水中石油类污染物光纤光谱检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的迅速发展,水体环境污染日益严重,石油类物质是主要污染源之一。快速、准确的水中石油类污染物检测方法的研究对于及时掌握水质变化、有效控制水污染事故、保护水资源具有十分重要的理论研究价值和现实意义。
     本文对目前水中石油类污染物检测与分析的各种方法进行相关文献的调研和总结,研究基于光纤近红外消逝波吸收光谱探测与分析技术的水中石油类污染物检测新方法。提出光纤近红外消逝波吸收光谱探测结构,并对该结构进行理论和实验研究;研究适用于水中石油污染物种类定性分析和多组分石油污染物浓度定量分析的化学计量学算法。论文主要内容有:
     首先,详细介绍近红外光谱基本原理和化学计量学算法;分析汽油、柴油和煤油三种典型的石油类污染物组成基团的近红外光谱特性,论证利用光纤近红外光谱技术检测石油类污染物的可行性。
     其次,基于光纤消逝波吸收传感原理,对具有疏水亲油薄膜的光纤近红外消逝波吸收光谱探测单元进行研究;对消逝场能量与纤芯半径、剩余包层厚度、疏水亲油薄膜厚度、薄膜折射率和探测单元长度等关键参数之间的关系进行数值仿真研究,为探测单元的优化设计提供理论依据。
     然后,在讨论疏水亲油材料特点的基础上,利用聚苯乙烯高分子溶液对腐蚀后的光纤进行涂覆,在光纤外形成聚苯乙烯薄膜层,该薄膜既起富集水中油污的作用,又把水分子挡在消逝场的范围之外,避免水分子在近红外段强吸收产生的干扰;详细介绍探测单元的腐蚀和涂覆制作过程;配置汽油、煤油和柴油三类典型石油类污染物的油水混合溶液,并基于傅里叶变换近红外光谱仪搭建探测单元性能测试系统,将光谱仪自带探头测量的纯油、纯水与油水混合溶液的近红外光谱与探测单元直接探测的油水混合溶液的近红外光谱进行比较分析。
     再次,针对传统近红外光谱分析方法未充分考虑吸光度数据非负的特点导致分析结果缺乏合理解释的问题,研究基于带有稀疏约束的非负矩阵分解特征提取算法结合支持向量机分类的水中单一石油类污染物种类鉴别定性分析方法,深入讨论特征提取算法参数和支持向量机分类器参数对分类正确率的影响,优化近红外光谱定性分析模型。
     最后,针对多组分混合的复杂石油类污染物中各组分浓度定量分析问题,分别研究建立基于偏最小二乘回归和粒子群优化的偏最小二乘支持向量机回归的汽油、柴油和煤油三组分浓度的定量分析模型,给出了定量分析模型的最优参数并利用三组分的最优模型对验证集进行浓度预测,比较两种回归方法所建模型的预测结果。
     本文在利用光纤消逝波探测水中石油类污染物吸收光谱和石油类污染物近红外光谱分析两个方面进行了较为深入的理论研究和实验工作,能够为光纤近红外消逝波吸收光谱探测在环境监测领域的实际应用提供有价值的参考。
Pollution of the water environment is worsening with the rapid growth of the nationaleconomy. Petroleum pollutant is one of the major sources of pollution in water. Accurate,rapid, and convenient detection method of petroleum pollutants in water has veryimportant theoretical value and practical significance in grasping the changes in waterquality, effectively controling water pollution accidents and the protection of waterresources.
     This paper summarizes relevant literature of the various testing methods forpetroleum pollutants in water and proposes a new method to detect petroleum pollutants inwater based on fiber-optic evanescent wave absorption spectroscopy in combination withNIR analysis technology. The fiber-optic NIR-evanescent wave absorption spectroscopydetection unit structure is proposed. Theoretical and experimental researches are done forthe detection unit; suitable NIR chemometrics algorithms for qualitative identification ofsingle petroleum pollutants and quantitative analysis of multi-component complexpetroleum contaminants are discussed. The major contents of the paper are as follows:
     First, the paper introduces the basic principle of the NIR spectroscopy and commonlyused chemical metrology algorithm in detail; The analysis of three typical oil pollutantsNIR spectra of gasoline, diesel and kerosene are conducted to demonstrate the feasibilityof using fiber-optic NIR spectroscopy to detect petroleum pollutants in water.
