XIAP在甲状腺乳头状癌中的表达及基因沉默对细胞生物学行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,甲状腺癌的发病率呈上升趋势,以乳头状癌的升高最为明显。甲状腺乳头状癌是最常见的甲状腺恶性肿瘤,约占所有甲状腺恶性肿瘤的60-80%,占全身恶性肿瘤的1.0-1.5%。甲状腺乳头状癌存在增殖失控、凋亡受阻等生物学特性,且侵袭能力较强,淋巴结转移率高,术后复发率较高,二次手术效果不佳,目前尚缺乏内科及生物学治疗方法。
     X-连锁凋亡抑制蛋白(X-linked inhibitor of apoptosis protein,XIAP)是凋亡抑制蛋白(inhibitor of apoptosis protein,IAP)家族最重要的成员之一,它被认为是家族中最具有特征性及功能最强的内源性Caspase抑制因子,在生理学上是细胞死亡的关键性调节因子。研究显示,XIAP在正常的组织中呈低表达或不表达状态,而在多种恶性肿瘤中高表达,如在肺癌、胸腺癌、胰腺癌、宫颈癌,白血病中高表达,在卵巢癌也有许多相关报告。体外试验及动物实验均研究表明,XIAP通过抑制细胞凋亡及促进细胞增殖、生存、迁移、侵袭及肿瘤血管形成等在肿瘤发生发展过程中发挥瘤基因的重要作用。由于XIAP在恶性肿瘤中过表达,而在正常的组织中低表达甚至不表达,且最新研究显示敲除正常大鼠XIAP基因后大鼠未发现明显病理变化,提示敲除XIAP可能对正常细胞无毒性。基于以上特性,XIAP基因被认为是具有潜力的肿瘤治疗靶点,已成为肿瘤治疗和药物开发的热门靶基因。
     RNAi是近几年发展起来的新技术,是外源性和内源性双链RNA在生物体内诱导同源靶基因的mRNA特异性降解,导致转录后基因沉默的现象。RNAi具有高度序列特异性、抑制基因表达的高效性、稳定性及可传播性。目前常用的RNAi实验方法由直接转染双链siRNA及载体(质粒或病毒)表达发卡RNA两种,由于慢病毒载体能转染分裂期与非分裂期细胞,具有转染率高,基因抑制表达作用强,持续时间长等特性,且病毒的遗传物质能整合到宿主的基因组。通过慢病毒载体介导的RNAi,使长效抑制目的基因表达成为可能。
     尽管目前已经证明XIAP与某些恶性肿瘤发生发展存在密切相关,而且也展现出作为肿瘤治疗靶点的潜力,但目前有关甲状腺乳头状癌与XIAP之间的文献较少,为此我们研究XIAP在甲状腺乳头状癌中的表达情况及用RNAi对其细胞生物行为的影响,以期对甲状腺乳头状癌提出新的生物学治疗策略。
     第一部分XIAP在甲状腺乳头状癌中的表达及意义
     1.目的
     (1)检测XIAP在甲状腺乳头状癌、甲状腺腺瘤及正常甲状腺组织中的表达
     (2)研究XIAP的表达与甲状腺乳头状癌临床病理参数的关系
     2.材料与方法
     (1)收集病例资料:收集本院接受手术并病理证实甲状腺乳头状癌、甲状腺腺瘤及甲状腺正常组织标本,详细记录病人资料。
     (2)研究XIAP在甲状腺乳头状癌、甲状腺腺瘤及甲状腺正常组织的表达:免疫组织化学染色法。
     3.结果
     (1)XIAP在甲状腺乳头状癌组织中是高表达的,81.6%(40/49)标本为阳性表达。
     (2)对49例甲状腺乳头状癌患者的临床资料进行卡方检验及t检验,研究XIAP与临床病理参数之间的关系。男性患者中XIAP阳性率为76.9%(10/13),女性患者中XIAP阳性率为80.6%(29/36),两组之间无显著性差异(P=0.780)。XIAP阳性表达患者年龄为46.18±15.24岁, XIAP阴性表达患者年龄为43.22±11.35岁,两组之间无显著性差异(P=0.520)。术前发生淋巴结转移XIAP阳性表达率为86.7%(13/15),术前未发生淋巴结转移XIAP阳性表达率为79.4% (27/34),两组之间不存在显著性差异(P=0.546)。
     XIAP阳性表达患者肿瘤直径为1.98±0.59厘米, XIAP阴性表达患者肿瘤直径为1.53±0.52厘米,两组之间有显著性差异(P=0.041)。术前发生甲状腺外浸润XIAP阳性表达率为95.4%(21/22),术前未发生甲状腺外浸润XIAP阳性表达率为70.4%(19/27),两组之间存在显著性差异(P=0.024)。处于疾病早期(Early stage,I+II期)的甲状腺乳头状癌患者中XIAP阳性率为69.6%(16/23),进展期(Advanced stage,III+IV期)甲状腺乳头状癌患者中XIAP阳性率为92.3% (24/26),两组相比有显著性差异(P=0.040),进展期XIAP表达水平高于早期。经典型的甲状腺乳头状癌患者中XIAP阳性率为63.2%(12/19),滤泡型的甲状腺乳头状癌患者中XIAP阳性率为92.8%(13/14),其它型的甲状腺乳头状癌患者中XIAP阳性率为93.7%(15/16),其中经典型与滤泡型、其它型相比有显著性差异(P分别为0.045、0.031),经典型XIAP阳性率低于滤泡型及其它型;而滤泡型、其它型患者XIAP阳性率无显著性差异(P=0.922)。(3) Spearman相关性分析:XIAP与肿瘤直径(r=0.328,P=0.031)、甲状腺外浸润(r=0.317,P=0.037)、临床分期(r=0.289,P=0.046)呈正相关关系。
