利用叶绿素荧光方法检测浮游植物营养盐限制及跟踪赤潮生消的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
营养盐是浮游植物生存的物质基础。由于营养盐分布的时空变化性和浮游植物间对营养元素的吸收、储存能力及用其进行生存的潜力的不同性,研究各海域营养盐对浮游植物生长、生理的影响始终是一个热点和难点问题。目前,叶绿素荧光技术作为一种新技术正被用于检测营养盐限制的研究。然而,有的学者研究发现,浮游植物叶绿素荧光特性的变化与微藻的种类和品系有关,同时也受限制性营养盐种类、营养盐限制程度等因素的影响。本论文通过实验室培养和现场实验相结合的方法对叶绿素荧光技术的应用进行探究,主要得到以下研究成果:
     1通过实验室一次性培养的方法研究了缺N和缺P的七种海洋微藻分别添加充足的N、P前后PSⅡ最大光化学量子产量(F_v/F_m)的变化。结果表明,柔弱角毛藻、圆筛藻等两种硅藻以及赤潮异湾藻、叉鞭金藻、亚新形扁藻F_v/F_m对N、P限制较敏感,而锥状斯氏藻和东海原甲藻F_v/F_m短时间内降低不明显。利用添加营养盐前后F_v/F_m比值的变化来检测浮游植物的营养盐限制并不是在所有的条件下都适用。对于很多种甲藻来说,F_v/F_m对N或P限制不敏感。
     2通过实验室半连续培养的方法研究了N、P限制的裸甲藻和纤细角毛藻分别添加充足的N、P前后PSⅡ最大光化学量子产量(F_v/F_m)的变化。结果表明,与一次性培养相比,利用F_v/F_m数值的高低不能很好的检测实验室半连续培养条件下两种微藻是否受到N、P限制。
     3通过实验室一次性培养的方法研究了缺N和缺P的五种海洋微藻在15℃,20℃,25℃三个温度水平下分别添加充足的N、P前后PSⅡ最大光化学量子产量(F_v/F_m)的变化。结果表明,F_v/F_m对N、P限制的敏感性更大程度上取决于藻种本身的特性,在微藻可以正常生长的温度范围内,温度对F_v/F_m的影响较弱。当用此方法来检测现场海域微藻营养盐限制时,可以忽略温度对该方法的影响。
     4调查了青岛近海和东海F_v/F_m的平面分布。得出F_v/F_m的平面分布与叶绿素的平面分布、营养盐含量高低较为一致的结论。可用F_v/F_m反映浮游植物的营养水平。
     5通过现场营养盐加富培养的方法研究了四个调查站位营养盐的限制情况。通过检测添加不同的营养元素后F_v/F_m的变化判断该水体浮游植物的营养盐限制情况。结果表明,对于浮游植物生长来说,青岛近海2号站为显著的P限制,6号站为N、P、Si的协同限制;东海DH2-3站和DH6-2站为显著的N限制。通过监测F_v/F_m的变化更能真实的反映营养盐对浮游植物的综合作用,更能反映出藻细胞实际的生理活性。做好引起浮游植物爆发性增殖的营养元素的排放监控、监测工作可在一定程度上避免赤潮的发生。
     6通过现场围隔实验模拟赤潮爆发和消亡的方法研究了利用F_v/F_m的变化来反映赤潮的发展、演替。结果表明,伴随硅、甲藻赤潮的演替,F_v/F_m也出现了相应的周期变化,可由F_v/F_m数值的变化来判断赤潮的发展情况。通过监测F_v/F_m的变化来跟踪赤潮的发展变化是一种便捷、及时、准确的新途径。
Nutrients are of great importance for phytoplankton growth and the concentrationof nutrients in the seawater is changing with seasons and sea areas. As the differencein the ability to store nutrients for phytoplankton and/or their potential to use storednutrients for growth, research basing on nutrient is always the difficult and hot spotfor marine scientists. Chlorophyll fuorescence is being used as a new technique indetecting nutrient limitation for the advantage of sensitive, fast and convenient.However, studies have shown that changes in chlorophyll fuorescence are differentamong algae species and with the limited nutrient. In this paper, the application ofchlorophyll fuorescence was studied in the labrary and in situ. The main researchwork and conclusions are listed as follows:
     1The effects of different nutrient supply on the maximal quantum yield ofphotosystem Ⅱ (F_v/F_m) to seven algae in nitrate-starved and phosphorus-starvedbatch cultures were monitored in order to find weather it could be used to determineN and P limitation in the seven algae. The results showed that F_v/F_mis sensitive to N,P limitation in Chaetoceros debilis, Coscinodiscus sp., Dicrateria inornata,Platymonas subcordiformis and Heterosigma akashiwo while it is not sensitive inSrippsiellla trochoidea and Prorocentrum donghaiense. The results suggested thatF_v/F_mwas not a robust diagnostic for nutrient limitation in dinoflagellates.