     Second, the paper proposes the optic fiber NIR-evanescent wave absorption detectionunit structure with hydrophobic oleophilic film, numerically calculating the relationshipbetween the evanescent wave energy with the main parameters including the radius of thefiber core, the remaining thickness of the cladding layer, hydrophobic film thickness, filmrefractive index and the length of the detection unit, providing theoretical basis for theoptimal design of the detection unit.
     Third, after discussing the characteristic of the hydrophobic oleophilic materials, theidea of coating the polystyrene polymer solution on the surface of the corrosion singlemode fiber is studied. The hydrophobic oleophilic coating not only avoids the watermolecules’ strong absorption interference in the near-infrared region, but also plays the role of adsorption of oils in water; the corrosion and coating process of detection unit isdescribed in detail and the gasoline, diesel and kerosene oil-water mixed solution is made,and the detection unit performance test system is set up based on the fourier transformnear-infrared spectrometer; then the paper compares the near-infrared spectra of theoil-water mixed solution gained by the detection unit with the NIR spectra of pure oil,pure water and oil-water mixed solution gained by the probe measurements of thespectrometer.
     Fourth, traditional NIR methods do not take full account of the absorbance datanon-negative characteristics, resulting in the analysis lack of reasonable explanation. Forthis problem, the qualitative discriminate method of single species petroleumcontaminants based on non-negative matrix factorization feature extraction combined withsupport vector machine classification algorithm is studied. Non-negative matrixfactorization algorithm and support vector machine classifier parameters on classificationaccuracy are discussed in depth to optimize NIR qualitative classification model.
     Last, for the problem of quantitative analysis of the complex multi-componentmixing petroleum pollutants, the quantitative analysis model of gasoline, diesel andkerosene, a three-component mixed pollutant solution is established based on partial leastsquares regression algorithm and partial least squares support vector machine regressionalgorithm respectively. The optimal parameters of quantitative model are given based onparticle swarm optimization. The paper uses the three-component model to predict theconcentration of the validation set, and compares the predicted results with two regressionmethods.
     This paper conducted in-depth theoretical studies and experimental work of usingfiber-optic NIR evanescent wave absorption spectroscopy to detect petroleum pollutants inwater. The research can provide a valuable reference for the use of fiber evanescent waveabsorption spectroscopy detection and NIR spectroscopy technology in the field ofenvironmental monitoring applications.
引文
[1]江刚.世界人均水资源日趋短缺[J].中国环境科学,2003,23(4):430-431.
    [2]中华人民共和国环境保护部.2009中国环境状况公报[R].北京:中华人民共和国环境保护部,2009,6:7-34.
    [3]全国人大环保委员会.国际环境与资源保护条约汇编[M].北京:中国环境科学出版社,1993:2-5.
    [4]夏青,陈艳卿.水质基准与水质标准[M].北京:中国标准出版社,2004,14-17.
    [5] Marta G C, Jose E. An assessment of oil pollution in the coastal zone of Patagonia[J].Environment Management,2007,40(5):814-821.
    [6] Perez B, Cadahia L A, Cabaleiro T, et al. Initial study on the effects of prestige oil on humanhealth[J]. Environment International,2007,33(2):176-185.
    [7]王传远,贺世杰,李延台等.中国海洋溢油污染现状及其生态影响研究[J].海洋科学,2009,6:57-60
    [8]国家环境保护局水和废水监测分析方法编委会.水和废水监测分析方法[M]北京:中国环境科学出版社,2002:19-21.
    [9] Luthe G, Brinkman U A, Gooijer C. Monofluorinated polycyclic aromatic hydrocarbons inspectroscopy[J]. Analytica Chimica Acta,2001,429(1):49-54.
    [10]夏达英,王振先,张士魁等.荧光技术在海洋环境学上的应用研究[J].海洋学报,1999,21(3):66-72.
    [11]吴坚,曹文祺.荧光分析法监测水中矿物油污染的研究[J].计量学报,2001,22(3):223-226.
    [12]王静芳,赵云英.荧光分光光度法测定海水中微量石油的影响因素[J].海洋环境科学,1984,3(3):42-45.
    [13]史丽娟,王丽荣.紫外荧光法水中油在线监测系统的研究[J].长春大学学报,2007,17(4):37-40.
    [14]赵友全,邹瑞杰,陈玉榜等.一种快速在线水中油污检测技术研究[J],第四届中国在线分析仪器应用及发展国际会议论文集,2011,125-127.