     4.结论
     (1) XIAP在甲状腺乳头状癌组织中是高表达的,81.6%(40/49)标本为阳性表达。
     (2) XIAP的表达在不同肿瘤大小、是否浸润、临床分期、病理类型的患者之间有显著性差异,而在不同的性别、不同年龄的患者、是否转移无显著性差异。
     (3) Spearman相关性分析,XIAP与肿瘤大小、浸润、临床分期呈正相关。
     第二部分慢病毒介导的甲状腺乳头状癌细胞XIAP基因沉默
     1.目的
     (1)构建针对XIAP慢病毒介导的干扰载体,并生产高滴度慢病毒颗粒。
     (2)观察慢病毒转染甲状腺乳头状癌细胞株后XIAP的表达情况,从而筛选出最有效的shRNA。
     2.材料与方法
     (1)针对XIAP慢病毒介导的干扰载体的构建:采用吉凯基因公司的慢病毒载体系统,构建针对目的基因的RNA干扰慢病毒载体。
     (2) RNA干扰慢病毒的生产及滴度测定:三种质粒共转染293T细胞生产病毒,使用梯度稀释法测定滴度。
     (3)使用Real-time PCR和Western Blot筛选高效干扰序列。
     3.结果:
     (1)成功构建针对XIAP慢病毒介导的干扰载体。
     (2)包装生产了浓度为2×108TU/ml慢病毒颗粒,K1及CGTH W3的MOI值分别为10和20。
     (3)成功筛选出高效干扰序列,在K1细胞系中,XIAP mRNA水平降低79%,蛋白水平降低了87%;在CGTH W3细胞系中,XIAP mRNA水平降低了72%,蛋白水平降低了76%。
     4.结论
     (1)成功构建XIAP特异的RNAi慢病毒表达质粒载体。
     (2)包装并生产高滴度的慢病毒颗粒。
     (3)利用Real-Time PCR和Western Blot筛选高效干扰序列,经慢病毒转染后XIAP基因mRNA和蛋白水平显著被抑制。
     第三部分XIAP基因沉默对甲状腺乳头状癌生物学行为影响
     1.目的
     (1)观察XIAP基因沉默对细胞增殖的影响
     (2)分析XIAP基因沉默对细胞周期的影响
     (3)探讨XIAP基因沉默对细胞凋亡的影响
     (4)研究XIAP基因沉默对细胞侵袭的影响
     2.材料与方法
     (1)细胞增殖实验:采用MTT法评价XIAP基因沉默后对细胞增殖的影响。
     (2)细胞周期分析:利用流式细胞术测定细胞DNA含量,Modtif软件分析细胞周期。
     (3)细胞凋亡实验:采用Annexin-IV和PI双染流式细胞仪分析XIAP基因沉默后对细胞凋亡的影响,并用Western blot检测细胞凋亡相关蛋白及Real-time PCR检测细胞凋亡相关基因的表达情况。
     (4)细胞侵袭能力实验:利用Transwell实验评价XIAP基因沉默后细胞的侵袭能力。
     3.结果
     (1) XIAP基因沉默细胞增殖分别降低51%、43%,明显低于未干预组;阴性对照慢病毒感染组的细胞增殖未受明显影响。
     (2) XIAP基因沉默细胞G2/M期分别增加18.4%、14.1%,与未干预组及阴性对照慢病毒感染组相比有显著性差异。
     (3) XIAP基因沉默细胞凋亡率分别增加14.2%、8.4%,与未干预组及阴性对照慢病毒感染组相比有显著性差异。
     (4) XIAP基因沉默细胞穿膜能力分别降低50.7%、44.9%,明显低于未干预组及阴性对照慢病毒感染组。
     4.结论
     (1)敲除XIAP基因可抑制甲状腺乳头状癌细胞增殖,使其滞留在G2/M期。
     (2)沉默XIAP基因可促进甲状腺乳头状癌细胞凋亡。
     (3)静默XIAP基因可抑制甲状腺乳头状癌细胞侵袭。
The incidence of thyroid carcinoma has risen especially Papillary thyroid carcinoma in recent years. Papillary thyroid carcinoma is the most common type of thyroid carcinoma, it accounts for 60-80% of thyroid malignancies and 1-2% of all human malignant tumor. There are biological characters present in papillary thyroid carcinoma such as outcontrol of proliferation and apoptosis arrest, strong capability of invasion, high incidence of lymph nodes metastasis, high recurrence rate after operation, unfavorable result after second surgery, and lack of internal and biological therapy approaches generally.