     2The effects of different nutrient supply on F_v/F_mto Gymnodinium andChaetoceros gracilis in N-starved and P-starved semi-continuous cultures weremonitored in order to find weather F_v/F_mcould be used to determine N and Plimitation of the two algae in semi-continuous cultures. The results showed that it isnot a robust indicator of N, P limitation in semi-continuous cultures.
     3The effects of different nutrient supply on F_v/F_mto five algae in N-starved andP-starved batch cultures under15℃,20℃and25℃were monitored in order to assessthe effects of temperature on F_v/F_m. The results showed that the sensitivity of F_v/F_mtonutrient limitation is largely depended on the species of the algae. The temperature has little effects on F_v/F_munless it is beyond the endurance of algae. So when usingthis method in detecting nutrient limitation in situ, the effects of temperature can beneglected.
     4The F_v/F_mdistribution of Qingdao coast and the East China Sea was investigatedin this research. The results showed that the F_v/F_mdistribution has good correlationswith chlorophyll and nutrients. The value of F_v/F_mcan be used to reflect nutrientstatus.
     5The effects of different nutrient supply on F_v/F_mto the seawater of fourinvestigation stations were monitored in order to detect the nutrient status. The resultsshowed the growth of phytoplankton in No.2station of Qingdao coast is limited by Pwhile that of No.6station is limited by N, P and Si. Phytoplankton in DH2-3andDH6-2stations of the East China Sea were both limited by N. Basing on thechanges of F_v/F_m, it can be inferred which nutrient can result in the explosion of algae.Control the influx of the limited nutrient can help to prevent the broke out of red tides.
     6Mesocosm experiments were conducted in the East China Sea to simulate thedevelopment of red tide. The results showed that the dominant red tide specie changedfrom diatom to dinoflagellate accompanied with the changes of F_v/F_m. As a result,F_v/F_mcan be used to follow the development of red tide. It is a convenient, promptand precise method in following the development of red tides.
引文
[1] Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis andlight for phytoplankton. Limnology Oceanography,1976,21:540~547.
    [2] Langdon C. On the causes of interspecific differences in the growth-irradiance relationshipfor phytoplankton.Ⅱ. A general review. Journal of Plankton Research,1988,10:1291~1312.
    [3] Davison I R. Environmental effects on algal photosynthesis: temperature. Journal ofPhycology,1991,27:2~8.
    [4] Eppley R W. Temperature and phytoplankton growth in the sea. Fishery Bulletin,1991,70:1063~1085.
    [5] Dugdale R C. Nutrient limitation in the sea: Dynamics, identification and significance.Limnology Oceanography,1967,12:685~695.
    [6] Levasseur M, Thompson, P. A. Harrison, P. J. Physiological acclimation of marinephytoplankton to different nitrogen sources. Journal of Phycology,1993,29:587~595.
    [7] Goldman J C. Physiological processes, nutrient availability, and the concept of relativegrowth rate in marine phytoplankton ecology. In: Falkowski, P. G. ed. Primary Productivityin the Sea. New York: Plenum Press,1980.179~194.
    [8] Schreiber U. Detection of rapid induction kinetics with a new type of high frequencymodulated chlorophyll fluorometer. Photosynthesis Research,1986,9:261~272.
