灵芝多糖的液体发酵、提取纯化及其硫酸化改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文综述了灵芝多糖的生物学活性及其抗肿瘤、免疫调节作用的免疫学机制,讨论了影响灵芝液体深层发酵生产的主要因素,总结了有关多糖构效关系的研究并列举了常用的多糖结构修饰方法。
     从11株供试灵芝菌种中筛选得到一株高菌丝体得率的灵芝菌株,为赤芝07号菌株。通过正交试验确定了适宜赤芝07号菌株液体发酵的培养基配方是:葡萄糖4%、酵母粉0.3%、KH2PO40.15%、MgSO40.1%。赤芝07号菌株摇瓶发酵的最适培养条件为:初始pH4.0,装液量40%,接种量10%,培养时间8d。经100L发酵罐中试放大试验,结果菌丝体得率为11.26g/L,胞外粗多糖得率为1.632g/L。
     通过单因素试验和响应面分析法得到水提灵芝菌丝体粗多糖的最佳工艺条件为:提取温度100℃,提取时间2.45h,水料比45.72:1,提取1次。在此条件下,实际提取率2.228%与模型理论预测值的相对误差小于2%。
     灵芝多糖脱蛋白的最适作用酶是木瓜蛋白酶,最佳脱蛋白方法是:粗多糖经木瓜蛋白酶酶解,再用Sevage法处理3次,其蛋白脱除率达到76.3%。紫外光谱显示在260与280 nm波长处均无显著吸收峰,说明灵芝多糖已基本去除蛋白质、核酸类杂质。
     灵芝胞外多糖经超滤纯化后,高效液相色谱图显示单一的多糖峰,并测得其重均分子量为146948Da,多糖含量达到98.68%。核磁共振碳谱分析表明,灵芝胞外多糖为杂多糖,主要由3种不同的单糖组成,为α、β两种吡喃糖构型,主要由1→3和1→6糖苷键连接,其中以1→3糖苷键为主链。
     采用氯磺酸-吡啶法进行灵芝胞外多糖的硫酸化改性,红外光谱表明硫酸根与灵芝多糖分子结合成酯,硫酸化产物得率为35.6%。
The biological activity of Ganoderma lucidum polysaccharide and the immunological mechanism of its anti-tumor activity, immunomodulating effect were summarized, the effects of the major factors in submerged fermentation of Ganoderma lucidum were discussed, the relationships between structure and effect of polysaccharide were studied, meanwhile, some motheds of molecular modification were listed.
     A height mycelia yield strain was screened out from 11 tested strains of Ganoderma lucidum, as Ganoderma lucidum-07(GL-07). The results of orthogonal test showed that, the optimum formula of liquid fermentation medium of GL-07 was glucose 4%, yeast extract 0.3%, KH2PO4 0.15%, MgSO4 0.1%. The optimum fermentation conditions were as follow:initial pH,4.0; medium volume,40%; inoculation volume,10%; culture time,8d. The results of 100L fermentation tank pilot study showed that, mycelia yield was 11.26g/L, extracellular polysaccharide yield was 1.632g/L.
     The optimal extraction condition of water-soluble polysaccharides from Ganoderma lucidum mycelia was determined by single factor method and response surface analysis, listed below:extraction temperature,100℃; extraction time,2.45h; ratio of water to raw material,45.72:1; with one-time extraction. Under these conditions, the relative error between the actual extraction rate 2.228% and the model theory predicted rate was less than 2%.
     The best enzyme for deproteinization of Ganoderma lucidum polysaccharide was papain, the best way was that enzymatic hydrolyzed by papain, and then treated by Sevage method for 3 times, the removal percentage of protein reached 76.3%. The ultraviolet spectrum of deproteinized polysaccharide showed that there wasn't protein or nucleic acid because no absorption peaks at 260nm and 280nm.