    [15] Kavanagh R J, Burnison K B, Frank R A. Detecing oil sands process affected waters in theAlberta oil sands region using synchronous fluorescence spectroscopy[J]. Chemosphere,2009,76(1):120-126.
    [16] Saitoh T, Itoh H, Hiraide M. Admicelle enhanced synchronous fluorescence spectrometry for theselective determination of polycyclic aromatic hydrocarbons in water[J]. Talata,2009,79(2):177-182.
    [17]王玉田,张艳林,王金玉.基于三维荧光光谱特征分析的油种鉴别技术研究[J].光子学报,2010,39(7):1330-1333.
    [18]崔志成,刘文清,赵南京等.水中油浓度快速测量方法研究[J].光谱学与光谱分析,2008,28(6):1332-1335.
    [19]赵友全,路雪峰,梁瑛等.石油馏分荧光光谱等高线特征谱分析研究[J],仪器仪表学报,2012,33(6):1275-1280.
    [20]吕江涛.基于荧光机理的水中油类污染物检测识别技术研究[D].燕山大学博士学位论文,2010:14.
    [21]展惠英.紫外分光光度法测定废水中油的含量[J].甘肃联合大学学报,2007,21(1):65-67.
    [22]王东海,曹维峰.紫外分光光度法测定地下水系统中油类的标准油选定[J].中国环境监测,1999,15(6):12-14.
    [23]庞艳华,丁永生,公维民.紫外分光光度法测定水中油含量[J].大连海事大学学报,2002,28(4):68-71.
    [24]林大泉,王玉纯.用红外分光光度法测定水体中石油烃含量的研究[J].中国环境监测,1990,6(2):11-14.
    [25]鸟成祥,窦筱艳.红外分光光度法测定水中石油类时应注意的几个关键技术问题[J].青海环境,2008,18(1):39-41.
    [26]杨振民,耿炜,王津.非分散红外法测油仪的现状及其在环境监测中的应用田[J].现代科学仪器,1999,3:38-41.
    [27]史云.环境水体石油类污染现场检测技术研究[D].河北农业大学博士学位论文,2009:5-8.
    [28]庞士平.红外光谱法监测海洋石油污染物[D].福州大学硕士学位论文,2006:56-60.
    [29]陈伟琪,张珞平.气相色谱指纹法在海上油污染源鉴别中的应用[J].海洋科学,2003,27(7):67-70.
    [30]叶立群,钟燕青.利用气相色谱—傅里叶变换变换红外光谱法联合鉴别溢油污染源[J].交通环保,2002,23(4):25-27.
    [31] Wang Z.D, Fingas M. Development of oil hydrocarbon fingerprinting and identificationtechniques[J]. Marine Pollution Bulletin,2003,47:423-452.
    [32] Zakaria M.P, Takada H, Tsutsumi S, et al. Distribution of polycyclic aromatic hydrocarbons(PAHs)in rivers and estuaries in Malaysia:A widespread input of petrogenic PAHs[J]. EnvironmentalScience and Technology,2002,36(9):1907-1918.
    [33] Wang Z, Fingas M. Using biomarker compounds to track the source of spilled oil and to monitorthe oil weathering process[J]. LC-GC,1995,13:950-958.
    [34]廖延彪,黎敏,张敏等.光纤传感技术与应用[M].北京:清华大学出版社,2009:1-5.
    [35] Kroniek M.N, Little W.A. A new inununoassay method based on fluorescence excitation byinternal reflection spectroscopy[J]. Journal of Immunological Methods.1975,8(3):235-240.
    [36] Thompson R.B, Ligler F. Fiber optic biosensor technology [J]. NRL Memorandum Report.1982:6182.
    [37] Gupta.B.D, Banshi Das. Fiber Optic Sensors: Principles and Applications[M]. New IndiaPublishing,2006:59-84.
    [38] Faleon L, Svesehab G, Rotha P, et al. Non-ambiguous evanescent wave fibre refractive index andtemperature sensor[J]. OPTICA ACTA,1986,33(12):1563-1570.
    [39] John M.S, Anil K, Lim C.S, et al. Determination of baeterial activity by use of anevanescent-wave-fiber optic sensor[J]. Applied Optics,2002,41(34):7334-7338.