    [9] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield ofphytosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica etbiophysica acta,1989,990:87~92.
    [10] Geider R J, Greene R M, Kolber Z, Macintyre H L, Falkowski P G. Fluorescence assessmentof the maximum quantum efficiency of photosynthesis in the western North Atlantic. DeepSea Research,1993,40:1205~1224.
    [11] Kolber Z S, Falkowski P G. Use of active fluorescence to estimate phytoplanktonphotosynthesis in situ. Limnology Oceanography,1993,38:1646~1665.
    [12] Kolber Z S, Zehr J, Falkowski P G. Effects of growth irradiance and nitrogen limitation onphytosynthetic energy conversion in photosystem Ⅱ. Plant Physiology,1988,88:72~79.
    [13] Steglich C, Behrenfeld M, Koblizek M, et al. Nitrogen deprivation strongly affectsPhotosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containingcyanobacterium Prochlorococcus marinus. Biochimica et Biophysica Acta,2001,1503:341~349.
    [14] Beardall J, Berman T, Phil H, et al. A comparison of methods for detection of phosphatelimitation in microalgae. Aquatic Sciences,2001,63:107~121.
    [15] Cullen J J, Yang X, MacIntyre H L. Nutrient limitation of marine photosynthesis. In:Falkowski P G. Woodhead A D. ed. Primary Productivity and Biogeochemical Cycles in theSea. New York: Plenum Press,1992.69~88.
    [16] Macintyre J G, Cullen J J and Cembella A D.Vertical migration, nutrition and toxicity in thedinoflagellate Alexandium tamarense. Marine Ecology Progress Series,1997,148:201~216.
    [17] Kruskopf M, Flynn K J.Chlorophyll content and fuorescence responses cannot be used togauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytologist,2006,169:525~536.
    [18] Serodio J, Vieira S, Cruz S, Barroso F. Short-term variability in the photosynthetic activity ofmicrophytobenthos as detected by measuring rapid light curves using variable fuorescence.Marine Biology,2005,146:903~914.
    [19] Yentsch C S, Yentsch C M, Phinney D A, Lapointe B E, Yentsch S F W. The odyssey of newproduction. Journal of Experimental Marine Biology and Ecology,2004,300:15~30.
    [20]金月梅。氮磷限制对8株微藻叶绿素荧光特征及生长的影响:[硕士学位论文]。青岛:中国海洋大学,2008。
    [21]欧林坚。典型赤潮藻对磷的生态生理响应:[硕士学位论文]。厦门:厦门大学,2006。
    [22]李斌。氮磷等环境因子对有害赤潮生物海洋卡盾藻的生理生态效应:[硕士学位论文]。广州:暨南大学,2009。
    [23] Dortch Q. The interaction between ammonium and nitrate uptake in Phytoplankton [J].Marine Ecology progress Series,1990,61:183~201.
    [24] Lobban C S, Harrison P J. Seaweed Ecology and Physiology [M]. Cambridge UniversityPress,1994.
    [25]李金涛。长江口邻近海域营养盐对浮游植物生长的影响:[硕士学位论文]。青岛:中国海洋大学,2004。
    [26] Conley D J, Schelske C L, Stoermer E F. Modification of the biogeochemical cycle of thesilica with eutrophication. Marine Ecology Progress Series [J].1993,101:179~192.
    [27] Fong P, Boyer K E, et al. Salinity stress, nitrogen competition, and facilitation: what controlsseasonal succession of two opportunistic green macroalgae [J]. Journal of ExperimentalMarine Biology and Ecology,1996,206:203~221.
    [28]黄云峰。广州海域营养盐限制的富营养化特征研究:[硕士学位论文]。青岛:中国海洋大学,2008。
    [29] Redfield A C. The biological control of Chemieal factors in the environment [J]. Am Sci,1958,46:561~600.
    [30]王保栋。黄海和东海营养盐分布及其对浮游植物的限制[J]。应用生态学报,2003,14(7):1122~1126.
