行扩展,通过空域、频域变量的代换及二维逆傅立叶变换去除了发射方向图与波形频率的相关性。并且通过交替优化求解得到具有恒模性质的时域宽带发射波形。提出的方法能够有效地改善宽带MIMO雷达发射波束方向图频率色散问题,并且避免了多维优化问题中复杂的多维搜索,明显降低了运算复杂度,仿真实验验证了所提方法的有效性。
     第三部分研究了稳健自适应波束形成方法。针对导向矢量失配和样本协方差矩阵估计误差导致自适应波束形成性能下降的问题,提出一种基于波束域导向矢量估计的稳健方法。该方法首先利用期望信号角度失配区域的补集构造波束域转换矩阵,克服了当样本协方差矩阵中存在期望信号分量时现有算法出现有用信号对消的缺点。其次推导出波束域导向矢量估计方法,并将其转化为包含恒模约束的非凸二次约束二次规划问题,然后采用半正定松弛规划估计实际的波束域导向矢量。仿真验证了所提方法的有效性。
     第四部分研究了新型雷达实时信号处理系统。针对新型雷达系统(如MIMO雷达,认知雷达等)的结构特点,首先对雷达实时信号处理系统的体系结构、通用性设计等关键技术进行了研究。提出了一种基于交换的开放式雷达系统架构,该系统架构简化了复杂的异构多模块互连方式,有助于提高任务分配、软件设计和调试的效率,并适用于不同需求的雷达系统。然后在此系统架构下,设计了一种新型通用雷达实时信号处理机,该信号处理机采用模块化设计,具有处理能力强,维护扩展性好,可靠性高等特点。最后结合MIMO数字阵雷达系统的具体应用,设计了核心算法节点的任务分配方案,包括窄带MIMO接收处理、宽带波束形成和ISAR成像,并且分析了任务分配方案的实时性能。由于设计的新型通用雷达实时信号处理机具有良好的体系架构,通过配置不同的处理功能模块可以应用于不同的实时信号处理场合。
Multi-input-multi-output (MIMO) radar has been intensively researched recently.MIMO radar is defined as a radar system with multiple antennas to simultaneouslytransmit diverse waveforms freely, as well as multiple antennas to receive the radarreflected signals. Compared with conventional phased-array radar, the waveformdiversity makes MIMO radar have greater flexibility to achieve the desired transmitbeampattern. Meanwhile the waveform diversity of MIMO radar is an important meansof improving resource utilization of radar system and implementing adaptive allocationof radar resources. Combining with a research project, the work of this dissertation isfocused on narrowband/wideband MIMO radar waveform design, robust adaptivebeamforming and new type radar universal real-time signal processing system.
     The main contents of the dissertation are summarized as follows.
     The first part focuses on narrowband MIMO radar waveform design. In order tosynthesize a desired spatial beampattern, which is mapped into a waveform correlationmatrix, a computationally attractive method is proposed. This method decomposes thewaveform matrix into a spatial direction matrix (SDM) and a temporal division matrix(TDM). Then the SDM is formed by using a set of transmit steering vectors, whoseangles can be estimated by MUSIC, and the TDM is constructed by (0,1)-matrix andorthogonal (uncorrelated) waveforms. The proposed algorithm leads toconstant-modulus transmit signals with good auto and cross-correlation property.Furthermore, this algorithm achieves almost the same performance as the cyclicalgorithm while having lower computational complexity than the existing methods. Anumber of numerical examples are presented to demonstrate the effectiveness of theproposed algorithm.
     The second part focuses on wideband MIMO radar waveform design. For onedimension (1-D) MIMO radar, a fast wideband transmit beampattern synthesisalgorithm based on frequency invariant beamformer (FIB) is proposed, the spectrum ofwideband MIMO radar transmit waveforms are computed by FIB, then alternatingmatrix fitting method is used to design unimodular sequences. For matching the desiredtransmit beampattern of two dimension (2-D) wideband MIMO radar system, theproposed method in1-D wideband MIMO radar is expanded to2-D wideband MIMOradar. In order to eliminate any dependency on frequency of emiting waveform,2-Dfourier relationship between uniform rectangular array (URA) transmit beampattern and spectrum of emiting waveform is used. Then cost function of waveform matchingfrequency response is established, which imposes a constraint on constant modulus.Finally, using alternating matrix fitting method to design unimodular sequences. Theproposed method effectively mitigates frequency dispersion of wideband MIMO radartransmit beampattern. The proposed method requires no matrix inversion and has muchlower computation complexity compared with wideband beampattern formation viaiterative techniques (WBFIT) due to the significant reduction of iteration order. Thenumerical simulations have proved the validity of the proposed algorithm.