    [40] Benjamin V.P, Satish J, Madhusoodanan K.N. Fiber optic sensor for the measurement ofconcentration of silica in water with dual wavelength probing[J]. Review of ScientificInstruments,2010,81(3):033511-1-5.
    [41] Atsushi S, Hisakazu K, Toshinori K, et al. A heterocore structured fiber optic PH sensor[J].Analytica Chemica Acta,2007,582(1):154-157.
    [42] Okazaki.S, Nakagawa.H, Asakura.S, et al. Sensing characteristics of an optical fiber sensor forhydrogen leak[J]. Sensors and Actuators B,2003,93:142-147.
    [43] Watanabe.T, Okazaki.S, Nakagawa.H, et al. A fiber-optic hydrogen gas sensor with lowpropagation loss[J]. Sensors and Actuators B,2010,145:781-787.
    [44] Mitsuik, Handa Y, Kajikawa K. Optical fiber affinity biosensor based on localized surfaceplasmon[J]. Applied Physics Letters,2004,85(18):4231-4233.
    [45] NI W.H, Chen H.J, Kou X.S, et al. Optical fiber-excited surface plasmon resonance spectroscopyof single and ensemble gold nanorods[J]. J Phys Chem:C,2008,112(22):8105-8109.
    [46] Otto A. Excitation of nonradiative surface plasmon wave in silver by the method of frustratedtotal reflection[J]. Z Phys,1968,216:398-410.
    [47] Chiu M.H, Shih C.H. Searching for optimal sensitivity of single-mode D-type optical fiber sensorin the phase measurement[J]. Sensors and Actuators, B,2008,131(2):596-601.
    [48] Dikovska A O, Atanasov P A, Andreev A T, et al. ZnO thin film on side polished optical fiber forgas sensing applications[J]. Applied Surface Science,2007,254(4):1087-1090.
    [49] Vlastimil M, Miroslva C. Optical fiber with novel geometry evanescent wavesensing[J]. Sensorsand Actuators, B,1995,129:416-422.
    [50] Gupta B.D, Aodeja H, Ytomar A.K. Fiber-optic evanescent field absorption sensor based on aU-shaped probe[J]. Optical and Quantum Electronics,1996,49(3):1629-1639.
    [51] Thompson V.S, Maragos C.M. Fiber-optic immunosensor for the detection of fumonisinB-1[J].Journal of Agricultural Food Chemistry,1996,44(4):1041-1046.
    [52] Chen C.H, Tsao T.C, Li W.Y, et al. Novel U-shape gold nanoparticles-modified optical fiber forlocalized plasmon resonance chemical sensing[J]. Microsyst Technol,2010,16(7):1207-1214.
    [53] Shang N.G, Saeharia A. Transmission property and evanescent wave absorption of claddedmultimode fiber tapers[J].Opties Express,2003,11(3):215-223.
    [54] Villatoro J, Diez A, Cruzj L, et al. In-line highly sensitive hydrogen sensor based onpalladium-coated single-mode tapered fibers[J]. Sensors Journal,2003,3(4):533-537.
    [55] Anderson.G, Lingerflet B.M, Taitt C.R. Eight analytes detection using a four-channel opticalbiosensor[J]. Sensor Letter,2004,2(1):1-7.
    [56] Sun J, Chan C.C, Zhang Y.F, Analysis of hollow core photonic bandgap fibers for evanescentwave biosensing[J]. Journal of Biomedical Optics,2008,13(5):054048.
    [57] AnnaV.H, Xian F.C, Mareus D, et al. Optical fibre-based detection of DNA hybridization[J].Bioehemeal Soeiety Transaction.2009,37:445-449.
    [58] Khijw S.K, Nia A, Gupta B.D. Fiber optic evanescent field absorption sensor:effect of fiberparameters and geometry of the probe. Optical and Quantum Electronies,1999;31:625-636.
    [59] Abdi O, Wbng K.C, Hassan T, et al. Cleaving of solid single mode polymer optical fiber forstrain sensor applications,Optics Communications.2009,282:856~861.
    [60]黄杰,沈为民,徐贲等.本征型光纤消逝波化学传感器的研究[J].量子电子学报,2010,27(4):508-512.
    [61]邓立新.基于消逝波的光纤生物传感器系统关键技术研究[D],国防科学技术大学博士学位论文,2006,24-26.
    [62]李维,许雪梅,刘茜倩.光纤消逝波传感器探针灵敏度分析[J].光电子技术,2008,28(2):81-88.