     XIAP(X-linked inhibitor of apoptosis protein) is one of the most important members in IAP family, and is well known as hallmark of the family, it also has been recognized as the strongest endogenous caspase suppress factor, key regulate factor of cell death in physiology. The Studies have shown that low or not XIAP expression in normal tissue, but in many malignant neoplasms, such as lung cancer, thymus cancer, pancreatic cancer, cervical cancer, leukemia and oophoroma, have over expression. The experiments in vitro and animal have pointed out XIAP play a tumor gene role in tumor development and progress through suppression of cell apoptosis and promotions of cell proliferation, survival, migration, invasion and tumor vessel formation. Due to the over expression in malignancies and low even not expression in normal human tissue, and the latest research demonstrates mice XIAP-deficient mice do not have any obvious pathology defects that prompt maybe knockout of XIAP has no shortcoming to do with normal cells. On account of all these characteristics above, XIAP gene is considered as a potential oncotherapy target point and has become a popular target gene in tumor therapy and pharmaprojects.
     RNA interference (RNAi) is a new technique which has been developed in recent years, it can be defined as a phenomenon in which ectogenesis and endogenous double strand RNA (dsRNA) degrade the homologous gene mRNA, then lead to gene silence after transcription. There are many characters in RNA interference, such as sequence specificity, high performance of gene express suppression, stability and transmissibility. There are two RNA interference experiment methods used commonly: direct transfection double strand siRNA and vector (plasmid and virus) express hairpin RNA. Lentivirus can be used in transfecting dividing cells or non-dividing cells, and has the characters such as high transfection efficiency, strong suppression of gene expression, long time duration, it also can cassette hereditary substance into genome of host cells.It becomes possible of prolonged action suppresses target gene expression through lentivirus vector mediated RNA interference.
     In spite of the proof of the intimate relationship between XIAP and some malignant tumors’development and progression, also XIAP presents potential as a tumor therapy target, but there are few documents about the relationship between XIAP and papillary thyroid carcinoma right now. With regards to all reasons above, we study the expression of XIAP in papillary thyroid carcinoma and the cell biological effect mediated by RNA interference, and expecting to bring up a new biology therapy strategy for papillary thyroid carcinoma.
     Chapter 1 Overexpression of X-linked inhibitor of apoptosis protein in papillary thyroid carcinoma
     1. Aim
     (1) To detect the expression of XIAP in papillary tyroid carcinoma, thyroid adenoma and normal thyroid tissue
     (2) To analysis the relationship between XIAP and clinical parameters
     2. Materials and Methods
     (1) Case data collection: this study was conducted on a total 49 paraffin embeded papillary thyroid carcinoma samples, 33 thyroid adenoma and 25 normal thyroid tissue samples, which were diagnosed by pathology department at our hospital.
     (2) Immunohistochemistry for XIAP expression using a rabbit monoclonal anti- XIAP antibody.
     3. Results
     (1) XIAP expression was strongly positive in 40 of 49 papillary thyroid carcinoma samples(81.6%).
     (2) We analysed the clinical data of papillary thyroid carcinoma patients by Chi-Square test and t test. The XIAP expression of male was 76.9%(10/13),and among female patients was 80.6%(29/36), Compared to the group with positive XIAP expression, XIAP expression was not associated with gender(p=0.780). The ages of positive XIAP expression was 46.18±15.2 years, and the ages of negative XIAP expression was 43.22±11.35 years, compared to the group with positive XIAP expression, XIAP expression was not associated with age(p=0.520). XIAP expression of metastatic samples was 86.7%, and the expression of non metastatic samples was 79.4%, there was not significant difference between two groups(p=0.546).The diameters of positive XIAP expression was 1.98±0.59cm, and the diameters of negative XIAP expression was 1.53±0.52cm, compared to the group with positive XIAP expression, XIAP expression was significantly associated with tumor diameter(p=0.041). XIAP expression of extrathyroid invasion samples was 95.4%(21/22), and the expression with non invasion samples was 70.4%(19/27), there is significant difference between two groups(p=0.024). XIAP expression was 69.6%(16/23) among early stage patients, and 92.3%(24/26) among advanced stage patients, there was significant difference between two groups(p=0.040). XIAP expression was 63.2%(12/19) among classical histology, 92.8%(13/14) among follicular variant, and 93.7%(15/16) among others histology classification, there was significant difference among group classic variant and group follicular and others(p=0.045, 0.031).
     (3) Positive expression of XIAP was associated with tumor diameters(r=0.328, P=0.031), invasion(r=0.317, P=0.037), clinical stage(r=0.289, P=0.046), while not age, gender, metastasis and histology classification by spearman correlation analysis.
     4. Conclusions
     (1) XIAP expression was strongly positive in 40 of 49 papillary thyroid carcinoma samples(81.6%).