     The third part focuses on robust adaptive beamforming. In order to solve theproblem of performance degradation due to the imprecise knowledge of the arraysteering vector and inaccurate estimation of the sample covariance matrix, A newapproach based on beamspace steering vector estimation for robust adaptivebeamforming is presented. Firstly, by using the complementary set of the spatial sectorin which the actual steering vector lies, beamspace transformation matrix can beconstructed to ensure that the signal of interest is removed from the samplingcovariance matrix. Then a method for beamspace steering vector estimation is derived,and mathematically expressed as the nonconvex Quadratically Constrained QuadraticPrograms (QCQP) problem with one non-convex quadratic equality constraint, whichcan be successfully solved by using SemiDefinite Relaxation (SDR) techniques.Simulation results show the effectiveness of the proposed algorithm.
     The fourth part is contributed to new type universal radar real-time singal processor.Aming at the structure characteristics of new radar systems (such as MIMO radar,Cognitive radar, etc), the key techniques of radar real-time processing system such assystem architecture and universal design are investigated. An open system architecturefor radar based on switch network is proposed. This system architecture simplifies thecomplex of multiple mudules interconnect, which contribute to improve the efficiencyof task allocation, software design and debugging. Furthermore, this system architectureis suitable for different requirements of radar systems. Based on the proposed openradar system architecture, a new type universal radar real-time signal processor,consisting of fiber processing modules, universal processing modules and high densitystorage module, is designed. This signal processor adopts the concept of modulizeddesign, with high processing proformance, good scalability and high reliability. ForMIMO digital array radar, MIMO receive proceesing method, wideband beamformingand ISAR image are important issues, thus the task allocation scheme and analysis ofreal-time requirement are investigated. The reconfigurable feature of the new universal radar real-time signal processor gives rise to reusability of hardware and scabability.The designed new universal radar real-time signal processor can be comprised ofdifferent modulars for various radar systems, consequently, reusability of hardwaresupporting multiple radar systems, including radar reconnaissance receiver and echosimulator for radar, etc.
引文
[1]丁鹭飞,耿富录.雷达原理.西安:西安电子科技大学出版社,2006.
    [2] Skolnik M I. Introduction to radar systems. New York: McGraw-Hill,2001.
    [3] Skolnik M I. Fifty years of radar. Proceedings of the IEEE,1985,73(2):182-197.
    [4]张光义.相控阵雷达原理.北京:国防工业出版社,2009.
    [5] Fowler C A. Old radar types never die: They just phased array or55years of tryingto avoid mechanical scan. IEEE Aerospace and Electronic Systems Magazine,1998,13(9):24A-24L.
    [6] Fenn A J, Temme D H, Delaney W P, et al. The development of phased-array radartechnology. Lincoln Laboratory Journal,2000,12(2):321-340.
    [7]郭建明,谭怀英.雷达技术发展综述及第5代雷达初探.现代雷达,2012,34(2):1-5.
    [8]郦能敬,王被德,沈齐.对空情报雷达总体论证一理论与实践.北京:国防工业出版社,2008.
    [9] Larry C, Esko J, Joseph G. Phased array development at DARPA.2003IEEEInternational Symposium on Phased Array Systems and Technology, Boston MA,2003.12-17.
    [10] Skolnik M. Attributes of the ubiquitous phased array radar. Proceedings of IEEEinternational symposium on phased array systems and technology,2003.101-106.
    [11] Rabideau D J. Ubiquitous MIMO multifunction digital array radar. Proceedings ofthe37th Asilomar conference on signals, systems and computers,2003IEEE radarConference.2003,1.1057-1064.
    [12] Alter J J. Ubiquitous radar: an implementation concept. Proceedings of IEEE radarconference,2004.65-70.
    [13] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar andimaging: degrees of freedom and resolution. Proceedings of the Conference Recordof the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers,2003:54-59.
    [14] Fishler E, Haimovich A, Blum R, et al. MIMO radar: an idea whose time has come.Proceedings of the IEEE Radar Conference, Philadelphia,2004:71-78.
    [15] Fishler E, Haimovich A, Blum R, et al. Performance of MIMO radar systems:advantages of angular diversity. Proceedings of the Conference Record of theThirty-Eighth Asilomar Conference on Signals, Systems and Computers,2004:305-309.
    [16] Forsythe K W, Bliss D W, Fawcett G S. Multiple-input multiple-output (MIMO)radar: performance issues. Proceedings of the Thirty-Eighth Asilomar Conferenceon Signals, Systems and Computers,2004:310-315.
    [17] B lcskei H, Gesbert D, Papadias C B, et al. Space-time wireless system: From arrayprocessing to MIMO communications. New York: Cambridge University Press,2006.
    [18] Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separatedantennas. IEEE Signal Processing Magazine,2008,25(1):116-129.
    [19] Jian L, Stoica P. MIMO radar with colocated antennas. IEEE Signal ProcessingMagazine,2007,24(5):106-114.
    [20] Dorey J, Garnier G, Auvray G. RIAS, synthetic impulse and antenna radar.Proceedings of the International Conference on Radar, Paris,1989:556-562.