     Treated by ultrafiltration, extracellular polysaccharide of Ganoderma lucidum (GLP) exhibited a single polysaccharide peak on HPLC chromatogram, the weight-average molecular weight of GLP was 146948Da, the content of polysaccharide reached 98.68%. The 13C-NMR spectrum confirmed GLP was consisted of three kinds of different monosaccharide residues, as a heteropolysaccharide, and there wereα,βpyranose configuration and 1→3,1→6 glycosidic linkage.
     GLP was sulfated by the means of using chlorosulfonic acid-pyridine. The infrared spectrum showd GLP was combined with sulfate, and the sulfated product yield was 35.6%.
引文
[1]李万坤,闫鸿斌,才学鹏,等.糖原组学研究进展——β-葡聚糖的结构和功能的研究进展[J].中国畜牧兽医,2007,34(5):152~155
    [2]Yue GGL, Fung KP, Leung PC, et al. Comparative studies on the immunomodulatory and antitumor activities of the different parts of fruiting body of Ganoderma lucidum and Ganoderma spores[J]. Phytotherapy Research,2008,22(10):1282~1291
    [3]Guo L, Xie JH, Ruan YY, et al.. Characterization and immunostimulatory activity of a polysaccharide from the spores of Ganoderma lucidum[J].International Immunopharmacology,2009,9(10):1175~1182
    [4]Saltarelli R, Ceccaroli P, Iotti M, et al. Biochemical characterisation and antioxidant activity of mycelium of Ganoderma lucidum from Central Italy[J]. Food Chemistry,2009, 116(1),143~151
    [5]黄智璇,欧阳蒲月.灵芝多糖降血糖作用的研究[J].食用菌,2009,(1):60~61
    [6]Lai CSW, Yu MS, Yuen WH, et al. Antagonizing beta-amyloid peptide neurotoxicity of the anti-aging fungus Ganoderma lucidum[J]. Brain Research,2008,1190:215~224
    [7]Wang X, Zhao X, Li D, et al. Effects of Ganoderma lucidum polysaccharide on CYP2E1, CYP1A2 and CYP3A activities in BCG-immune hepatic injury in rats[J]. Biological & Pharmaceutical Bulletin,2007,30:1702~1706
    [8]Gao YH, Tang WB, Gao H, et al.. Ganoderma lucidum polysaccharide fractions accelerate healing of acetic acid-induced ulcers in rats[J]. Journal of Medicinal Food,2004, 7(4):417~421
    [9]鉏晓艳,张日俊.灵芝真菌的液体深层发酵技术[J].饲料工业,2005,26(8):21~23
    [10]高明侠,苗敬芝,曹泽虹,等.灵芝原生质体电融合选育高产多糖菌株的研究[J].江苏农业科学,2008,(6):89~91
    [11]朱芬,陈军,师亮,等.灵芝三萜高产菌株原生质体紫外诱变选育[J].南京农业大学学报,2008,31(1):37~41
    [12]王淑珍,白晨.灵芝孢子诱变与菌丝高长速菌株选育[J].中国食用菌,2000,19(6):6~9
    [13]卫军,李晓,刘凤珠.灵芝液体发酵条件优化研究[J].食品研究与开发,2007,28(2):18~21
    [14]曾晓希,周洪波,符波,等.灵芝多糖液体发酵条件的研究[J].现代生物医学进展,2007,7(6):830~832
    [15]Fang QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide[J]. Biochemical Engineering Journal,2002,10(1):61~65
    [16]Hsieh C, Tseng MH, Liu CJ. Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients[J]. Enzyme and Microbial Technology,2006, 38(1-2):109~117