    [31]由希华。东海原甲藻和塔玛亚历山大藻生长对重要环境因子的响应及种间竞争研究青岛:中国海洋大学,2006。
    [32] Sundareshwar P V, Morris J T, Koepfler E K, Fornwalt B. Phosphorus limitation of coastalecosystem processes [J].Science,2003,299:563~565.
    [33] Dyhrman S T, Chappell P D, Haley S T, Moffett J W, Orchard E D,Waterbury J B, Webb EA. Phosphonate utilization by the globally important marine diazotroph Trichodesmium[J].Nature,2006,439:25~26.
    [34]蒲新明,吴玉霖。浮游植物的营养限制研究进展[J]。海洋科学,2000,24(2):2~30.
    [35] Rhea G Y. Phosphate uptake under nitrate limitation by Scenedesmus sp. and its ecologicalimplications [J]. Journal of Phycology,1974,10:470~475.
    [36] Clark D R, Merrett M J, Flynn K J. Utilization of dissolved inorganic carbon (DIC) and theresponse of the marine flagellate Isochrysis galbana to carbon or nitrogen stress[J].NewPhytologist,1999,144(3):463~470.
    [37] Clark D R. Growth rate relationships to physiological indices of nutrient status in marinediatoms [J]. Journal of Phycology,2001,37(2):249~256.
    [38] Davey M, Geider R J. Impact of iron limitation on the photosynthetic apparatus of the diatomChaetoceros muelleri [J]. Journal of Phycology,2001,37(6):987~1000.
    [39]杨东方,张经,陈豫,等。营养盐限制的惟一性因子探究[J]。海洋科学,2001,25(12):49~51。
    [40]王勇,赵澎,单宝田。胶州湾营养盐限制浮游植物生长的初步模拟现场实验研究[J]。海洋科学,2002,26(10):55~58。
    [41]邹立,张经。渤海春季营养盐限制的现场实验[J]。海洋与湖沼,2001,32(6):673~678。
    [42] Cullen J J, Yang X, MacIntyre H I. Nutrient limitation of marine photosynthesis [A]. Primaryproductivity and biogeochemical cycles in the sea [M]. New York: Plenum Press,1992.69~88.
    [43] Coale K H, Johnson K S, Fitzwater S E, et al. IronEx-I, an insitu iron-enrichmentexperiment: Experimental design, implementation and results[J]. Deep Sea Research II,1998,45:919~945.
    [44] Butler A. Acquisition and utilization metal irons by marine organisms [J]. Science,1998,281:207~210.
    [45] Cochlan W P, Harrison P J. Uptake of nitrate, ammonium, and urea by nitrogen starvedcultures of Micromonas pusilla (Prasinophyceae): Transient responses [J]. Journal ofPhycology,1991,27:673~679.
    [46] Parslow J S, Harrison P J, Thompson P A. Development of rapid ammonium uptake duringstarvation of batch and chenunostat cultures of the marine diatom Thalassios irapseu donana[J]. Marine Biology,1984,83:43~50.
    [47] Kilham S S, Kreger D A, Goulden C E, eal. Effects of nutrient limitation on biochemicalconstituents of Ankistrodesmus flacatus [J]. Freshwat Biol,1997,38(3):59l~596.
    [48] Rose C, Axler R P. Uses of alkaline phosphatase activity in evaluating phytoplanktoncommunity phosphorus deficiency [J]. Hydrobiologia,1998,361:145~156.
    [49] Butler W L. Chlorophyll fluorescence: a probe for electron transfer and energy transfer.In Encyclopedia of Plant Physiology, eds. A.Trebst, M. Avron, Berlin: Springer-Verlag.1917,5:149~167.
    [50] Borisov A Y. Energy migration in purple bacteria. The criterion for discriminationbetween migration-and trapping-limited photosynthetic units. Photosynthesis Research,1990,23:283~289.
    [51] Butler W L. Energy distribution in the photochemical apparatus of Photosynthesis. AnnualReview of Plant Physiology.1978,29:345~378.