    [21] Luce A S, Molina H, Muller D, et al. Experimental results on RIAS digitalbeamforming radar. Proceedings of the Radar92International Conference,1992:74-77.
    [22] Colin J M. Phased array radars in France: present and future. Proceedings of theIEEE International Symposium on Phased Array Systems and Technology,1996.458-462.
    [23]张庆文,保铮,张玉洪.一种在接收端综合发射阵列波束的新方法.现代雷达,1992,14(3):41-51.
    [24]张庆文,保铮,张玉洪.稀布阵综合脉冲和孔径雷达的接收信号处理.现代雷达,1992,14(5):32-42.
    [25]张庆文,保铮,张玉洪.综合脉冲和天线雷达的时空三维匹配滤波及其性能分析.电子科学学刊,1994,16(5):481-489.
    [26]保铮,张庆文.一种新型的米波雷达──综合脉冲与孔径雷达.现代雷达,1995,17(1):1-13.
    [27]王鞠庭. MIMO雷达信号处理:目标检测与角度估计,南京:南京理工大学博士论文,2010.
    [28]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析.电子学报,2005,33(12A).2441-2445.
    [29]曾建奎. MIMO雷达信号检测的若干问题研究.成都:电子科技大学博士论文,2008.
    [30]江胜利. MIMO雷达的目标检测与波达方向估计研究.南京:南京理工大学博士论文,2008.
    [31]关键,黄勇. MIMO雷达多目标检测前跟踪算法研究.电子学报,2010,38(6).1449-1453.
    [32] Deng H. Polyphase code design for orthogonal netted radar systems. IEEETransactions on Signal Processing,2004,52(11):3126-3135.
    [33] Deng H. Discrete frequency-coding waveform design for netted radar systems.IEEE Signal Processing Letters,2004,11(2):179-182.
    [34] Liu B, He Z, Zeng J, et al. Polyphase orthogonal code design for MIMO radarsystems. Proceedings of the International Conference on Radar,2006:1-4.
    [35] Liu B, He Z, He Q. Optimization of orthogonal discrete frequency-codingwaveform based on modified genetic algorithm for MIMO radar. Proceedings of theInternational Conference on Communications, Circuits and Systems,2007:966-970.
    [36] Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radars.Proceedings of the IEEE Conference on Radar,2006:1-4.
    [37] Zhang Y, Wang J. Improved design of DFCW for MIMO radar. Electronics Letters,2009,45(5):285-286.
    [38] Stoica P, He H, Li J. New alsorithms for designing unimodular sequences withsood correlation properties.IEEE Tram.on signal Processing,2009,57(4):1415-1425.
    [39]胡亮兵,刘宏伟,吴顺君.基于约束非线性规划的MIMO雷达正交波形设计.系统工程与电子技术,2011,33(1):64-68.
    [40] Fuhrmann D R, San Antonio G S. Transmit beamforming for MIMO radar systemsusing signal cross-correlation. IEEE Transactions on Aerospace and ElectronicSystems,2008,44(1):171-186.
    [41] Stoica P, Jian L, Yao X. On Probing signal design for MIMO radar. IEEETransactions on Signal Processing,2007,55(8):4151-4161.
    [42] Li J, Xu L, Stoica P, et al. Range compression and waveform optimization forMIMO Radar: a Cramer–Rao Bound based study. IEEE Transactions on SignalProcessing,2008,56(1):218-232.
    [43] Ahmed S, Thompson J S, Petillot Y R, et.al. Unconstrained synthesis of covariancematrix for MIMO radar transmit beampattern. IEEE Transactions on SignalProcessing,2011,59(8):3837-3849.
    [44]胡亮兵,刘宏伟,杨晓超.集中式MIMO雷达发射方向图快速设计方法.电子与信息学报,2010,32(2):481-484.
    [45] He H, Stoica P, Li J. Designing Unimodular sequence sets with good correlations-including an application to MIMO radar. IEEE Transactions on Signal Processing,2009,57(11):4391-4405.
    [46] Ahmed S, Thompson J S, Petillot Y R, et.al. Finite alphabet constant-envelopewaveform design for MIMO radar. IEEE Transactions on Signal Processing,2011,59(11):5326-5337.
    [47]王德纯.宽带相控阵雷达.北京:国防工业出版社,2010.
    [48] Wei. L and Weiss S. Wideband beamforming: concepts and techniques. Chichester,U.K.: Wiley,2010.
    [49]曹运合,刘峥,张守宏.宽带宽角数字阵列雷达发射波束形成技术.雷达科学与技术,2008,(6):445-449.
    [50]鄢社锋,马远良.传感器阵列波束优化设计及应用.北京:科学出版社,2009:148-149.
    [51]罗永健,俞根苗,张守宏,等.基于确知波形的宽带宽角相控阵发射波束形成方法.电子学报,2003,31(3):358-360.
