寒地稻作不同灌溉模式的节水及温室气体排放效应试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为世界主要粮食作物之一的水稻,在其生产过程中面临着水资源日趋紧张及温室气体排放日渐增大的问题,成为学术界研究的热点,也是社会各界关注的焦点。
     本文以寒地稻作为研究对象,采用理论分析、盆栽试验、大田试验及综合评价等方法对寒地稻区现行的具有代表性的四种灌溉模式的节水及温室气体排放效应进行了较为系统的分析研究。
     在大田试验与盆栽试验的基础上,较为全面地分析了控制灌溉、湿润灌溉、间歇灌溉及淹灌对水稻生物量、天然降水利同率、水分利同效率及灌溉水利同率的影响,分析了不同灌溉模式的CH4及N2O的排放规律,并就其中一些影响CH4及N20排放的因素进行了分析,评估了不同灌溉模式的温室效应。采用基于RAGA的PPC模型进行评价,为进一步筛选适合寒地黑土稻作区的环境友好型节水技术提供理论依据。
     主要研究结论如下:
     1.从单位水量来看,控灌能够获得较高的产量,间灌和湿润灌溉居中,淹灌最低。水分利用效率分析表明,控灌效率最高,灌溉水生产效率为2.59kg·m-3,水分生产效率为1.55kg·m-3;间灌次之,灌溉水生产效率为2.22kg·m-3,水分生产效率为1.40kg·m-3;湿润灌再次之,灌溉水生产效率为1.93kg·m-3,水分生产效率为1.22kg·m-3;淹灌最低,灌溉水生产效率为1.38kg·m-3,水分生产效率为0.97kg·m-3。
     2.有效降雨量在水稻耗水量中的比例,控灌水稻有效雨量所占比重最大达到40.05%,淹灌最小为29.55%,湿润灌溉和间歇灌溉居中,分别为36.48%和36.96%;在天然降水利同率方面,淹灌为83.51%,控制灌溉为72.05%,湿润灌溉为89.32%,间歇灌溉为76.93%。
     3.在水稻全生育期内,淹灌模式下的CH4排放量最大,间歇灌溉次之,湿润灌溉再次之,控制灌溉最小。淹灌模式下的水稻CH4平均排放通量为2.49mg·m-2·h-1,累积排放量为6.46g·m-2,温室效应1356.51kgCO2·ha-1;间歇灌溉模式下的水稻CH4平均排放通量为2.11mg·m-2·h-1,累积排放量为5.47g·m-2,温室效应1149.52kgCO2·ha-1;湿润灌溉模式下水稻CH4平均排放通量为1.36mg·m-2·h-1,累积排放量为3.52g·m-2,温室效应739.18kgCO2·ha-1;控制灌溉模式下水稻CH4平均排放通量为0.97mg·m-2·h-1,CH4累积排放量为2.51g·m-2,温室效应526.49kgCO2·ha-1
     4.在水稻全生育期内,控制灌溉模式下的N2O排放量最大,间歇灌溉次之,湿润灌溉居三,淹灌最小。控制灌溉模式下的水稻N2O平均排放通量为29.71μg·m-2·h-1,累积排放通量为77.01mg·m-2,温室效应为238.72kgCO2·ha-1;间歇灌溉模式下的水稻N2O平均排放通量为26.53μg·m-2·h-1,累积排放通量为68.47mg·m-2,温室效应为213.19kgCO2·ha-1;湿润灌溉模式下的水稻N2O平均排放通量为26.14μg·m-1·h-1,累积排放通量为67.761mg·m-2,温室效应为210.16kgCO2·ha-1:淹灌模式下的水稻N2O平均排放通量为14.23μg·m-2.h-1,累积排放通量为36.88mg·m-2,温室效应为114.32kgCO2·ha-1。
     5.除湿润灌溉外,其他三种灌溉模式CH4排放通量峰值均在分蘖期出现,湿润灌溉则较之滞后,在拔孕期出现;N2O排放呈现明显的双峰特征,四种灌溉模式下的稻田均在分蘖期和黄熟期出现峰值;较淹灌而言,控制灌溉、湿润灌溉及间歇灌溉三种模式均能有效抑制温室气体的排放并降低CH4与N2O总的温室效应。
     本文创新点主要有以下两点:
     1.通过盆栽试验和SWBM理论计算不同灌溉模式的天然降水利用率,明确给出两种计算方法。
     2.在我国高寒地区开展了寒地水稻温室气体排放试验研究,提出了不同灌溉模式的温室气体排放成果,填补了寒地水稻温室气体排放数据的空白。
As one of the major food crops in the world, rice production faces two problems:shortage of water resources and increasing greenhouse gas emission. It is focus for both academic research and social communities concern.