    [52] Duysens L N M, Sweers H E. Mechanism of the two photochemical reactions in algae asstudied by means of fluorescence. In Studies on Microalgae and Photosynthetic Bacleria, Ipn.Soc. Plant Physiol. Tokyo: University of Tokyo Press.1963.353~372.
    [53] Moss D A, Bendall D S. Cyclic electron transport in chloroplasts. The Q-cycle and the site ofaction of antimycin. Biochimica et Biophysica Acta,1984,767:389~395.
    [54] Hodges M, Briantais J M, Moya I. The effect of thylakoid membrane reorganisation onchlorophyll tluorescence lifetime components: a comparison between state transitions,protein phosfhorylation and the absence of Mg2+. Biochimica et Biophysica Acta,1987,893:480~489.
    [55] Hodges M, Moya I. Timeresolved chlorophyll fluorescence studies on pigment-proteincomplexes from photosynthetic membranes. Biochimica et Biophysica Acta,1988,935:41~52.
    [56] Melis A. Functional properties of photosystem II in spinach Chloroplasts. Biochimica etBiophysica Acta,1985,808:334~342.
    [57] Melis A, Anderson J M. Structural and functional organization of the photosystems inspinach chloroplasts. Antenna size, relative electron transport capacity and chlorophyllcomposition. Biochimica et Biophysica Acta,1983.724:473~484.
    [58] Melis A, Homann P H. Heterogeneity of the photochemical centers in system II ofchloroplasts. Photochemistry and Photobiology,1976,23:343~350.
    [59] Melis A, Anderson J M. Structural and functional organization of the photosystems inspinach chloroplasts. Antenna size, relative electron transport capacity and chlorophyllcomposition. Biochimica et Biophysica Acta,1983,724:473~484.
    [60] Wim J. Vredenberg, Alexander A. Bulychev. Photoelectrochemical control of the balancebetween cyclic-and linear electron transport in photosystem I. Algorithm for P700+inductionkinetics. Biochimica et Biophysica Acta.2010,1797:1521~1532.
    [61] Giles N. Johnson.Reprint of: Physiology of PSI cyclic electron transport in higher plants.Biochimica et Biophysica Acta,2011,1807:906~911.
    [62] Hodges M, Moya I. Timeresolved chlorophyll fluorescence studies on photosynthetic mutantsof Chlamydomonas reinhardtii: origin of the kinetic decay components. PhotosynthesisResearch,1987,13:125~141.
    [63] Vredenberg W J, Kasalicky V, Durchan M, Prasil O. Thechlorophylla fuorescence inductionpattern in chloroplasts upon repetitive single turnover excitations: accumulation and functionof QB-nonreducing centers, Biochimica et Biophysica Acta,2006,1757:173~181.
    [64] Morissey P J, Glick R E, Melis A. Supramolecular assembly and function of subunitsassociated with the chlorophyll a b light-harvesting complex II (LHC II) in soybeanchloroplasts. Plant Cell Physiology,1989,30:335~344.
    [65] Lavergne J. Fluorescence induction in algae and chloroplasts. Photochemistry andPhotobiology,1974,20:377~86.
    [66] Laasch H. Non-photochemical quenching of chlorophyll a fluorescence in isolatedchloroplasts under conditions of stressed photosynthesis. Planta,1987,171:220~226.
    [67] Laasch H. Non-photochemical quenching of chlorophyll a fluorescence in isolatedchloroplasts under conditions of stressed photosynthesis. Planta,1987,171:220~226.
    [68]张守仁。叶绿素荧光动力学参数的意义及讨论[J]。植物学通报,1999,16(4):444~448。
    [69]李晓,冯伟,曾晓春。叶绿素荧光分析技术及应用进展[J]。西北植物学报,2006,26(10):2186~2196。
    [70] Krause G H, Laasch H, Weis E. Regulation of thermal dissipation of absorbed light nergy inchloroplasts indicated by energy-dependent fluorescence quenching. Plant Physiology andBiochemistry,1988,26:445~452.
    [71] Krause G H, Somersalo S, Zumbusch E, Weyers B, Laasch H. On the mechanism ofphotoinhibition in chloroplasts. Relationship between changes in fluorescence and activity ofPhotosystem II. Journal of Plant Physiology,1990,136:472~79.