    [52] H. L. Van T. Optimum Array Processing, Part IV of Detection, Estimation, andModulation Theory, John Wiley&Sons, Inc., New York, U.S.A.,2002.
    [53] Geoffrey S A, Daniel R F. Beampattern synthesis for wideband MIMO radarsystems. Proc.1st IEEE Int. Workshop Computational Advances Multi-SensorAdaptive Processing, Puerto, Vallarta,2005,105-108.
    [54] Jardin P, Nadal F, Middleton S. On Wideband MIMO Radar: Extended SignalModel and Spectral Beampattern Design.2010European Radar Conference,Paris,France,2010,392-395.
    [55] Sarah M, Anton V W, Pascale J. A wideband beamformer extended to MIMO radar.2010International Conference on Measuring Technology and MechatronicsAutomation,2010,381-385.
    [56] Marie S, Mats V. Low PAPR waveform synthesis with Application to widebandMIMO radar.4th IEEE international Workshop on computational Advances inMulti-Sensor Adaptive Processing,2011,5-8.
    [57] He H, Petre S, Li J, Wideband MIMO systems: signal design for transmitbeampattern synthesis. IEEE Transactions on Signal Processing,2011,59(2):618-628.
    [58] Yang Y, Blum R S. MIMO radar waveform design based on mutual informationand minimum mean-square error estimation. IEEE Transactions on Aerospace andElectronic Systems,2007,43(1):330-343.
    [59] Yang Y, Blum R S. Minimax robust MIMO radar waveform design. IEEE Journalof Selected Topics in Signal Processing,2007,1(1):147-155.
    [60] Yang Y, Blum R S, Zishu H, et al. MIMO radar waveform design via alternatingprojection. IEEE Transactions on Signal Processing,2010,58(3):1440-1445.
    [61] Tang B, Tang J, Peng Y. MIMO radar waveform design in colored noise based oninformation theory. IEEE Transactions on Signal Processing,2010,58(9):4684-4697.
    [62] Naghibi T, Behnia F. MIMO radar waveform design in the presence of clutter.IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):770-781.
    [63] Naghibi T, Namvar M, Behnia F. Optimal and robust waveform design for MIMOradars in the presence of clutter. Signal Processing,2010,90(4):1103-1117.
    [64] Pillai S U, Oh H S, Youla D C, et al. Optimal transmit-receiver design in thepresence of signal-dependent interference and channel noise. IEEE Transactions onInformation Theory,2000,46(2):577-584.
    [65] Friedlander B. Waveform design for MIMO radars. IEEE Transactions onAerospace and Electronic Systems,2007,43(3):1227-1238.
    [66] Chen C Y, Vaidyanathan P P. MIMO radar waveform optimization with priorinformation of the extended target and clutter. IEEE Transactions on SignalProcessing,2009,57(9):3533-3544.
    [67] Frost O L. An algorithm for linearly constrained adaptive array processing. Proc.IEEE,1972,60(8):926-935.
    [68] Lee C C, Lee J H. Generalized eigen-space based beamformers. IEEE Transactionon Signal Processing,1995,43(11):2453-2461.
    [69] Lee C C, Lee J H. Eigenspace based adaptive array beamforming with robustcapabilities. IEEE Transaction on Antennas and Propagation,1997,45(12):1711-1716.
    [70]廖桂生,保铮,张林让.基于特征结构的自适应波束形成新算法.电子学报,1998,26(3):23-26.
    [71] Vorobyov S A, Gershman A B., Luo Z Q. Robust adaptive beamforming usingworst-case performance optimization via second-order cone programming. Proc.ICASSP, Orlando,2002.2901–2904.
    [72] Vorobyov S A, Gershman A B., Luo Z Q. Robust adaptive beamforming usingworst-case performance optimization: A solution to the signal mismatch problem.IEEE Transaction on Signal Processing.2003,2(51):313-324.
    [73] Li J, Stoica P, Wang Z. On robust Capon beamforming and diagonal loading. IEEETransaction on Signal Processing.2003,51(7):1702-1715.
    [74] Li J, Stoica P, Wang Z. Doubly constrained robust Capon beamforming. IEEETransaction on Signal Processing.2004,52(9):2407-2423.
    [75] Vorobyov S. A., Chen H., and Gershman A. B., On the relationship between robustminimum variance beamformers with probabilistic and worst-case distortionlessresponse constraints. IEEE Transaction on Signal Processing,2008,56(11):5719-5724.
    [76] Shahbazpanahi S, Gershman A B, Luo Z. Q, et al. Robust adaptive beamformingfor general-rank signal models. IEEE Transaction on Signal Processing.2003,51(9):2257-2269.
    [77] Lundberg M, Scharf L L, Pezeshki A. Multi-rank Capon beamforming.38thAsilomar Conference on Signals, Systems and Computer, Pacific Grove, CA.2004.2335-2339.