     (2) XIAP expression was significantly associated with the tumor diameters invasion, clinical stage and histology classification. In contrast,no correlation was found between gender or age at the expression level of XIAP protein of papillary thyroid cacinoma patients.
     (3) Positive expression of XIAP was associated with tumor diameters, invasion, clinical stage, while not with gender, age, metastasis and and histology classification by spearman correlation analysis.
     Chapter 2 Silencing of XIAP in papillary thyroid carcinoma mediated by lentivirus vector
     1. Aim
     (1) To construct XIAP RNAi lentivirus vector, and produced high titer lentivirus particals.
     (2) Select the most effective shRNA through XIAP expression after transfection of papillary thyroid carcinoma cell line.
     2. Materials and Methods
     (1) XIAP RNAi lentiviral vectors were constructed by Genechem lentiviral RNAi Expression System
     (2) XIAP RNAi lentiviral vectors were packaged by co-transfecting 293FT with 3 plasmids. The titer of lentivirus was measured by hole dilution system
     (3) XIAP mRNA level was analyzed by real time RT-PCR, XIAP protein level was determined by Western Blot.
     3. Result
     (1) The lentivirus vector targeting XIAP was successfully constructed,.
     (2) The concentration of lentivirus were 2×108TU/ml after packaged and produced, the MOI of K1 and CGTH W3 were 10 and 20,respectively.
     (3) High performance interference sequence was selected, and after transfection, the mRNA level decreased 79%, the protein level decreased 87% in K1 cell line; and the mRNA level decreased 72%, the protein level decreased 76% in CGTH W3 cell line.
     4. Conclusion
     (1) The construction of lentivirus vectorand targeting XIAP was successful.
     (2) The package and production of high titer lentivirus particle were successful.
     (3) The selected siRNA sequence demonstrated significant silencing effect of XIAP at both mRNA and protein levels.
     Chapter 3 Effects of XIAP gene silence on biological behavior of papillary thyroid carcinoma cells
     1. Aim
     (1) To measure the function of XIAP in proliferation of papillary thyroid carcinoma cell lines
     (2) To determine the function of XIAP in cell cycle of papillary thyroid carcinoma cell lines
     (3) To analyse the function of XIAP in apoptosis of papillary thyroid carcinoma cell lines
     (4) To elucidate the function of XIAP in invasion of papillary thyroid carcinoma cell lines
     2. Materials and Methods
     (1) Proliferation of papillary thyroid carcinoma was measured by MTT
     (2) Cell cycle analysis is performed by flow cytometry.
     (3)Apoptosis of cells were determined by flow cytometry with Annexin-V and PI Staining, and we also Western blotting and Real time PCR to test the protein and RNA level which is relevant to apoptosis
     (4) Invasion of cells were tested by Transwell methods,
     3. Results
     (1) The knockdown of XIAP has reduced the proliferation level, 51% and 43%, respectively.
     (2) After XIAP knockdown, about increased 18.4% and 14.1% of cells were at G2/M phase.
     (3) XIAP silencing could increase the level of apoptosis, 14.2% and 8.4%, respectively.
     (4) Knockdown of XIAP decreased the number of invaded cells about 50.7% and 44.9%, respectively.
     4. Conclusion
     (1) The knockdown of XIAP could restrain the proliferation of papillary thyroid carcinoma cells, and made it detained at G2/M phase.
     (2) The silence of XIAP could promote the apoptosis of papillary thyroid carcinoma.
     (3) The silence of XIAP could suppress the invasion of papillary thyroid carcinoma.
引文
1. Roman SA. Endocrine tumors: evaluation of the thyroid nodule. Curr Opi n oncol,2003,15(1):66-70
    2. Kimura ET, Nikiforova MN , Zhu ZW,et al. High prevalance of BRAF mutations in hyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS -BRAF signaling pathway in papillary thyroid carcinoma [J]. Cancer Res,2003,63970: 1454-1457
    3. SalvatoreG, Giannini R, Faviana P,et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-neeedle aspiration diagnosis of papallary thyroid carcinoma [J]. J Clin Endocrinol Metab, 2004,89(10):5157-5180
    4. Frattini M, Ferraio C,Bressan P, et al. Alternative mutations of the BRAF,RET and NTRK1 are associated with similar but distinct gene expressionpatterns in papallary thyroid cancer [J]. Oncogene ,2005 3(44):7436-7440