    [72] Kuhn M, Boger P. Studies on the light-induced loss of the D1protein in photo system-IImembrane fragments. Photosynthesis Research,1990,23:291~296.
    [73] Young E B, Beardall J. Photosynthetic function in Dunaliella tertiolecta (chlorophyta) duringa nitrogen starvation and recovery cycle [J]. Journal of Phycology,2003,39:897~905.
    [74] Berges J A, Charlebois D O, Mauzerall D C, et al. Differential effects of nitrogen limitationon photosynthetic efficiency of photosystems I and II in microalgae[J]. Plant Physiology,1996,110:689~696.
    [75] Lippemeier S, Hintze R, Vanselow K H, et al. In-line recording of PAM fluorescence ofphytoplanton cultures as a new tool for studying effects of fluctuating nutrient supply onphotosynthesis[J]. European Journal of Phycology,2001,36:89~100.
    [76] Geider R J, Macintyre L, Graziano L M, et al. Responses of the photosynthetic apparatus ofDunaliella tertiolecta(Chlorophyceae) to nitrogen and phosphorus limitation[J]. EuropeanJournal of Phycology,1998,33:315~332.
    [77] Geider R J, Roche J La, Greene R M, et al. Response of the photosynthetic apparatus ofPhaeodactylum tricornutum(bacillariophyceae) to nitrate, phosphate, or iron starvation [J].Journal of Phycology,1993,29:755~766.
    [78]尹翠玲。营养盐限制对6株微藻叶绿素荧光特性的影响:[硕士学位论文]。青岛:中国海洋大学,2006。
    [79] Cleveland J S, Perry M J. Quantum yield, relative specific absorption and fluorescence innitrogen-limited Chaetoceros gracilis [J]. Marine Biology,1987,94:489~497.
    [80] Young E B, Beardall J. Photosynthetic function in Dunaliella tertiolecta (chlorophyta) duringa nitrogen starvation and recovery cycle [J]. Journal of Phycology,2003,39:897~905.
    [81] Moore C M, Lucas M I, Sanders R, et al. Basin-scale variability of phytoplankton bio-opticalcharacteristics in relation to bloom state and community structure in the Northeast Atlantic[J]. Deep Sea Research I,2005,52:401~419.
    [82] Yentsch C S, Yentsch C M, Phinney D A, et al. The odyssey of new production [J]. Journalof Experimental Marine Biology and Ecology,2004,300:15~30.
    [83] Vaillancourt R D, Sambrotto R N, Green S, et al. Phytoplankton biomass and photosyntheticcompetency in the summertime Mertz Glacier Region of East Antarctica[J]. Deep SeaResearch II,2003,50:1415~1440.
    [84] Geider R J, Greene R M, Kolber Z, et al. Fluorescence assessment of the maximum quantumefficiency of photosynthesis in the western North Atlantic[J]. Deep sea Research I,1993,40(6):1205~1224.
    [85] Boyd P W, Roche J La, Gall M, et al. The role of iron, light and silicate in controlling algalbiomass in Sub-Antarctic waters SE of New Zealand[J]. Journal of geophysical researchocean,1999,104:13395~13408.
    [86] Boyd P, Berges J A, Harrison P J. In vitro enrichment experiments at iron-rich and-poor sitesin the NE subarctic Pacific [J]. Journal of Experimental Marine Biology and Ecology,1998,227:133~151.
    [87] Kolber Z S, Barber R T, Coale K H, et al. Iron limitation of phytoplankton photosynthesis inthe equatorial Pacific Ocean[J]. Nature,1994,371:145~149.
    [88] Boyd P W, Muggli D L, Varela D E, et al. In vitro iron enrichment experiments in the NEsubarctic Pacific [J]. Marine Ecology Progress Series,1996,136:179~193.
    [89] Parkhill J-P, Maillet G, Cullen J J. Fluorescence-based maximal quantum yield for PSII as adiagnostic of nutrient stress. Journal of Phycology,2001,37:517~529.