     It chose rice crop in cold area to research on the water-saving effect and greenhouse effect of different irrigation modes by using therorical analysises、barrel experiments、field experiments and comprehensive evaluation.
     Based on field experiment and barrel experiment, it comprehensively analyzed the rice biomass、utilization of precipitation、WUE and irrigation water use efficiency under control irrigation、wet irrigation、intermittent irrigation and flood irrigation. It studied CH4and N2O emission regularity and discussed some factors affecting CH4and N2O emission, and assessed greenhouse effect of different irrigation modes. It used PPC based on RAGA to evaluate the different irrigation modes to further choose environmental-friendly water-saving technology which fits to rice in cold area.
     The main conclusions are following:
     1.Using same amount of water, rice with control irrigation mode can get much higher yield, flood irrigation lowest. Under control irrigation mode, irrigation water use efficiency is2.59kg·m-, water use efficiency is1.55kg·m-3; under intermittent irrigation mode, irrigation water use efficiency is2.22kg·m-3, water use efficiency is1.40kg·m-3; under wet irrigation mode, irrigation water use efficiency is1.93kg·m-3, water use efficiency is1.22kg·m-3; under flood irrigation mode, irrigation water use efficiency is1.38kg·m-3, water use efficiency is0.97kg·m-3.
     2.As to as the proportion of effective rainfall in the rice consumption water, under control irrigation, it is40.05%, flood irrigation29.55%, wet irrigation36.48%, intermittent irrigation36.96%;as to as utilization of precipitation, flood irrigation mode is83.51%, control irrigation mode is72.05%, wet irrigation mode is89.32%, intermittent irrigation is76.93%.
     3.In the whole growth period, under flood irrigation CH4emission amount is highest, control irrigation lowest. Under flood irrigation, CH4emission flux was2.49mg· m-2· h-1, accumulated emission was6.46g·m-2,greenhouse effect is1356.51kgCO2·ha-1; under intermittent irrigation mode, CH4emission flux was2.11mg·m-2·h-1, accumulated emission was5.47g·m-2,greenhouse effect is1149.52kgCO2·ha-1; under wet irrigation mode, CH4emission flux was1.36mg·m-2·h-1, accumulated emission was3.52g·m-2,greenhouse effect is739.18kgCO2·ha-1under control irrigation mode, CH4emission flux was0.97mg· m-2· h-1, accumulated emission was2.51g·m-2,greenhouse effect is526.49kgCO2·ha-1.
     4.In the whole growth period, under control irrigation N2O emission amount is highest, flood irrigation lowest. Under control irrigation, N2O emission flux was29.71μg· m-2· h-1, accumulated emission was77.01mg·m-2,greenhouse effect is238.72kgCO2·ha-1; under intermittent irrigation mode, N2O emission flux was26.53μg· m-2· h-1, accumulated emission was68.47mg·m-2,greenhouse effect is213.19kgCO2·ha-1; under wet irrigation mode, N2O emission flux was26.14μg· m-2· h-1, accumulated emission was67.76mg·m-2,greenhouse effect is210.16kgCO2·ha-1; under flood irrigation mode, N2O emission flux was14.23μg·m-2· h-1, accumulated emission was36.88mg·m-2,greenhouse effect is114.32kgCO2·ha-1.