    [78]王怀军,许红波,陆珉,等. MIMO雷达技术及其应用分析.雷达科学与技术,2009,7(4):245-249.
    [79]陈曾平,张月,鲍庆龙,数字阵列雷达及其关键技术进展.国防科技大学学报,2010,32(6):1-7.
    [80]吴曼青.数字阵列雷达的发展与构想,雷达科学与技术,2008,6(6):400-405.
    [81] Stapleton R A, Tua C G. Digital Array Radar Test Bed. Naval Surface WarfareCenter, Dahlgren Division, Corporate Communications, Dahlgren, VA,2000.
    [82] Garrod A. Digital modules for phased array radar.1996IEEE InternationalSymposium on Phased Array Systems and Technology,1996.81-86.
    [83]吴曼青.收发全数字波束形成相控阵雷达关键技术研究.系统工程与电子技术,200l,23(4):45-47.
    [84]朱庆明.数字阵列雷达述评.雷达科学与技术,2004,2(3):136-141.
    [85]吴曼青.数字阵列雷达及其进展.中国电子科学研究院学报,2006,1(1):11-16.
    [86]於洪标.数字T/R组件中DBF发射技术的研究.现代雷达,2001,23(1):77-80.
    [87] Stange L C, Metz C, Lissel E, et al. Multiplicatively processed antenna arrays forDBF radar applications. IEE Proceedings Microwaves, Antennas and Propagation,2002,149(2):106-112.
    [88] Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a newdigital beamforming technique for synthetic aperture radar remote sensing. IEEETransactions on Geoscience and Remote Sensing,2008,46(1):31-46.
    [89]彭卫,汪学刚,唐斌,等.基于Dechirping技术的宽带全数字阵列雷达时延测量方法研究.电子与信息学报,2010,32(1):32-37.
    [90]王峰,李婧,刘俊,等.宽带数字阵雷达数字波束形成系统研究,雷达学报,2013,2(3):214-218.
    [91] Brouard P, Constancias L, Brun A, et.al. HYCAM: a new S-band surface radartestbed.2013IET International Radar Conference,2013.115-120.
    [92] Laurent C, Mathieu C, Philippe B, et.al. Coherent collocated MIMO Radardemonstration for air defence applications,2013IET International RadarConference,2013.176-180.
    [93] Jeich M, Lin Y R. Implementation of SDR digital beamformer for microsatelliteSAR, IEEE Geoscience and Remote Sensing Letters.20096(1):92-96.
    [94] John M, Redmond K, Bradley M. I, et.al. Leveraging Software-Defined radiotechniques in multichannel digital weather radar receiver design IEEE Transactionson Instrumentation and Measurement.2012,61(6):1571-1582.
    [95] Texas Instruments. ADC12D1800RF Datasheet.2012.
    [96] E2V. EV10AQ190Datasheet.2010.
    [97] Maxim. MAX5879Datasheet.2013.
    [98] Maxim MAX5881Datasheet.2013.
    [99] Curtiss-Wright Controls Embedded Compuing. CHAMP-AV6QUAD/OCTALPowerPC8641VPX CARD user’s Manual.2008.
    [100] Curtiss-Wright Controls Embedded Compuing. UNITRONIX CHAMP-AV8Datasheet.2008.
    [101] GE Fanuc Intelligent Platforms DSP230Qual Freescale MP8641D Dual FabricVPX Multiprocessor.2009.
    [102] GE Fanuc Intelligent Platforms DSP280Qual Socket2nd generation Intel QuadCore i7Multiprocessor.2011.
    [103] Concurrent Technologies Inc. Technical Reference Manual for VR737/08x VPX.2012.
    [104] CRITICAL IO. SP606R-VPX Data Sheet: Removable SSD Drive Module for6UVPX.2013.
    [1] Fuhrmann, D. R. and Antonio, G. S. Transmit beamforming for MIMO radarsystems using signal cross-correlation. IEEE Transactions on Aerospace andElectronic Systems,2008,44(1):171-186.
    [2] Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal ProcessingMagazine,2007,24(5):106–114.
    [3] Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Transactionson Signal Processing,2007,55(8):4151-4161.
    [4] Stoica P, Li J, Zhu X. Waveform synthesis for diversity-based transmit beampatterndesign. IEEE Transactions on Signal Processing,2008,56(6):2593-2598.
    [5]胡亮兵,刘宏伟,杨晓超,吴顺君.集中式MIMO雷达发射方向图快速设计方法,电子与信息学报,2010,32(2):481-484.
    [6] Hu L B, Liu H W, Zhou S H, Wu S J. Convex optimization applied to transmitbeampattern synthesis and signal waveform design for MIMO radar.2009IETInternational Radar Conference,2009.1-5.
    [7] Yang T, Su T, Zhu W T, et.al. Transmit waveform synthesis for MIMO radar usingspatial-temporal decomposition of correlation matrix,2014IEEE radar conference.2014.