    [17]罗建成,史政海.灵芝深层发酵工艺研究[J].化学与生物工程,2007,24(10):41~45
    [18]Babitskaya VG, Shcherba VV, Puchkova TA, et al.. Polysaccharides of Ganoderma lucidum:Factors affecting their production[J]. Applied Biochemistry and Microbiology, 2005,41(2):169~173
    [19]孙东平,潘锋,史小丽,等.灵芝菌发酵培养基的优化及灵芝胞外多糖的分离纯化[J].中草药,2000,31(12):941~943
    [20]杨海龙,章克昌.以薏苡仁为基质的灵芝液体发酵——Ⅰ.培养基优化[J].中国食品学报,2006,6(4):6~10
    [21]刘媛,丁重阳,章克昌,等.10种中药对灵芝液体发酵的影响[J].食品与生物技术学报,2008,27(2):123~126
    [22]凌庆枝,王林,魏兆军,等.pH值控制灵芝发酵产生灵芝酸的研究[J].中国酿造,2009,(3):117~120
    [23]Fang QH, Zhong JJ. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum[J].Process Biochemistry,2002,37(7): 769~774
    [24]Yang FC, Liau CB. The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures[J]. Process Biochemistry,1998,33(5): 547~553
    [25]Chang MY, Tsai GJ, Houng JY. Optimization of the medium composition for the submerged culture of Ganoderma lucidum by Taguchi array design and steepest ascent method[J]. Enzyme and Microbial Technology,2006,38(3-4):407~414
    [26]方庆华,钟建江.灵芝真菌发酵生产灵芝多糖和灵芝酸[J].华东理工大学学报,2001,27(3):254~257
    [27]Fang QH, Tang YJ, Zhong JJ. Significance of inoculation density control in production of polysaccharide and ganoderic acid by submerged culture of Ganoderma lucidum[J]. Process Biochemistry,2002,37(12):1375~1379
    [28]贺新生,王茂,欧文婧,等.树舌灵芝菌丝体发酵工艺条件试验[J].食品科学,2008,29(3): 288~292
    [29]Tang YJ, Zhong JJ. Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid[J]. Enzyme and Microbial Technology,2003,32(3-4):478~484
    [30]鉏晓艳,张日俊,张功,等.灵芝多糖的结构及功能研究[J].饲料研究,2004,(12):37~39
    [31]杨占涛,刘超,李月,等.灵芝多糖的研究现状[J].安徽农业科学,2008,36(20):8651~8652,8739
    [32]乔英,董学畅,邱明华.灵芝多糖的研究概况[J].云南民族大学学报(自然科学版),2006,15(2):134~137
    [33]Miyazaki T, Nishijima M. Studies on fungal polysaccharides. XXVII. Structural examination of a water-soluble, antitumor polysaccharide of Ganoderma lucidum[J].Chemical & Pharmaceutical Bulletin,1981,29(12):3611~3616
    [34]Furusawa E, Chou SC, Furusawa S, et al.. Antitumor-activity of Ganoderma lucidum, an edible mushroom, on intraperitoneally implanted Lewis lung carcinoma in synergenic mice[J]. Phytotherapy Research,1992,6(6):300~304
    [35]Jeong YT, Yang BK, Jeong SC, et al.. Ganoderma applanatum: A promising mushroom for antitumor and immunomodulating activity[J]. Phytotherapy Research,2008,22(5): 614~619
    [36]宁安红,孙晓东,曹婧,等.灵芝多糖抗肿瘤作用的初步探讨[J].中国微生态学杂志,2003,15(6):335~336
    [37]张群豪,於东晖,林志彬.用血清药理学方法研究灵芝浸膏GLE的抗肿瘤作用机制[J].北京医科大学学报,2000,32(3):210~213
    [38]张群豪,林志彬.灵芝多糖GL-B的抑瘤作用和机制研究[J].中国中西医结合杂志,1999,19(9):544~547
    [39]胡映辉,林志彬.灵芝菌丝体多糖对HL-60细胞凋亡的影响[J].药学学报,1999,34(4):264~268
    [40]林志彬.灵芝抗肿瘤活性和免疫调节作用的研究进展[J].北京大学学报(医学版),2002,34(5): 493~498