    5. Beesley MF, Maclaren KM. Cytokeratin-19 and galectin-3 immunohistochemistry in the different diagnosis of solitary thyroid nudules. Histopathology, 2006, 41:236
    6. Davies L,Welch HG 2006 Increasing incidence of thyroid cancer in the united states,1973-2002. JAMA 295:2164-2167
    7. BRAFV600E mutation and X-linked inhibitor of apooptosis expression in papillary thyroid carcinoma[J]. Thyroid,2009,19(4):347-354
    8. Greene FL, Page DL, Fleming ID, Fritz AG, Balch CM, Haller DG, Morrow M,eds. 2002 AJCC cancer staging manual 6th ed. New York, Berlin, Heideberg, Springer- Verlag;77-87
    9. DeLellis RA, Lloyd RV, Heitz PU, Eng C, et al. World Health Organization classification of tumors, pathology and genetics of tumors of endocrine organs. Lyon: IRAC Press,2004:57-66
    10. Mohammad A, Jung HB, Levy K, et al. Multiple molecular target of resveratrol: anticarcinogenic mechanisms[J]. Arch Bio chem. Biophys,2009 June 15:95-102
    11. Zhao HD, Zhang J, Lu JG, et al. Reduced expression of N-myc downstream- regulated gene 2 in human thyroid cancer[J]. BMC Cancer.2008;8:303
    12. Ana P, Joana G, Ana PR, et al. Proliferation and survival implicated in the inhi bition of BRAF pathway in thyroid cancer cells harbouring different genetic mutation[J]. BMC Cancer.2009;9:387
    13. A R Marques, C Espadinha, M J Frias, et al. Underexpression of peroxisome proliferator-activated receptor(PPARγ) in PAX8/PPARγ-negative thyroid tumor [J]. Br J Cancer.2004 August 16;91(4):732-738
    14. Demet C, Serpil DS, Tuncay D, et al. Papillary carcinomas of thyroid gland and immunhistochemical analysis of expression of P53 protein in papillary carcinomas[J]. Transl Med.2006;4:28
    15. Jing Liu, Robert E Brown. Immunohistochemical detection of epithelialmesenh- mal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Clin Exp Pathol.2010;3(8):755-762
    16.Yoko O, Noriyuki S, Takahiro O, et al. Immunohistochemical Demonstration of Membrane-bound Prostaglandin E2 Synthase-1 in Papillary Thyroid Carcinoma. Acta Histochem Cytochem.2009 August 29;42(4):105-109
    17. Debora D, Chiara A, Giancarlo C, et al. Integrated Ligand-Receptor Bioinformatic and In Vitro Functional Analysis Identifies Active TGFA/EGFR Signaling Loop in Papillary Thyroid Carcinomas. Plos One.2010;5(9):12701
    18. Felix R, Nicole S, Anne-Kathrin L, et al. Simultaneous gene silencing of Bcl-2, XIAP and Survivin resensitizes pancreactic cancer cells towards apoptosis[J]. BMC Cancer.2010;10;379
    19. Jason R, Maozhen T, William P, et al.X-link inhibitor of apoptosis protein and its E3 ligance activity promote Transforming Growth Factor-β-mediated Nuclear Factor-κB activation during Breast Cancer progression. J Biol Chem.2009 August 7;284(32):21209-21217
    20. Gregoire D, Nicola G, Roberto D, et al. Impact of XIAP protein levels on the survival of myeloma cells[J]. Haematogica.2009 Januaty;94(1):87-93
    21. Yinghong S, Wenxing D, Jian Z, et al. Expression of X-link inhibitor of apoptosis protein in Hepatocellular carcinoma promotes metastasis and tumor recurrence[J]. Hepatology,2008 August;48(2):497-507
    22. Berezovskaya O, Schimmer AD, Glinskii AB, et al. Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate metastasis precursor cells. Cancer Res.2005,Mar,15;65(6):2378-2386
    23. Overexpression of X-linked inhibitor of apoptosis protein(XIAP) is an independent unfavorable prognostic factor in childhood de Novo Acute Myeloid Leukemia. J Korean Med Sci.2009 August;24(4):605-613
    24. Claudia A, Luca C, Marco M, et al. Inhibitor of apoptosis proteins(IAPs) expression and their prognostic significance in hepatocellular carcinoma[J]. BMC cancer.2009;9,125
    25. Harriet MK, Mary MM, Ayesha BA, et al. The X-linked inhibitor of apoptosis protein(XIAP) is upregulated in metastatic melanoma, and XIAP cleavage by Phenoxodiol is associated with Carboplatin sensitization. J Transl Med.2007;5:6
    26. Magali E, David C, Norma H, et al. Inhibitors of apoptosis proteins in human cervical cancer[J]. BMC Cancer.2006;6:45
    27. Y Yan, C Mahotka, S Heikaus, et al. Disturbed balance of expression and Smac/Diablo during tumor progression in renal cell carcinomas[J]. Br J Cancer.2004 October 4;91(7):1349-1457
    28. MLH1 expression sensitizes ovarian cancer cells to cell death mediated by XIAP inhibition[J]. Br J Cancer.2009 July 21;101(2):269-277
    29. Fire A,Xu S,Montgomery MK, Kostas SA, Driver SE,Mello CC.Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans[J]. Nature.1998;391:806-81 1.