    [8] Ahmed S, Thompson J S, Petillot Y R, Unconstrained synthesis of covariancematrix for MIMO radar transmit beampattern. IEEE Transactions on SignalProcessing,2011,59(8):3837-3849.
    [9] Friedlander B, On the role of waveform diversity in MIMO radar. Digital SignalProcessing,2013,23(2):712-721.
    [10]Andrew J, David L J, James K V. Time-Division Beamforming for MIMO RadarWaveform Design. IEEE Transactions on Aerospace and Electronic Systems,2013,49(2):1210-1223.
    [11]Ahmed S, Thompson J S, Petillot Y R, et.al. Finite alphabet constant-envelopewaveform design for MIMO radar. IEEE Transactions on Signal Processing,2011,59(11):5326-5337.
    [12]高伟,黄建国,徐振华,等.基于二阶锥优化方法的MIMO阵列发射方向图设计,电子与信息学报,2012,34(5):1126-1130.
    [13]胡亮兵. MIMO雷达波形设计,西安:西安电子科技大学博士论文,2010.
    [14]Khan H A, Zhang Y, Ji C, et.al. Optimizing polyphase sequences for orthogonalnetted radar. IEEE Signal Processing Letters,2006,13(10):589-592.
    [15]Deng H. Polyphase code design for orthogonal netted radar systems. IEEETransactions on Signal Processing,2004,52(11):3126-3135.
    [16]胡亮兵,刘宏伟,吴顺君.基于约束非线性规划的MIMO雷达正交波形设计,系统工程与电子技术,2011,33(1):64-68.
    [17]Liu B, He Z S, Zeng J K, et.al. Polyphase orthogonal code design for MIMO radarsystems, Processing of International Conference on Radar,2006.1-4.
    [18]Liu B, He Z S, He Q. Optimization of Orthogonal discrete frequency-codingwaveform based on modified genetic algotithm for MIMO radar. Processing ofInternational Conference on Communication, Circuits and Systems,2007.966-970.
    [19]He H, Stoica P, Li, J. Unimodular sequence design for good autocorrelationproperties, Processing of the IEEE International Conference on Acoustics, Speechand Signal Processing,2009.2517-2520.
    [20]赵永波,董玟,张守宏. MIMO雷达的信号处理方法研究,航空计算技术,2009,39(3):103-106.
    [21]Ilya B, Joseph T. Target detection and localization using MIMO radars and sonars,IEEE Transactions on Signal Processing,2006,54(10):3873-3883.
    [1]王德纯.宽带相控阵雷达.北京:国防工业出版社,2010.15-17.
    [2] P. Stoica, J. Li, Y. Xie. On probing signal design for MIMO radar. IEEETransactions on Signal Processing,2007,55(8):4151-4161.
    [3] Fuhrmann D R, San Antonio G S. Transmit beamforming for MIMO radar systemsusing signal cross-correlation. IEEE Transactions on Aerospace and ElectronicSystems,2008,44(1):171-186.
    [4] He H, Stoica P, Li J. Wideband MIMO Systems: Signal Design for TransmitBeampattern Synthesis. IEEE Transactions on Signal Processing,2011,59(2):618-628.
    [5] Haykin.S. Cognitive Radar: A Way of the Future. IEEE Signal ProcessingMagazine,2006,23(1):30-40.
    [6]智婉君,严胜刚,李志舜.宽带恒定束宽波束形成器的滤波实现,信号处理,1998,14(2):335-338.
    [7]鄢社锋,马远良.传感器阵列波束优化设计及应用,北京:科学出版社,2009.
    [8] Liu W, Weiss S. Wideband Beamforming Concepts and Techniques. UK:WILEY.2010.
    [9]曹运合,刘峥,张守宏.宽带宽角数字阵列雷达发射波束形成技术.雷达科学与技术,2008,(6):445-449.
    [10]罗永健,俞根苗,张守宏,等.基于确知波形的宽带宽角相控阵发射波束形成方法,电子学报,2003,31(3):358-360.
    [11] Dotliae I D. Minimax frequency invariant Beamforming, Electronics Letters,2004,40(19):1230-1231.
    [12]Ward D B, Kennedy R A, Williamson R C, FIR filter design for frequencyinvariant beamformers, IEEE Signal Processing Letters,1996,3(3):69-71.
    [13] Antonio G S, Fuhrmann D R, Beampattern synthesis for wideband MIMO radarsystems. Processing1st IEEE International Workshop Computational AdvancesMulti-Sensor Adaptive Processing, Puerto Vallarta,2005,105-108.
    [14]杨涛,苏涛,张旺,朱文涛.宽带MIMO雷达频率不变发射方向图快速综合方法[J],系统工程与电子技术,2013,31(4):476-480.
    [15]杨涛,苏涛,张旺.二维宽带MIMO雷达发射方向图综合和波形设计方法,西安电子科技大学学报,2013,40(3):180-187.