    [41]Ahmadi K, Riazipour M. Effect of Ganoderma lucidum on cytokine release by peritoneal macrophages[J]. Iran J Immunol,2007,4(4):220~226
    [42]Zhang JS, Tang QJ, Zimmerman-Kordmann M, et al.. Activation of B lymphocytes by GLIS, a bioactive proteoglycan from Ganoderma lucidum[J]. Life Sciences,2002,71(6): 623~638
    [43]Lin YL, Liang YC, Lee SS, et al. Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NF-kappa B and p38 mitogen-activated protein kinase pathways[J]. Journal of Leukocyte Biology,2005,78(2):533~543
    [44]张群,雷林生,余传林,等.灵芝多糖对前列腺素E2抑制小鼠脾细胞增殖及IL-1α,IL-2mRNA表达的拮抗作用[J].广州中医药大学学报,2008,25(6):549~552,556
    [45]宁安红,曹婧,黄敏,等.灵芝多糖对荷瘤小鼠肿瘤免疫系统的影响[J].中国微生态学杂志,2004,16(1):13~14
    [46]江振友,林晨,刘小澄,等.灵芝多糖对小鼠体液免疫功能的影响[J].暨南大学学报,2003,24(2):51~53
    [47]雷林生,王庆彪,孙莉莎,等.灵芝多糖对小鼠脾细胞白细胞介素1、肿瘤坏死因子的产生及其mRNA表达的影响[J].中药药理与临床,1998,14(2):16~18
    [48]张群豪,林志彬.灵芝多糖(GL-B)对肿瘤坏死因子α和γ干扰素产生及其mRNA表达的影响[J].北京医科大学学报,1999,(2)
    [49]游育红,林志彬.灵芝多糖肽的抗氧化作用[J].药学学报,2003,38(2):85~88
    [50]鄢嫣,张汇,聂少平,等.黑灵芝子实体水溶性多糖的理化性质及抗氧化活性的研究[J].食品科学,2009,30(19):55~60
    [51]何敏,吴锋,徐济良.灵芝多糖对小鼠糖耐量的影响[J].南通大学学报(医学版),2004,24(4):369~372
    [52]Seto SW, Lam TY, Tam HL, et al. Novel hypoglycemic effects of Ganoderma lucidum water-extract in obese/diabetic (+db/+db)mice[J]. Phytomedicine,2009,16(5):426~436
    [53]余强,聂少平,李文娟,等.黑灵芝多糖对D-半乳糖致衰老小鼠的作用研究[J].食品科学,2009,30(17):305~307
    [54]陈建济,张瑜,王秀敏,等.灵芝多糖(polysaccharide of Ganoderma lucidum)的药效学研究Ⅱ.防辐射及升高白细胞的作用[J].海峡药学,2000,12(4):15~17
    [55]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999
    [56]Peters T, Meyer B, Stuikeprill R, et al. A Monte Carlo method for conformational analysis of saccharides[J]. Carbohydrate Research,1993,238:49~73
    [57]Imberty A, Perez S, Hricovini M, et al. Flexibility in a tetrasaccharide fragment from the high mannose type of N-linked oligosaccharides[J]. International Journal of Biological Macromolecules,1993,15(1):17~23
    [58]Ukawa Y, Ito H, Hisamatsu M. Antitumor effects of (1-> 3)-beta-D-glucan and (1-> 6)-beta-D-glucan purified from newly cultivated mushroom, Hatakeshimeji (Lyophyllum decastes Sing.)[J]. Journal of Bioscience and Bioengineering,2000,90(1):98~104
    [59]Groth T, Wagenknecht W. Anticoagulant potential of regioselective derivatized cellulose[J]. Biomaterials,2001,22(20):2719~2729
    [60]Perret J, Bruneteau M, Michel G, et al. Effect of growth-conditions on the structure of β-D-glucans from Phytophthora parasitica Dastur, a phytophathogenic fungus[J]. Carbohydrate Polymers,1992,17(3):231~236
    [61]Bohn JA, BeMiller JN. (1->3)-beta-D-glucans as biological response modifiers:A review of structure-functional activity relationships[J]. Carbohydrate Polymers,1995,28(1):3~14