    [90] Scott G L,Susan S K,Daniel A K, et a1.Effect of nutrient availability on the biochemicaland elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus(Bacillariophyceae)[J]. Journal of Phycology,2000,36:510~522.
    [91] Dortsch Q, Clayton J J R, Thoresen S S. Species differences in accumulation of nitrogenpools in phytoplankton [J]. Marine Biology,1984,81:237~250.
    [92] Thompson P A, Oh H M, Rhee G Y. Storage of phosphorus in nitrogen-fixing anabaenaflos-aquae (Cyanophyceae)[J]. Journal of Phycology,1994,30:267~273.
    [93] Sunda W G, Susan A H. Effect of CO2supply and demand on zinc uptake and growthlimitation in a coastal diatom [J]. Limnology Oceanography,2005,50(4):1181~1192.
    [94] Kustka A, Sergio S, Carpenter E J. A revised estimate of the iron use efficiency of nitrogenfixation with special reference to the marine Cyanobacterium trichodesmium sp (Cyanophyta)[J]. Journal of Phyco1ogy,2003,39:12~25.
    [95] Conover S A M. Partitioning of nitrogen and carbon in cultures of the marine diatomThalassiosira fluviatilis supplied with nitrate, ammonium or urea [J]. Marine Biology,1975,32,231~146.
    [96] Dortch Q. Effect of growth conditions on accumulation of internal nitrate, ammonium,amino acids and protein in three marine diatoms [J]. Journal of Experimental Marine Biologyand Ecology,1982,61,242~246.
    [97] Rhee G Y, Dual nutrient limitation [J]. Limnology Oceanography,1978,23,10~25.
    [98] Dortch Q, Clayton J R, Jr, Thoresen S S, Ahmed S I. Species differences in accumulation ofnitrogen polls in phytoplankton [J]. Marine Biology,1984,81,237~250.
    [99]尹翠玲,梁英,冯力霞,曹春晖。氮浓度对盐生杜氏藻和纤细角毛藻叶绿素荧光特性及生长的影响[J]。海洋湖沼通报,2007,1:101~110。
    [100]尹翠玲,梁英,张秋丰。氮浓度对球等鞭金藻3011和8701叶绿素荧光特性及生长的影响[J]。水产科学,2006,27(1):27~31。
    [101]韩博平,韩志国,付翔。藻类光合作用机理与模型。北京:科学出版社,2003。27~30。
    [102]吕颂辉,李英。我国东海4种赤潮藻的细胞氮磷营养储存能力对比。过程工程学报,2006,6(3):439~444。
    [103] Chan A T, Comparative physiological study of marine diatoms and dinoflagellates in relationto irradiance and cell size. Journal of Phycology,1978,14:396~402.
    [104] Hitchcock G L, A comparative study of the size-dependent organic composition of marinediatoms and dinoflagellates. Journal of Plankton Research,1982,4:363~377.
    [105]郑重,李少箐,许振祖。海洋浮游生物学。北京:海洋出版社,1984。
    [106]郭玉洁,钱树本。中国海藻志。北京:科学出版社,2003。
    [107]孙军,刘东艳,白洁,高会旺,韩笑天。2001年冬季渤海的浮游植物群落结构特征。中国海洋大学学报,2004,34(3):413~422。
    [108]宋星宇,黄良民,钱树本,尹建强。南沙群岛临近海域春夏季浮游植物多样性研究。生物多样性,2002,10(3):258~268。
    [109]杨世民,董树刚。中国海域常见浮游硅藻图谱。青岛:中国海洋大学出版社,2006。
    [110]韩笑天,邹景忠,张永山。胶州湾赤潮生物种类及其生态分布特征。海洋科学,2004,28:49~53。
    [111] Armond P A, Bjorkman O, Staehelin L A. Dissociation of supramolecular complexes inchloroplast membranes: A manifestation of heat damage to the photosynthetic apparatus [J].Biochimica et Biophysica Acta,1980,601:433~442.