    30. Thijin R, Brummelkamp, Rene Bernards and Reuven Agami. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science,2002,296(5567): 550-553
    31. Hutvagner G. Small RNA asymmetry in RNAi: function in RISC assembly and gene regulation[J]. FEBS Lett. 2005 Oct 31;579(26):5850-7
    32. Lenz G. The RNA interference revolution[J]. Braz J Med Biol Res.2005,38(12):1749-57
    33. Zhou D, He QS, Wang C, Zhang J, Wong Staal F. RNA interference and potentialapplications[J]. Curr Top Med Chem.2006;6(9):901-11
    34. Wong LF, Goodhead L, Prat C, Mitrophanous KA, Kingsman SM, Mazarakis ND. Lentivirus mediated gene transfer to the central nervous system: therapeutic and research applications[J]. Hum Gene Ther. 2007;17:1-9
    35. Downward J. RNA interference. BMJ, 2004,328,1245-1248
    36. Bass BL. Double strand RNA as a template for gene silencing. Cell, 2001,101(3): 235-238
    37. Gura T. A silencing that speaks volumes. Nature, 2001,404(6780):804-808
    38. Sijen T, Fleenor J, Simmer F, et al. On the role of RNA amplification in dsRNA-triggered gene silencing[J]. 2001,107(4):465-476
    39. Harborth J, Elbashir SM, Becherk K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNA [J]. J Cell Sci,2003,114(24): 4557-65
    40. Bass BL. RNA interference. The short answer[J]. Nature,2003;411(6836):428-9
    41. Fire A. Potent and Specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    42. Blute JW, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol,2001,19: 1141-1147
    43. Waechle R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat Rev Genet.2007;8(8):573-87
    44. Lundstrom K. Latest development in viral vectors for gene therapy. Trends Biotechnol.2004;21(3):117-22
    45. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A Lentivirus-based system to functionally silence genes in primary mammalian cells , stem cells and transgenic mice by RNA interference. Nat Genet, 2003,33(3):401-406
    46. Holm Zaehres, M William Lensch, Laurence Daheron, et al. High efficiency RNA interference in human embryonic stem cells. Stem Cells,2005,23:299-305
    47. Bruce L Levine, Laurent M Humeau, Jean Boyer, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. PNAS,2007,103(46):17372-17377
    48. Christorphe Delenda,. Lentiviral vectors: Optimization of packaging, transduction and gene expression. J Gene Med, 2004,6:125-138
    49. Di Nicola M, Carlo Stella C, Magni M, et al. Human Bone marrow stromal cells suppress T lymphocyte proliferation induced bycellar or nonspecific mitogenic stimuli.Blood, 2003,99(10):3838-3843
    50. Frankel AD, Young JA,. HIV-1: fifteen proteins and an RNA[J]. Annu Rev Biochem,1998,67:1-25
    51. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentivirus vector [J]. Science,2006,272:263-267
    52. Reiser J, Lai Z, Zhang XY, et al. Development of multigene and regulated lentivirus vectors [J]. J Virol, 2000,74(22):10589-10599
    53. Kimura ET, Nikiforova MN, Zhu ZW,et al. High prevalance of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS- BRAF signaling pathway in papillary thyroid carcinoma [J]. Cancer Res, 2003,63970: 1454-1457
    54. SalvatoreG, Giannini R, Faviana P,et al. Analysis of BRAF point mutation and RET/PTC rearrangement refines the fine-neeedle aspiration diagnosis of papallary thyroid carcinoma [J]. J Clin Endocrinol Metab, 2004,89(10):5157-5180
    55. Curado MP, Edwards B, Shin HR, et al. Cancer incidence in Five Continents. IX. Lyon: IARC; 2007. IARC Scientific Publications No. 160.
    56. Beesley MF, Maclaren KM. Cytokeratin-19 and galectin-3 immunohistochemistry in the differential diagnosis of solitary thyroid nudules. Histopathology, 2006, 41:236
    57. Briseis A Kilfoy, Tongzhang Zheng, Teodore R.Holford, xuesong HanInternational patterns and trends in thyroid cancer incidence,1973-2002. Cancer cause control.2009 July;20(5):525-531
    58. Jason R. Neil, Maozhen Tian, William P. Schiemann. X-linked Inhibitor of Apoptosis Protein and Its E3 Ligase Activity Promote Transforming Growth Factor-β-mediated Nuclear Factor-κB Activation during Breast Cancer Progression. J Biol Chem. 2009 August 7;284(32): 21209-21217