    [62]Mulloy B, Mourao PAS, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR[J]. Journal of Biotechnology,2000,77(1):123~135
    [63]Surenjav U, Zhang L, Xu XJ, et al.. Effects of molecular structure on antitumor activities of (1-> 3)-beta-D-glucans from different Lentinus Edodes[J]. Carbohydrate Polymers,2006, 63(1):97~104
    [64]Wang YF, Zhang LN. Chain conformation of carboxymethylated derivatives of (1-> 3)-beta-D-glucan from Poria cocos sclerotium[J]. Carbohydrate Polymers,2006,65(4): 504~509
    [65]Leung MYK, Fung KP, Choy YM. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes[J].Immunopharmacology,1997,35(3):255~263
    [66]Unursaikhan S, Xu XJ, Zeng FB, et al.. Antitumor activities of O-sulfonated derivatives of (1->3)-alpha-D-glucan from different Lentinus edodes[J].Bioscience Biotechnology & Biochemistry,2006,70(1):38~46
    [67]Misaki A, Kawaguchi K, Miyaji H, et al. Structure of pestalotan, a highly branched (1->3)-beta-D-glucan elaborated by Pestalotia sp.815, and the enhancement of its antitumor activity by polyol modification of the side chains[J]. Carbohydrate Research, 1984,129:209~227
    [68]Zhang L, Li XL, Xu XJ, et al. Correlation between antitumor activity, molecular weight, and conformation of lentinan[J]. Carbohydrate Research,2005,340(8):1515~1521
    [69]Tabata K, Ito W, Kojima T, et al. Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune Fries[J]. Carbohydrate Research,1981, 89(1):121~135
    [70]王顺春,方积年.香菇多糖硫酸化衍生物的制备及其结构分析[J].生物化学与生物物理学报,1999,31(5):594~597
    [71]Ohno N, Kurachi K, Yadomae T. Physicochemical properties and antitumor activities of carboxymethylated derivatives of glucan from Sclerotinia sclerotiorum[J]. Chemical & Pharmaceutical Bulletin,1988,36(3):1016~1025
    [72]李玉华,王凤山,贺艳丽.多糖化学修饰方法研究概况[J].中国生化药物杂志,2007,28(1):62~65
    [73]付娟妮,刘兴华,蔡福带,等.真姬菇菌丝体多糖碱提取工艺优化[J].农业机械学报,2008,39(6):98~101,93
    [74]袁志发,周静芋.试验设计与分析[M].北京:高等教育出版社,2000.
    [75]庄恒扬,成敬生.作物规范化栽培试验分析几个问题商榷[J].农业系统科学与综合研究,1990(4):42~46
    [76]陶美华,潘清灵,章卫民.药用真菌多糖含量测定方法研究[J].中国食用菌,2005,24(5): 37~38
    [77]李瑞军,李德耀,张现峰,等.大孔吸附树脂法去除淫羊藿多糖中蛋白的研究[J].高等学校化学学报,2006,27(1):67~70
    [78]颜邦干,李卫旗,吴学谦.香菇多糖的分子结构及其硫酸化改性的研究[J].中国食品学报,2006,6(5):11~16
    [79]罗祖友,陈根洪,郑小江,等.藤茶多糖AGP-3的分离纯化与结构的初步鉴定[J].时珍国医国药,2009,20(7):1707~1709
    [80]孙元琳,陕方,崔武卫,等.当归多糖ASP3及其水解产物的NMR光谱分析[J].高等学校化学学报,2009,30(9):1739~1743
    [81]白日霞,郭全,田文杰,等.碳-13核磁共振法研究小皮伞多糖结构[J].分析化学,1999,27(8): 969~971
    [82]刘葳,于源华,毛亚杰,等.黄绿蜜环菌多糖的分离纯化与组成结构分析[J].长春理工大学学报(自然科学版),2007,30(2):102~105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700