     5.Except for wet irrigation mode, under the other irrigation modes, CH4emission flux peak appeared in tillering stage, under wet irrigation mode, CH4emission flux peak appeared in jointing-booting stage; N2O emission had obvious two peak characteristic, the peak emission appeared in tillering stage and ripening stage; compared with flood irrigation mode, control irrigation、wet irrigation and intermittent irrigation can suppress greenhouse gas emission and reduce the total greenhouse effect of CH4and N2O.
     The innovation points are following:
     1.Two methods were used to calculate rainfall use utilization efficiency which refers to experiment and theory calculation;
     2.It did greenhouse gases emission experiments for paddy rice in cold area and gave the greenhouse gases emission data which filled in the blanks of greenhouse gases emission data for paddy rice in cold area.
引文
[1]康绍忠,马孝义.对我国发展节水农业几个问题的思考.中国农业资源与区划,1999.
    [2]邹建文,黄耀,宗良纲,等.稻田CO2、CH4和N2O排放及其影响因素[J].环境科学学报,2003,23(6):758-764.
    [3]岳尚文,李强.间歇灌溉技术要点浅析[J].内蒙古水利,2000,(3):38-39.
    [4]朱安繁,曾晓春,石庆华,等.间歇灌溉对水稻抗旱性的影响及其生理机制[J].灌溉排水学报,2007,26(1):63-65.
    [5]张祖莲,薛继亮.水稻间歇灌溉试验研究[J].节水灌溉,2001,(6):23-24.
    [6]孙小淋,杨立年,杨建昌.水稻高产节水灌溉技术及其生理生态效应[J].中国农学通报,2010,26(3):253-257.
    [7]Lu J, Ookawa T, Hirasawa T. The effects of irrigation regimes on the water use,dry matter production and physiological responses of paddy rice [J].Plant S oil,2000.223:207-216.
    [8]Tabbal D F, Lampayan R M, Bhuiyan SI. Water efficient irrigation technique for rice.In:Soil and Water Engineering for Paddy Field Management. Bangkok, Thailand:Asian Institute of Technique,1992:146-159.
    [9]Tripathi R P, Kushwaha H S, Mishra R K.1986.Irrigation requirements of rice under shallow water table conditions [J].Agric Water Man,12:127-136.
    [10]王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理生态需水的影响[J].应用生态学报,2004,15(10):1911-1915.
    [11]朱安繁,曾晓春,石庆华,姚锋先.间歇灌溉对水稻抗旱性的影响及其生理机制[J].灌溉排水学报,2007,26(1):63-65.
    [12]林燕春,陈化寨,崔璀,等.水稻节水高产栽培间歇灌溉技术[J],广东农业科学,2010,12:29-31.
    [13]王振刚,何权.水稻控制灌溉技术综述[J].黑龙江水利科技,2008(1):13-14.
    [14]纪春生.水稻节水控制灌溉技术[J].黑龙江水利科技,2008,(5):205.
    [15]俞双恩,彭世彰,王士恒,等.控制灌溉条件下水稻的群体特征.灌溉排水,1997,16(2):22.
    [16]徐宁红,刘勇,彭世彰.水稻控制灌溉技术在宁夏的应用研究与推广[J].中国农村水利水电,1999,(10):8-10.
    [17]刘广明,杨劲松,姜艳,等.基于控制灌溉理论的水稻优化灌溉制度研究[J].农业工程学报,2005,21(5):29.
    [18]丁加丽,彭世彰,徐俊增,李道西.控制灌溉条件下水稻蒸发蒸腾量及作物系数试验研究[J].河海大学学报(自然科学版),2006,36(3):239-242.
    [19]刘凤丽,彭世彰,徐俊增,丁加丽.控制灌溉模式下水稻群体结构试验研究[J].沈阳农业大学学报,2004,35(5-6):417-419.
    [20]奕永庆.水稻薄露灌溉技术的推广[J].浙江水利科技,1997,(1):58-61.