    59. Saskia A. G. M. Cillessen, John C. Reed, Kate Welsh etc. Small-molecule XIAPantagonist restores caspase-9–mediated apoptosis in XIAP-positive diffuse large B-cell lymphoma cells. Blood.2008 January 1; 111(1):369-375
    60. Swarna Mehrotra, Lucia R. Languino, Christopher M. Raskett. IAP regulation of metastasis. Cancer cell. 2010 January 19;17(1):53
    61.Ying-Hong Shi, Wen-Xing Ding, Jian Zhou. Expression of X-linked Inhibitor-of-apoptosis Protein in Hepatocellular Carcinoma Promotes Metastasis and Tumor Recurrence.Hepatology.2008 August; 48(2):497-507
    62. Vejic D, Savin S, Petrovic I, et al. Galectin-3 and proliferating cell nuclear antigen(PCNA) expressed in papillary thyroid carcinoma[J].Exp Oncol,2005,27(3): 210-214
    63. Albert A, Janusz D, Malgorzata BM, et al. Assessment of proliferative of thyroid hurthle cell tumors using PCNA, Ki-67 and AgNOR methors[J]. Folia Histochemica et Cytobiologica,2004,42(3):165-169
    64.许力,芮景,李仁志等. Bcl-2及ER在甲状腺乳头状癌的表达及意义.解剖与临床,2008,13(2):96-99
    65. Gennaro C,Massimo A. The antiapoptotic protein BAG 3 is expressed in the thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor related apoptosis-inducing ligand. JCEM,2007,92:1159-1163
    66. Sherman SI. Thyroid carcinoma. Lancet,2003;361:501–511
    67. Kondo T, Ezzat S, Asa SL, et al. Nat Rev Cancer.2006;6:292-306
    68. Yoko O, Noriyuki S, Takahiro O, et al. Immunohistochemical Demonstration of Membrane-bound Prostaglandin E2 Synthase-1 in Papillary Thyroid Carcinoma. Acta Histochem Cytochem.2009 August 29;42(4):105-109
    69. Debora D, Chiara A, Giancarlo C, et al. Integrated Ligand-Receptor Bioinformatic and In Vitro Functional Analysis Identifies Active TGFA/EGFR Signaling Loop in Papillary Thyroid Carcinomas. Plos One.2010;5(9):12701
    70. Salvesen GS, Suckett CS. IAP proteins:blocking the road to death’s door.Nature Rev Mol Cell Biol 2003;3:401-10.
    71. Srinivasula SM,Ashwell JD.IAPs:what is in name Mol Cell 2008;30:123-35
    72. Sun C, Cai M,Gunasekera A H,et al.NMR structure and mutagenesis of theinhabitor of apoptosis protein XIAP. Nature,2000, oct 21; 401(6775):818-22
    73. Sun C,et al.NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP.J Biol Chem, 2001, Oct 27; 275(43):33777-33781
    74. Fujita E, Soyama A, Kawabata M, et al.BMP-4 and retinotic acid Synergistically induce activation of caspase-9 and cause apoptosis of P19 embryonal carcinoma cells cultured as a monolayer. Cell Death Differ.2006,Nov;6(11):1109-1116
    75. Hofer-Warbinek R, Schmid JA, Stehlik C, et al.Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem.2006;275:22064-22068
    76. Sanna MG, Da Silva Correia J, Ducrey O, et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK signaling cascade and caspase inhibition. Mol Cell Biol.2005;22:1754-1766
    77. Shrikhande SV,Kleeff J,Kayed H,et al.Silencing of X-link inhibitor of apoptosis (XIAP) decreases gemcitabine resistance of pancreatic cancer cells [J].Anticancer Res,2006,26(5A):3265
    78. Shiraki K, Sugimoto K, Yamanaka Y,et al. Overexpression of X-linked inhibitor of apoptosis in human hepatocellular carcinoma. Int J Mol Med. 2003,Nov;12(5): 705-708.
    79. Shi YH,Ding WX,Zhou J,et al.Expression of X-link inhibitor of Apoptosis Protein in Hepatocellular Carcinoma Promotes Metastasis and Tumor Recurrence. Hepatology.2008 August;48(2): 497-507
    80. Mehrotra S,Languino LR,et al.IAP regulation of metastasis. Cancer Cell. 2010 Jan 19; 17(1):53-64
    1. Sun C, Cai M, Meadows RP, et al. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J Biol Chem,2003,275(43):33777 -33281
    2. Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res. 64: 7183–7190
    3. Devereaux QL, Takahashi R, Salvesen GS, et al. X-linked IAP is a direct inhibitor of cell death proteases. Nature,2004,388:300-4
    4. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2005;11:519-527
    5. JJ Chai, E Shiozaki, Srinivasula SM, et al. Structure basis of Caspase-7 inhibitor by XIAP[J]. Cell,2005,104:769-780
    6. Takahashi R, Deveraux Q, Tamm I, et al.A single BIR domain of XIAP sufficient for inhibiting Caspase[J]. J Bio Chem,2003,273:7787-90
    7. Huang YH, Park YC, Rich RL, et al. Structureal basis of Caspase inhibitor by XIAP: different roles of the linker verse the BIR domain[J]. Cell,2004,104:781-790