    [63]黄惠杰,翟俊辉,赵永凯等.多探头光纤消逝波生物传感器及其性能研究[J].中国激光,2004,31(6):718-722.
    [64]刘茜倩,许雪梅,李维等.光纤消逝波生物传感器探针新的几何设计[J].光电子技术,2008,28(1):21-25.
    [65]庄须叶,吴一辉,王淑荣等.基于微加工工艺的光纤消逝场传感器及其长度特性研究[J].物理学报,2009,58(4):2501-2506.
    [66] Yi H.W, Xiao H Deng, Feng Li, et al. Less-mode optic fiber evanescent wave absorbing sensor:Parameter design for high sensitivity liquid detection[J]. Sensors and Actuators B,2007,122:127-133.
    [67]李锋,吴一辉,赵华冰等.用于微型生化分析的光探测系统[J],光谱学与光谱分析,2005,4(25):633-636.
    [68]胡建东,拉锥光纤表面等离子共振氢敏传感器研究与实验[D],浙江大学博士学位论文,2005:56-76.
    [69]龙峰,施汉昌,何苗等.消逝波全光纤免疫传感器的开发及性能研究[J].分析化学,2007,35(6):919-923.
    [70]罗吉,庄须叶,倪祖高等.光纤消逝场传感器传感结构的分析与应用[J].微纳电子技术,2011,48(6):376-383.
    [71] Xiong Y, Zhu D.Q, Duan C.F, et al. Small volume fiber-optic evanescent wave absorption sensorfor nitrite determination[J]. Analytical and Bioanalytical Chemistry,2010,39(2):943-948.
    [72]龙峰,施汉昌,何苗等.消逝波荧光免疫传感器在环境检测中的研究进展[J].环境科学,2008,29(3):545-550.
    [73]黄雪峰.光纤Bragg光栅测量理论及其在动力工程中应用的研究[D],浙江大学博士学位论文,2009:95-112
    [74]张良.光子晶体光纤倐逝波传感的特性研究[D],北京交通大学硕士学位论文,2010:86-96.
    [75]梁瑞冰,孙琪真,沃江海等.微纳尺度光纤布拉格光栅折射率传感的理论研究[J],物理学报,2011,60(10):1123-1125.
    [76]李宇航.基于消逝波特性的微纳光纤器件研究[D],浙江大学博士学位论文,2008:56-62.
    [77]刘宏欣,张军,王伯光等.水中总氮的无损快速分析[J].光学精密工程,2009,17(3):525-530.
    [78]王丽,何鹰,王颜萍等.近红外光谱技术结合主成分聚类分析判别海面溢油种类[J].海洋环境科学,2004,23(2):58-60.
    [79]王丽,卓林,何鹰等.近红外光谱技术鉴别海面溢油[J].光谱学与光谱分析,2004,24(12):1537-1539.
    [80]徐立恒,近红外光谱法快速测定水体有机污染物的方法研究[J],分析试验室,2008,27(5):448-450.
    [81]郝勇.近红外光谱微量分析方法研究[D],南开大学博士学位论文,2009:25-26.
    [82]李伟,海洋石油污染物现场实时监测的光纤近红外传感仪器系统[M].中国海洋年鉴,海洋出版社,2006:212-215.
    [83] Burck. J, Conzen., H.P, Ache J. A fiber optic evanescent field absorption sensor for monitoringorganic contaminants in water[J]. Fresenius J Anal Chem,1992,342:394-400.
    [84] Zimmermann. B, Burck. J, Ache H.J. Studies on siloxane polymers for NIR-evanescent waveabsorbance sensors[J]. Sensors and Actuators,1997, B,41:45-54.
    [85] Stephens A.B,Walker P.N. Near-infrared spectroscopy as a tool for real-time determination ofBOD5for single source samples[J].Transactions of the ASAE,2002,45(2):451.
    [86] Dabakk E.M., Nilsson P., Geladi S, et al. Sampling reproducibility and error estimation in nearinfrared calibration of lake sediments for water quality monitoring[J]. J. NIR spectroscopy7,1999,241-250.
    [87] Medeiros V.M. Screening analysis of river seston downstream of an effluent discharge pointusing near-infrared reflectance spectrometry and wavelet-based spectral region selection[J].Water Research,2005,39:3089-3097.