    [21]谢谷民,俞斌超,郑玉明,等.薄露灌溉水稻节水抗盐增产的新技术[J].浙江水利科技,1999,(3):12.
    [22]Toung T P, Bouman BAM, Mortimer M. More rice, less water-integrated approaches for increasing water productivity in irrigated rice-based systems in Asia [J]. Plant Production Scie nce,2005,8:231-241.
    [23]Won JG, Choi JS, Lee SP, et al. Water saving by shallow intermittent irrigation and growth of rice[J]. Plant Production Science,2005,8:487-492.
    [24]Yang C, Yang L, Yang Y, et al. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils[J]. Agricultural WaterManagement, 2004,70:67-81.
    [25]Mishra H S, Rathore T R, Pant RC. Effect of intermittent irrigation on groundwater table contr ibution, irrigation requirement and yield of rice in Mullions of Tarai region [J]. Agricultural W-ater Management,1990,18:231-241.
    [26]Tabbal D F, Bouman BAM, Bhuiyan SI, et al. On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines [J]. Agricultural Water Management,2002,56: 93-112.
    [27]郑家国,任光俊,陆贤军,等.花后水分亏缺对水稻产量和品质的影响[J].中国水稻科学,2003,17(03):239-243.
    [28]王人民,丁元树.从抽穗到成熟期水稻生态因子的研究[J].浙江农业大学学报,1989,15(01):14-20.
    [29]邓定武,谭正之,龙兴汉,等.灌溉对杂交水稻产量和稻米品质的影响[J].作物研究,1990,4(2):7-9.
    [30]Gomex K A. Effect of environment on protein and amylase content or rice. In:Proceedings of the Workshop of Chemical Aspects of Rice Grain Quality[C]. Philippines:International Rice Research Institute,1979:597-680.
    [31]王成才,李福欣.水稻湿润灌溉技术及其节水增产机理的分析[J].黑龙江水专学报,2003,30(1):59-60.
    [32]颜晓元.影响土壤甲烷吸收因素的实验室研究[J].土壤学进展,1994,22(1):32-36.
    [33]李道西.控制灌溉稻田甲烷排放规律及其影响机理研究[D].南京:河海大学,2007.
    [34]颜晓元,蔡祖聪.水稻土中CH4氧化的研究[J].应用生态学报,1997,8(6):589-594.
    [35]Bender M, Conrad R. Kinetics of methane oxidation in oxic soil [J]. Chemosphere,1993, 26:687-696.
    [36]田光明,何云峰,李勇先.水肥管理对稻田土壤甲烷和氧化亚氮排放的影响[J].土壤与环境,2002,11(3):294-298.
    [37]Mac Donald J A, Eggleton P, Bignell D E, et al. Methane emission by termites and oxidation by soils, across a forest disturbance gradient in Mhbalmayo Forest Reserve. Ca-meroon [J]. Global Change Biology,1998,4:409-418.
    [38]上官行健,王明星,陈德章,等.稻田CH4的传输[J].地球科学进展,1993,8(5):13-22.
    [39]Huang Y. Sass R L, Fisher F M. Methane emission from Texas rice paddy soils. Seasonal contribution of rice biomass production to CH4 emission[J]. Global Change Biology,1997, 3:491-500.
    [40]Sass R L, Fisher F M, Turner F T. Methane emission from rice fields as influenced by solar radiation, temperature and straw incorporation[J]. Global Biogeochemical Cycles, 1991,5 (4):335-350.
    [41]Schutz H, Holzapfel-Pschorn A, Conrad R, et al. A 3-year continuous record on the influence of daytime, season and fertilizer treatment on methane emission rate from an Italian rice padd-y[J]. Journal of Geophysical Research,1989,94:16406-16416.
    [42]王增远,徐雨昌,李震,等.水稻品种对稻田甲烷排放的影响[J].作物学报,1999,25(4):441-446.
    [43]李晶,王明星,陈德章.水稻田甲烷的减排方法研究及评价[J].大气科学,1998,22(3):354-362.