    [16]Liu W, Weiss S, Design of frequency invarint beamformers for broadband arrays,IEEE Transactions on Signal Processing,2008,56(2):855-860.
    [17]Jardin P, Nadal F, Middleton S. On Wideband MIMO Radar: Extended SignalModel and Spectral Beampattern Design.2010European Radar Conference,Paris,France,2010,392-395.
    [18]Sarah M, Anton V W, Pascale J. A Wideband Beamformer Extended to MIMORadar.2010International Conference on Measuring Technology and MechatronicsAutomation,2010,381-385.
    [19]Marie S, Mats V. Low PAPR Waveform Synthesis with Application to WidebandMIMO Radar.4th IEEE international Workshop on computational Advances inMulti-Sensor Adaptive Processing,2011,5-8.
    [20]Van T H. Optimum Array Processing: Part IV of Detection, Estimation, andModulation Theory. New York: Wiley,2002.
    [21]Mohammad G. wideband Smart Antenna Theory Using Rectangular ArrayStructures, IEEE Transactions on Signal Processing,2002,50(9):2143-2151.
    [22]Lee J H, Lee Y H, Two-Dimensional Adaptive Array Beamforming With MultipleBeam Constraints Using a Generalized Sidelobe Canceller, IEEE Transactions onSignal Processing,2005,53(9):3517-3529.
    [23]张贤达,矩阵分析与应用,北京:清华大学出版社,2004.
    [24]吴高奎,严济鸿,何子述,等.基于Farrow结构的分数阶延迟滤波器,雷达科学与技术,2010,8(3):269-272.
    [25]任超,吴嗣亮,王菊,基于空时二维结构的低旁瓣宽带波束形成,系统工程与电子技术,2008,30(3):414-419.
    [26]曹运合,张焕颖,张守宏,刘峥.宽带相控阵雷达数字波束形成及干扰置零方法.电子与信息学报,2007,29(2):365-372.
    [27]Tropp J A, Dhillon I S, Heath R W, et.al. Designing structured tight frames via analternating projection method. IEEE Transactions on Information Theory,2005,51(1):188-209.
    [28]Tropp J A, Dhillon I S, Heath R W, et.al. CDMA signature sequences with lowpeak-to-average-power ratio via alternating projection, Processing.37th Annu.Asilomar Conference. Signals, Systems and Computers, Monterrey, CA, Nov.2003.648-650.
    [29]Yang Yang, Blum, R.S, Zishu He, Fuhrmann D.R. MIMO Radar Waveform Designvia Alternating Projection. IEEE Transactions on Signal Processing,2010,58(3):1440-1445.
    [30]Stoica P, He H, Li J. New algorithms for designing unimodular sequences withgood correlation properties. IEEE Transactions on Signal Processing,2009,57(4):1415-1425.
    [1] Van T H. Optimum Array Processing. New York: Wiley,2002:552-560.
    [2] Lie J P, Ser W, See C M S. Adaptive uncertainty based iterative robust Caponbeamformer using steering vector mismatch estimation. IEEE Transactions onSignal Processing,2011,59(9):4483-4488.
    [3] Li J, Stoica P, Wang Z. On robust Capon beamforming and diagonal loading. IEEETransactions on Signal Processing,2003,51(7):1702-1715.
    [4] Cox H, Zeskind R, Owen M. Robust adaptive beamforming. IEEE Transactions onAcoustics, Speech and Signal Processing,1987,35(10):1365-1376.
    [5] Vorobyov S A, Gershman A B, Luo Z Q. Robust adaptive beamforming usingworst-case performance optimization: a solution to the signal mismatch problem.IEEE Transactions on Signal Processing,2003,51(3):313–324.
    [6] Hassanien A, Vorobyov S A, Wong K M. Robust adaptive beamforming usingsequential quadratic programming: an iterative solution to the mismatch problem.IEEE Signal Processing Letters,2008,15(2):733-736.
    [7] Khabbazibasmenj A, Vorobyov S A, Hassanien A. Robust adaptive beamformingbased on steering bector estimation with as little as possible prior information.IEEE Transactions on Signal Processing,2012,15(5):733-736.
    [8] Nai S E, Ser W, Yu Z L. Iterative robust minimum variance beamforming. IEEETransactions on Signal Processing,2011,59(4):1601-1611.
    [9]邹翔,张曼,钟子发.基于失配误差正交分解的稳健自适应波束形成.电子与信息学报,2010,32(10):2320-2323.
    [10]Yang T, Su T, Zhu W T, Zhang L. Robust Adaptive Beamforming using Beam-spaceSteering Vector Estimation, Electronic Letters.2013,49(19):1201-1203.
    [11]Reed I S, Mallett J D, Brennan L E. Rapid convergence rate in adaptive arrays.IEEE Transaction on Aerospace Electronic Systems.1974,10(2):853-863.