    [88] Hood J.M., Brovold S R., Sterner W, et al. Near-infrared spectrometry (NIRS)for the analysis ofseston carbon, nitrogen, and phosphorus from diverse sources[J]. Limnology and OceanographyMethods,2006,4:94-104.
    [89] Ramadan Z, Song X.H, Hopke P.K, et al. Variable Selection in Classification of EnvironmentalSoil for Partial Least Square and Neural Network Models[J]. Analytica Chimica Acta,2001,446:231-242.
    [90] Galvao R.K.H, Araujo M.C.U, Fragoso, W D. et al. Avariable elimination method to improve theparsimony of MLR Models Using the Successive Projections Algorithm[J]. Chemometries andIntelligent Laboratory Systems.2008,92(l):83-91.
    [91] Centner V, Massart D.L, Noord O.D,et al. Elimination of uninformative variables for multivariatecalibration[J]. Anal. Chem.,1996,68(21):3851-3858.
    [92] Norgaard L, Saudland A, Wagner J, et al. Interval partial least-squares regression (iPLS): acomparative chemometric study with an example from near-infrared spectroscopy[J]. AppliedSpectroscopy,2000,54(3):413-419.
    [93] Ding, Q., Small, G.W., Arnold, M.A.. Genetic Algorithm-Based Wavelength Selection for theNear-Infrared Determination of Glusoce in Biological Matrices: Initialization Strategies andEffects of Spectral Resolution[J]. Analytical Chemistry,1998,70,4472-4479.
    [94] Daszykowski M, Walczak B, Massart D.L, Looking for Natural Patterns in Data. Part1: DensityBased Approach[J], Chemometrics and Intelligent Laboratory Systems,2001,56:83-92.
    [95] Massart D.L, Vandeginste B.G.M., Deming, S.M. et al,Chemometrics:a textbook[M], Elsevier,Amsterdam,2003.
    [96] Candolfi A., DeMaesschalck R., Massart D.L,et al. Decision criteria for SIMCA applied to NearInfrared data[J]. Chemometrics lntelligent Laboratory System,1999,47(1):923–935.
    [97] Leardi R. Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial NeuralNetworks[M], Elsevier, Amsterdam,2003.
    [98] Naes T, Isaksson T, Fearn T, Davies A.M.C. A User-Friendly Guide to Multivariate Calibrationand Classification[M], NIR Publications, Chichester, UK,2002.
    [99] Dou Y, Sun Y, Ren Y, et al, Simultaneous non-destructive determination of two components ofcombined paracetamol and amantadine hydrochloride in tablets and powder by NIR spectroscopyand artificial netural networks[J], Journal of Pharmaceutical and Biomedical Analysis,2005,37(3):543–549.
    [100] Li Y.K, Shao X.G, Cai W.S. A consensus least squares support vector regression (LS-SVR)foranalysis of near-infrared spectra of plant samples[J]. Talanta,2007,72(1):217-222.
    [101]严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005:82-94.
    [102]张洪艳.近红外光谱技术在人体血糖无创检测中的应用研究[D].中国科学院研究生院博士学位论文,2005:25.
    [103] Sanchez M, Perez M.D, Flores R.K., et al. Use of near-infrared reflectance spcetroscopy forshelf-life discrimination of green asparagus stored in a cool room under controlledatmosphere[J].Talanta,2009,78:530-536.
    [104] Chen Q.S, Zhao J.W, Chaitep S.P, et al. Simultaneous analysis of main catechins contents greentea by fourier transform near infrared reflectance(FT-NIR)spectroscopy[J]. Food Chemistry,2009,113:1272-1277.
    [105] Moros J. Martinez S.M, Perez S.C, et al.Testing of the region of Murcia soils by near infrareddiffuse reflectance spectroscopy and chemometries[J].Talanta,2009,78:388-398.
    [106] Huang H.B, Yu H.Y, Xu H.R, et al. Near infrared spectroscopy for on-line monitoring of qualityin foods and beverages:A review[J]. Food Engineering,2008,87:303-313.
    [107] Lee Y, Chung H.E, Kim N. Spectral range optimization for the near-infrared quantitative analysisof petroleum chemical and petroleum products: Naphtha and gasoline[J]. Applied spectroscopy,2006,60:892-897.
    [108] Honorato F.A, Neto B.D, Pimeniel M.F, et al. Using principal component analysis to find the bestcalibration settings for simultaneous spcetroscopic determination of several gasoline properties[J]Fuel,2008,87:3706-3709.