    [44]陈宗良,邵可声,李德波,等.控制稻田甲烷排放的农业管理措施研究[J].环境科学研究,1994,7(1):1-10.
    [45]黄勤,魏朝富,谢德体,等.不同耕作制度对稻田甲烷排放通量的影响[J].西北农业大学学报,1996,18(5):436-439.
    [46]蔡祖聪,沈光裕,颜晓元.土壤质地、温度和Eh对稻田甲烷排放的影响[J].土壤学报,1998,35(2):145-154.
    [47]王胜春,刘可星,游植麟.不同母质发育的水稻土中铁、猛对甲烷排放的影响[J].农村生态环境,1998,14(1):52-54.
    [48]林匡飞,项雅玲,姜达炳,等.湖北地区稻田甲烷排放量及控制措施的研究[J].农业环境保护,2000,19(5):267-270.
    [49]Kludze H K, Delanne R D, Patrick W H. Aerenchyma formation and methane and oxygen exchange in rice [J]. Soil Sci Am J,1993,57:386-391.
    [50]Fetzer S, Conrad R. Effect of redox potential on methanogenesis by Methanosarcina barke ri[J]. Archives of Microbilogy,1993,160:108-113.
    [51]Castro M S, Peterjohn W T, Melillo J M. Effect of Nitrogen fertilization on the fluxes of N2O、CH4 and CO2 from soils in a Florida slash pine plantation[J]. Can J Forest Res,1994, 24:9-13.
    [52]蔡祖聪.土壤化学研究与应用[M].北京:中国环境科学出版社,1997:7-14.
    [53]Lindau C W. Methane emssions from Louisianan rice field amended with nitrogen fertilize rs[J]. Soil Bio Biochem,1994,26:353-359.
    [54]Cicerone R J, Shetter F. Sources of atmospheric methane:measurements in rice paddies and a discussion[J]. J Geophys Res,1981,86:7203-7209.
    [55]蔡祖聪,颜晓元,徐华,等.氮肥品种对甲烷排放的影响[J].土壤学报,1995(增刊 2):136-142.
    [56]Jugsujinda A, Delaune R D, Lindau C W. Influence of nitrate on methane production and oxidation in flooded soil[J]. Com Soil Sci Plant Anal,1995,26:2449-2459.
    [57]Kimura M, Asai K, Watanabe A, et al. Suppression of methane fluxes from flooded paddy soil with rice plants by foliar spray of nitrogen fertilizers[J]. Soil Sci Plant Nutr, 1992,38:735-740.
    [58]Cai Z C, Xing G X, Yan X Y, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management [J]. Plant and Soil,1997, 196:7-14.
    [59]彭世彰,李道西,缴锡云,等.节水灌溉模式下稻田甲烷排放的季节变化[J].浙江大学学报(农业与生命科学版),2006,32(5):546-550.
    [60]卢伟盛,张建国,廖宗文,等.不同水分管理及耕作制度对广州地区稻田CH4排放的影响[J].华南农业大学学报,1997,18(3):57-61.
    [61]Li C S, Frolking S, Xiao X M, et al. Modeling impacts of farming management alternative s on CO2, CH4 and N2O emissions:a case study for water management of rice agriculture of China [J]. Global Biogeochemical Cycles,2005,19 (3):GB3010.
    [62]Zou J W, Huang Y, Jiang J Y, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime, crop residue, and fert ilizer application [J]. Global Biogeochemical Cycles,2005,19(2):GB2021.
    [63]蔡祖聪.中国稻田甲烷排放研究进展[A].迈向21世纪的土壤科学:中国土壤学会第九次全国会员代表大会论文集,1999:139-142.
    [64]Mosier A, Kroeze C. A new approach to estimate emissions of nitrous oxide from agricultu re and its implication for the global N2O budget[J]. Global Change Newsletter,1998,34, Sweden:IGBP.