    [112] Srivastava A, Guisseb, Greppin H, et al. Regulation of antenna structure and electrontransport in photosyntem II of Pisum satium under elevated temperature probed by the fastpolyphasic chlorophyll a fluorescence transient: OKJIP [J]. Biochimica et Biophysica Acta,1997,1320:95~106.
    [113] Yamane Y, Kashino Y, Koike H, et al. Effects of high temperatures on the photosyntheticsystems in spinach: oxygen-evolving activities, fluorescence characteristics and thedenaturation process [J]. Photosynthesis Research,1998,57:51~59.
    [114] Cao J, Govindjee. Chlorophyll a fluorescence transient as an indicator of active and inactivephotosystem II in thylakoid membranes [J]. Biochim Biophys Acta,1990,1015:180~188.
    [115]冯建灿,胡秀丽,毛训甲。叶绿素荧光动力学在研究植物逆境生理中的应用。经济林研究,2002,20(4):14~18。
    [116]习岗,杨初平,宋清,陈厚彬。低温胁迫下香蕉叶片Chla荧光动力学参量的变化及其品种差异性。2002,31(11):1326~1329。
    [117]国家海洋局。2000年中国海洋环境质量公报[R]。北京:国家海洋局,2001。
    [118]国家海洋局。2001年中国海洋环境质量公报[R]。北京:国家海洋局,2002。
    [119]国家海洋局。2002年中国海洋环境质量公报[R]。北京:国家海洋局,2003。
    [120]国家海洋局。2003年中国海洋环境质量公报[R]。北京:国家海洋局,2004。
    [121]国家海洋局。2004年中国海洋环境质量公报[R]。北京:国家海洋局,2005。
    [122]国家海洋局。2005年中国海洋环境质量公报[R]。北京:国家海洋局,2006。
    [123]国家海洋局。2006年中国海洋环境质量公报[R]。北京:国家海洋局,2007。
    [124] Nelson D M, Treguer P, Brzezinski M A. Production and dissolution of biogenic silica in theocean: revised global estimates, comparison with regional data and relationship to biogenicsedimentation [J]. Global Biogeochemistry Cycle.1995,9:359~372.
    [125] Redfield A C, Kerehum B H, Reehards F A. The influence of organisms on the compositionof seawater [A]. The Sea2[C]. New York: wiley In: Hill M N, ed.,1963:2,26~77.
    [126] Brzezinski M A. Vertical distribution of ammonium in stratified oligotrophic waters [J].Limnology and Oceanography,1988,33(5):1176~1182.
    [127] Turpin H D, Harrison P J. Limiting nutrient patchiness and its role in phytoplankton ecology[J]. Journal of Experimental Marine Biology and Ecology.1979,39(14):151~166.
    [128] Parson T R, Stephens K, Strickland J D M. On the chemical composition of11species ofmarine phytoplankton [J]. Journal of the Fisheries Research Board of Canada,1961,18(10):1~16.
    [129]周名江,朱明远,张经。中国赤潮的发生趋势和研究进展[J]。生命科学。2001,13(2):53~59。
    [130]周明江,颜天,邹景忠。长江口邻近海域赤潮发生区基本特征初探[J]。应用生态学报。2003,14(7):1031~1038。
    [131] Anderson D M, Garrison D J. Ecology and oceanography of harmful algal Blooms [J].Limnology and Oceanography,1997,42(5):1009~1035.
    [132] Hallegraeff G M. A review of harmful algal blooms and their apparent global increase [J].Phycologia,1993,32:79~99.
    [133]胡明辉,杨逸萍,徐春林,等。长江口浮游植物生长的磷酸盐限制[J]。海洋学报。1989,11(4):339~443。
    [134]沈志良。长江口海区理化环境对初级生产力的影响[J]。海洋通报。1993,1:47~51。
    [135]赵卫红,李金涛,王江涛。夏季长江口海域浮游植物营养限制的现场研究[J]。海洋环境科学。2001,23(4):1~5。
    [136]周俊丽,刘征涛,孟伟,等。长江口营养盐浓度变化及分布特征[J]。环境科学研究。2006,19(6):139~144。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700