    [109] Vardi M.N. A near-infrared spectroscopy for evaluation of peripheral vaseular disease. Asystematic review of literature[J]. Eur J Vasc endovasc Surg,2008,35:68-74.
    [110] Lafranee D, Lands L.C, BumsD.H. Measurement of lactate in whole human blood withnear-infrared transmission spcetroseopy[J].Talanta,2003,60:635-641.
    [111]吕强,表面等离子体共振光电传感系统的研究[D],华中科技大学博士学位论文,2007:9-10.
    [112] Michael D, Degrandpre, Lloyd W. A fiber-optic FT-NIR evanescent field absorbance sensor[J].Applied spectroscopy,1990,2(44):273-279.
    [113]陆婉珍.现代近红外光谱分析技术(第二版)[M].北京:中国石化出版社,2000:19.
    [114]廖延彪.光纤光学(第1版)[M].北京:清华大学出版社,2000:23.
    [115] Sumida S. Okazaki S. Asakura S, et al. Distributed hydrogen determination with fiber-opticsensor[J]. Sensors and Actuators B:2005,108:508-514.
    [116]金日光,华幼卿.高分子物理(第二版)[M].北京:化学工业出版社,2006:302-308.
    [117]彭洪祥,新型聚四氟乙烯微孔膜的油水分离特性研究[D],大连理工大学硕士学位论文,2011:51-53.
    [118] Feng L, Zhang Z.Y, Mai Z.H, et al. A super-hydrophobic and super-oleophilic coating mesh filmfor the separation of oil and water[J]. Angew. Chem. Int. Ed,2004,43:2012-2014.
    [119] Xu Q.F, Jian Nong Wang, lan H. Smith, et al. Superhydrophobic and transparent coatings basedon removable polymeric spheres[J]. Journal of Materials Chemistry,2009,19:655-660.
    [120] Qin F.T, Yu Z.J, Fang X.H, et al. A novel composite coating mesh film for oil-water separation[C]Frontiers of Chemical Engineering in China,2009,3(1):112-118.
    [121] Xing Y.L, In Y.P, Julius V, et al. Stable and transparent superhydrophobic nanoparticle films[J].Langmuir,2009,25:3260-3263.
    [122] YUAN Z.Q, CHEN H, TANG J.X. Facile method to fabricate stable SuperhydrophobicPolystyrene surface by adding ethanol[J] Surface&CoatingsTechnology,2007(201):7138-7142
    [123] Sayah. A, Philipona. C, Lambelet. P, et al.. Optimizing the fabrication of aluminum-coated fiberprobes and their application to optical near-field lithography[J]. Ultra-microscopy,1998,71:59-63.
    [124] Lee D.D, Seung H.S. Leaming the Parts of Objects by Nonnegative Matrix Factorization Nature401,1999,788.
    [125] Farial S, Berry M.W., Paul P.V, et al. Information Processing and Management,2006,42(2):373.
    [126] Carmona-Saez P, Pascual-Marqui R.D, Tirado F, et al. Biclustering of gene expression data bynon-smooth non-negative matrix factorization[J] BMC Bioinformatics,2006,78(7):1212-1218.
    [127] Patrik O.H. Non-negative matrix factorization with sparseness constraints[J] Journal of MachineLearning Research,2004,5:1457-1469.
    [128] Vapnik V.N. The Nature of Statistical Learning[M]. New York: Springer,1995.
    [129]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999:58-65
    [130] Tatzber Michael; Franz Mutsch, Axel Mentler et al. Determination of Organic and InorganicCarbon in Forest Soil Samples by Mid-Infrared Spectroscopy and Partial Least SquaresRegression[J]. Applied Spectroscopy.2010,64(10):1167-1175.
    [131] Louren o Nídia D; Paix o, Fátima Paix o, Helena M. et al. Use of Spectra in the Visible andNear-Mid-Ultraviolet Range with Principal Component Analysis and Partial Least SquaresProcessing for Monitoring of Suspended Solids in Municipal Wastewater Treatment Plants[J].Applied Spectroscopy.2010,64(9):1061-1067.
    [132]曾建潮,介婧,崔志华.微粒群算法[M].北京:科学出版社,2004:89-94.
    [133] Vahid R., Ata E., Reza G. Application of the PSO-SVM model for recognition of control chartpatterns[J]. ISA Transactions,2010,49:577-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700