    [65]Li C. Modeling trace gas emission from agricultural ecosystems[J]. Nutrient Cycling in Agroecosystems,2000,58:259-276.
    [66]Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystems and the atmos phere. In:Bouwman A F(Ed), Soils and the Greenhouss Effect[M].Wiley New York USA, 1990,61-127.
    [67]YU K W, Wang Z P, Chen G X. Nitrous oxide and methane transport through rice plants[J]. Biology and Fertility of Soils,1997,24:341-343.
    [68]Yan X, Shi S, Du L, et al. Pathways of N2O emission from rice paddy soil [J]. Soil Biology and Biochemistry,2000,32:437-440.
    [69]黄耀,焦燕,宗良纲,等.土壤理化特性对麦田N2O排放影响的研究[J].环境科学学报,2002,22(5):598-602.
    [70]李香兰,徐华,蔡祖聪.稻田CH4和N2O排放消长关系及其减排措施[J].农业环境科学学报,2008,27(6):2123-2130.
    [71]徐华,邢光熹,蔡祖聪,等.土壤质地对小麦和棉花田N2O排放的影响[J].农业环境 保护,2000,19(1):1-3.
    [72]李虎,王立刚,邱建军.农田土壤N2O排放和减排措施的研究进展[J].中国土壤与肥料,2007(5):1-5
    [73]MA Jing, LI Xiang-lan, XU Hua, et al. Effect of nitrogen fertilizer and wheat straw application on CH4 and N2O emission from a paddy rice field[J]. Australian Journal of soil Research,2007,45:359-367.
    [74]Huang Y, Jiang J Y, Zong L G, et al. Nitrous oxide emissions from the wheat-growing season in eighteen Chinese paddy soils:an outdoor pot experiment[J]. Biology and Fertilit y of Soils,2002,36:411-417.
    [75]Zheng X H, Wang M X, Wang Y S, et al. Characters of greenhouse gas (CH4, N2O, NO) emissions from croplands of southeast China[J]. World Resource Review,1999, 11 (2):229-246.
    [76]Sahrawat K L. Nitrification in some tropic soils[J]. Plant and Soil,1982,65:281-286.
    [77]朱兆良,文启孝.中国土壤氮素[M].南京:江苏科学技术出版社,1992,97-160.
    [78]于克伟,陈冠雄,杨思河,等.几种旱地农作物在农田N2O释放中的作用及环境因素的影响[J].应用生态学报,1995,6(4):387-391.
    [79]张秀君,陈冠雄,徐慧.不同光强条件下树木释放N2O的研究[J].应用生态学报,2000,13(12):1563-1565.
    [80]郑循华,王明星,王跃思,等.温度对农田N2O产生与排放的影响[J].环境科学,1997,18(5):1-5.
    [81]黄耀,蒋静艳,宗良纲,等.种植密度和降水对冬小麦田N2O排放的影响[J].环境科学,2001,22(6):20-23.
    [82]Xing G X, Zhu Z L. An assessment of N loss from agricultural field to the environment in Chi na[J]. Nutrient Cycling in Agroecosystems,2000,57 (1):67-73.
    [83]Figgington G M, Smith K A. Losses of nitrogen by denitrification from a grassland soil fertiliz ed with cattle slurry and calcium nitrate[J]. Soil Sci,1986,37:69-80.
    [84]Eichner M J. Nitrous oxide emissions from fertilized soils:summary of available data[J]. Journ al of Environmental Quality,1990,19:272-280.
    [85]MULVANNEY R L, KHAN S A, MULVANNEY C S. Nitrogen fertilizers promote denitrificat ion[J].Biol Fert Soil,1997,24:211-220.
    [86]GROOT C J de, VERMOESEN A, CLEEMPUT O van, et al. Laboratory study of the emissio n of N2O and CH4 from a calcareous soil[J]. Soil Sci,1994,158:355-364.
    [87]VERMOESEN A, GROOT C J de, NOLLET L, et al. Effect of ammoniun and nitrate applicati on on the NO and N2O emission out of different soils[J]. Plant and Soil,1996,181:153-162.