    8. Stefan J, Martin R, Robert SM, et al. Structure basis for the inhibition of Caspase-3 by XIAP. Cell,2004,104(5):9761-9780
    9. Ridel SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibitor of Caspase-3 by XIAP. Cell,2005,107:672-670
    10. Morizane Y, Honda R, Fukami K, et al. X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO[J]. Biochem(Tokyo)2008;137:125-132
    11. Warbinek RH, Schmid JA, Stehlik C, et al. Activation of NF-κB by XIAP, the Xchromosome-linked inhibitor of apoptosis, in endothelial cells involves[J]. Bio Chem,2005,275:22064-22068
    12. Fujita E, Soyama A, Kawabata M, et al.BMP-4 and retinotic acid Synergistically induce activation of caspase-9 and cause apoptosis of P19 embryonal carcinoma cells cultured as a monolayer. Cell Death Differ.2006,Nov;6(11):1109-1116
    13.Hofer-Warbinek R, Schmid JA, Stehlik C, et al.Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem.2006;275:22064-22068
    14.Sanna MG, Da Silva Correia J, Ducrey O, et al. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK signaling cascade and caspase inhibition. Mol Cell Biol.2005;22:1754-1766
    15. Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity[J]. Nat Cell Biol,2005,3(2):128-133
    16. Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins[J]. Biochem Biophys Res Commun, 2005,304(3):499-504
    17. Jia L, Patwari Y, Kesley SM, et al. Role of Smac in human leukaemic cell apoptosis and proliferation[J]. Oncogene,2005,22(11):1589-1599
    18. Verhangan AM, et al. J Biol Chem,2006,277:445-454
    19.管志远,李宜雄,李小刚,等. XIAP在胰腺癌组织中的表达及意义.中国普通外科杂志[J], 2005,14(5):385-386
    20. Shrikhande SV,Kleeff J,Kayed H,et al.Silencing of X-link inhibitor of apoptosis (XIAP) decreases gemcitabine resistance of pancreatic cancer cells [J].Anticancer Res,2006,26(5A):3265
    21. Shiraki K, Sugimoto K, Yamanaka Y,et al. Overexpression of X-linked inhibitor of apoptosis in human hepatocellular carcinoma. Int J Mol Med. 2003,Nov;12(5): 705-708.
    22. Claudia A, Luca C, Marco M, et al. Inhibitor of apoptosis proteins(IAPs) expression and their prognostic significance in hepatocellular carcinoma[J]. BMC cancer.2009;9,125
    23.郑丽端,童松强,汪良,等.下调XIAP表达增强化疗药物诱导胃癌细胞凋亡的作用.世界华人消化杂志[J], 2007,15(29):3067-3073
    24.杜利力,韩春山,于晓丽,等.靶向XIAP的SiRNA抑制结肠癌LOVO细胞体内外的增殖.中国肿瘤生物治疗杂志[J], 2009,16(5):479-482
    25. Berezovskaya O, Schimmer AD, Glinskii AB, et al. Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate metastasis precursor cells. Cancer Res.2005, Mar,15;65(6):2378- 2386
    26.宋涛,洪宝发,蔡伟,等.凋亡抑制基因XIAP在肾透明细胞癌的表达.新乡医学院学报[J], 2008,25(5):455-457
    27.范民,王艳波,朱朝辉,等.凋亡抑制因子XIAP在膀胱癌组织中的表达及其临床意义.中华实验外科杂志[J], 2007.24(10):1234-1235
    28.高吴阳,胡传义,易慕华. XIAP蛋白在乳腺癌中的表达及其与肿瘤凋亡的关系.中华医学杂志[J], 2006,9(2):6-10
    29. Dan HC, Sun M, Kaneko S, et al. Akt phosphorylayion and stabilization of X-linked inhibitor of apoptosis protein(XIAP). J Biol Chem,2007,279(7):5045-5051
    30. Mcneish A, Bell S, Mckay T, et al. Expression of Smac/DIABLO in ovarian carcinoma cells induced apoptosis via a caspase-9 mediated pathway. Exp Cell Res,2006,286(2):186-198
    31.夏春波,周思,蒋常文,等. X-连锁凋亡抑制蛋白在子宫颈癌组织中的表达.中国老年学杂志[J],2009,29(20):2579-2580
    32. Overexpression of X-linked inhibitor of apoptosis protein(XIAP) is an independent unfavorable prognostic factor in childhood de Novo Acute Myeloid Leukemia. J Korean Med Sci.2009 August;24(4):605-613
    33.梁群英,冯爱菊郭瑞珍,等. XIAP在非何杰金氏淋巴瘤的表达及临床意义.中国实用医刊[J],2009,36(1):40-42
    34.王丽波,华树成,刘伟.老年非小细胞肺癌XIAP蛋白的表达及临床意义.中国老年学杂志[J],2010,4(30):1059-1060
    35.杨运发,杜洪,王建炜,等.凋亡抑制蛋白XIAP在骨肉瘤中的表达及意义.中国骨肿瘤骨病[J],2008,7(5):146-148
    36. Dean E, Jodrell D, Connonlly K, et al. Phase I trial of AEG35156 administered as a 7-day and 3-day continuous intravenous infusion in patients with advanced refractory cancer. J Clin Oncol,2010,27(10):1660-1666
    37. Sun H. Bioorg Med Chem Lett,2006,15(3):793-797
    38. Mohd AB, Huang Z. MLH1 expression sensitives ovarian cancer cells to cell death mediated by XIAP inhibition. Br J Cancer,2009,101(2):269-277
    39. White SJ, Kasman L, McKillop J, et al. Oxidative stress sensitives bladder cancer cells to TRAIL mediated apoptosis by down regulating anti-apoptosis proteins. J Urol,2009,182(3):1178-11185

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700