    [12]Somasundaram S D, Parsons N H. Evaluation of robust capon beamforming forpassive sonar. IEEE Journal of Oceanic Engineering.2011,36(4):686-695.
    [13]Vorobyov S A. Principles of minimum variance robust adaptive beamformingdesign. Signal Processing.2012,92(4):1758-1763.
    [14]Luo Z Q, Ma W K, Zhang S. Semidefinite relaxation of quadratic optimizationproblems. IEEE Signal Processing Magazine,2010,27(3):20-34.
    [15]王永良,陈辉,彭应宁.空间谱估计理论与算法.北京:清华大学出版社,2004:40-43.
    [16]Feldman D D, Griffiths L J. A projection approach for robust adaptive beamforming.IEEE Transactions on Signal Processing,1994,42(4):867-876.
    [1]杨剑,张月,陈增平.数字化雷达通用信号处理机设计.电路与系统学报,2009,14(4):56-59.
    [2] Haykin S. Cognitive radar: A way of the future. IEEE Signal Processing Magazine,2006,23(1):30-40.
    [3]苏涛,何学辉,吕夏林.实时信号处理系统设计.西安:西安电子科技大学出版社,2006.
    [4]李琼,郭御凤,刘光明,等. I/O互联技术及体系结构的研究与发展,计算机工程,2006,32(12):93-95.
    [5] Munch J. AdvancedTCA Data Commucation.2005.
    [6] Mercury Computer Systems Inc. Technology Over view VITA46(VPX),2007.
    [7] ANSI/VITA65, Open VPX System Specification,2010.
    [8]吉玉洁,张小林. VPX总线标准研究及其在无人机中的应用展望,计算机测量与控制,2012,20(4):15-18.
    [9]吴顺君,梅晓春,等.雷达信号处理和数据处理技术.北京:电子工业出版社,2008.
    [10]Texas Instrument Inc. TMS320C6678Multicore Fixed and Float-Point DigitalSignal Processor,2010.
    [11]Texas Instrument Inc. KeyStone ArchitectureMulticore Shared Memory Controller(MSMC)User Guide.2010.
    [12]中电集团38所. BWDSP100硬件手册,2009.
    [13]史鸿声.基于PowerPC的雷达通用处理机设计,雷达科学与技术,2011,9(2):140-143.
    [14]Xilinx. Virtex-6Family Overview Revision2.1,2009.
    [15]田耕,徐文波. Xilinx FPGA开发实用教程.北京:清华大学出版社,2008.
    [16]秦华,周沫,察豪,左炜.软件雷达信号处理的多GPU并行技术,西安电子科技大学学报,2013,40(3):145-151.
    [17]肖汉.基于CPU-GPU的影像匹配高效能异构并行技术研究.武汉:武汉大学硕士论文,2011.
    [18]马鸣锦,朱剑冰,何红旗,杜威. PCI、PCI-X和PCI Express的原理及体系结构北京:清华大学出版社,2007.29-36.
    [19]王勇,林粤伟,吴冰冰,等. Rapid IO嵌入式系统互连.北京:电子工业出版社,2006.
    [20]李明.机载宽带雷达信号处理若干问题研究,西安:西安电子科技大学博士论文,2007.
    [21]朱伟.米波数字阵列雷达低仰角测高方法研究,西安:西安电子科技大学博士论文,2013.
    [22]姚铭,高密度高速存储系统设计与实现,西安:西安电子科技大学硕士论文,2013.
    [23]Micron.453L74A_64Gb_128Gb_256Gb_512Gb_AsyncSync_NAND datasheet.2009.
    [24]苏涛.并行处理技术在雷达信号处理中的应用研究.西安:西安电子科技大学博士论文,1999.
    [25]王德纯.宽带相控阵雷达.北京:国防工业出版社,2010.15-17.
    [26]鄢社锋,马远良.传感器阵列波束优化设计及应用,北京:科学出版社.2009.
    [27]范立杰,张月,陈曾平.数字阵列雷达宽带波束形成实现技术研究,信号处理,2009,25(8):61-64.
    [28]胡永君,陈文俊.基于分数时延滤波器的宽带数字信号时延的实现,雷达与对抗,2010,30(2):37-40.
    [29]谢良贵.数字波束形成技术的工程应用问题,电子学报,1995,23(10):105-109.
    [30]陈文俊,胡永君.数字阵列天线接收波束形成方法及实验研究,现代雷达,2010,33(2):66-69.
    [31]彭卫,汪学刚,等.基于Dechirping技术的宽带全数字阵列雷达时延测量方法研究,电子与信息学报,2010,3(1):32-37.
    [32]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [33]刘亚波,寇秀丽,全英汇,等. ISAR成像实时处理系统设计,电路与系统学报,2012,17(1):126-133.
    [34]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法.西安电子科技大学学报,2000,27(1):23-28.
    [35]Editorial. Signal processing techniques for ISAR and feature extraction. IET SignalProcessing,2008,2(3).189-191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700