    [88]孙爱华,朱士江,张忠学.三江平原水稻水分生态效益试验研究[J].灌溉排水学报,2010,29(3):109-111,139.
    [89]Patwardhan, Nieber, Johns. Effective Rainfall Estimation Methods[J]. Journal of Irrigation and Drainage Engineering,1990,116 (2):182-193.
    [90]徐小波,周和平,王忠,等.干旱灌区有效降雨量利用率研究[J].节水灌溉,2010,12:44-46.
    [91]李荣超,彭世彰,等.覆膜灌溉水稻需水规律试验研究[J].灌溉排水,2000,19(3):24-28.
    [92]刘祖贵,等.农田覆盖条件下的灌水施肥新技术[J].中国农村水利水电,2001,(4):12-13.
    [93]赵静,陈晓飞,席联敏,等.水稻覆膜灌溉对生态环境的影响研究[J].灌溉排水学报,2005,24(3):8-11.
    [94]柳新厚,王明波,刘建兴.黄水河流域地表水地下水联合调度分析[J].山东水利,2010,(1):48-50.
    [95]李道西,张亮,徐建新.灌区地表水地下水联合优化运用研究进展[C].现代节水高效农业与生态灌区建设(下)[A],2010.
    [96]朱庭芸.水稻灌溉的理论及技术[M].北京:中国水利水电出版社,1998,20-22.
    [97]袁伟玲,曹凑贵,李成芳等.稻鸭、稻鱼工作生态系统CH4和N2O温室效应及经济效益评估[J].中国农业科学,2009,42(6):2052-2060.
    [98]Gogoi N, Baruah K K, Gogoi B, Gupta P K. Methane emission characteristics and its relati ons with plant and soil parameters under irrigated rice ecosystem of northeast India. Chemosphere,2005,59:1677-1684.
    [99]Garg A, Shukla P R, Kapshe M, Menon D. Indian methane and nitrous oxide emissions and mitigation flexibility. Atmospheric Environment,2004,38:1965-1977.
    [100]Wassmann R, Neue H U, Lantin R S, Makarim K, Chareonsilp N, Buendia L V, Rennenbe rg H. Characterization of methane emissions from rice fields in Asia. Ⅱ. Differences amo ng irrigated, rainfed, and deepwater rice[J]. Nutrient Cycling in Agroecosystems,2000,5 8:13-22.
    [101]袁伟玲,曹凑贵,程建平,等.间歇灌溉模式下稻田CH4和N2O排放及温室效应评估[J].中国农业科学,2008,41(12):4294-4300.
    [102]Kanno T., Miura Y., Tsuruta H. and Minami K. Methane emission from rice paddy fields in all of Japanese prefecture-Relationship between emission rates and soil characteristics, water treatment and organic matter application [J]. Nutrient Cycling in Agroecosystems,1997,49:1 47-151.
    [103]徐华,蔡祖聪,李小平.种稻土壤CH4排放规律的研究[J].土壤与环境,1999,8(3):193-197.
    [104]李晶,王明星,陈德章.稻田甲烷排放非连续测量中采样时间的选择[J].中国科学院研究生院学报,1998,15(1):24-29.
    [105]Buendia L.V., Neue H.U., Wassmann R., et al. An efficient sampling strategy for estimating methane emission from rice field[J].Chemosphere,1998,36(2):395-407.
    [106]Hou A. X., Chen G. X., Wang Z.P., et al. Methane and Nitrous Oxide Emission from a Rice Field in Relation to Soil Redox and Microbiological Processes [J]. Soil Sci.Soc.Am.J.,2000, 64:2180-2186.
    [107]Kessavalou A, Doran J W, Mosier A R, et al. Fluxes of Carbon Dioxide, Nitrous Oxide and Methane in Grass Sod and Winter Wheat-Fallow Tillage Management. J Environment Qual, 1998,27:1094-1104.
    [108]Epstein H E, Burke L C. Plant functional type effects on trace gas fluxes in the short grass steppe [J]. Biogeochemistry,1998,42:145-168.
    [109]黄耀.地气系统碳氮交换——从实验到模型[M].北京:气象出版社,2003.
    [110]上官行健,王明星,沈壬兴.温度对稻田CH4排放日变化及季节变化的影响[J].中国科学院研究生院学报,1994,11(2):214-224.
    [111]于心科,李宁,李春园,等.温度对稻田甲烷排放的影响[J].地球科学进展,1994,9(5):54-56.
    [112]蒋静艳,黄耀,宗良纲.环境因素和作物生长对稻田CH4和N2O排放的影响[J].农业环境科学学报,2003,22(6):711-714.
    [113]Ding A.J, Willis C.R., Sass R.L., et al. Methane emissions from rice fields:effect of Plant height among several rice cultivars [J]. Global Biogeochemical Cyeles,1999,13(4):1045-1052
    [114]Watanabe A, Kajiwara M., Tashiro T. and Kimura M. Influence of rice cultivar on methane emission from Paddy fields[J].Plant and Soil,1995,176(1):51-56.
    [115]陈卫卫.三江平原稻田生态系统N2O排放研究[D].长春:吉林农业大学,2007.
    [116]IPCC. Climate Change 1994:Radiative Forcing of Climate Change and an Evaluation of the IPCC IS90 Emission Scenarios[M]. Cambridge, UK:Cambridge University Press, 1995.
    [117]Cai Z-C. Effects of water regime on CO2, CH4 and N2O emissions and overall potential for greenhouse effect caused by emitted gases. Acta Pedol Sin,1999,36(4):484-491 (in Chinese)
    [118]Bhatia A, Pathak H, Jain N, Singh P K, Singh A K. Global warming potential of manure amended soils under rice-wheat system in th Indo-Gangetic plains. Atmospheric Environ ment,2005,39:6967-6984.
    [119]Wang M-X,et al.1994. Source of methane in China. In:Minami K, Mosier A and Sass R eds. CH4 and N2O:Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES.1-7.
    [120]岳进,梁巍,吴杰,等.黑土稻田CH4与N2O排放及减排措施研究[J].应用生态学报,2003,14(11):2015-2018.
    [121]Ghosh S, Majumdar D, Jain M C. Methane and nitrous oxide emissions from irrigated rice of North India. Chemosphere,2003,51:181-195.
    [122]Bosse U., Frenzel P. Methane emissions from rice microcosms:The balance of Production, accumulation and oxidation[J]. Biogeoehemistry,1998,41:199-214.
    [123]Wang B., Neue H.U. and Samonte H.P. Role of rice in mediating methane emission[J]. Plant and Soil,1997,189:107-115.
    [124]付强.数据处理方法及其农业应用[M].北京:科学出版社,2006,283-323.
    [125]张欣莉,丁晶,李祚泳.投影寻踪新算法在水质评价模型中的应用[J].中国环境科 学,2000,20(2):187-189.
    [126]Friedman J H,Turkey J W. A projection pursuit algorithm for exploratory data analysis[A], IEEE Trans on Computer,1974,23(9):881-890.
    [127]金菊良,张欣莉,丁晶.评估洪水灾情等级的投影寻踪模型[J].系统工程理论与实践,2002,22(2):140-144.
    [128]徐淑琴,付强,董淑喜,等.基于RAGA的PPC模型评价水分胁迫对寒区水稻生长和产量的影响[J].农业工程学报,2005,25(2):29-33
    [129]刘玉甫,张明,王蓓.塔里木盆地节水灌溉综合效益评价及灌溉方式优化筛选[J].南水北调与水利科技,2009,7(2):70-72
    [130]吴景社,康绍忠,王景雷,等.节水灌溉综合效应评价研究进展[J].灌溉排水学报,2003,22(5):42-46.
    [131]金菊良,丁晶.遗传算法及其在水科学中的应用[M].成都:四川大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700